
IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
93

69
--

FR
+E

N
G

RESEARCH
REPORT
N° 9369
October 2020

Project-Team ROMA

Max-stretch
minimization on an
edge-cloud platform
Anne Benoit, Redouane Elghazi, Yves Robert

RESEARCH CENTRE
GRENOBLE – RHÔNE-ALPES

Inovallée
655 avenue de l’Europe Montbonnot
38334 Saint Ismier Cedex

Max-stretch minimization on an edge-cloud

platform

Anne Benoit, Redouane Elghazi, Yves Robert

Project-Team ROMA

Research Report n° 9369 — October 2020 — 37 pages

Abstract: We consider the problem of scheduling independent jobs that are generated by pro-
cessing units at the edge of the network. These jobs can either be executed locally, or sent to a
centralized cloud platform that can execute them at greater speed. Such edge-generated jobs may
come from various applications, such as e-health, disaster recovery, autonomous vehicles or flying
drones. The problem is to decide where and when to schedule each job, with the objective to
minimize the maximum stretch incurred by any job. The stretch of a job is the ratio of the time
spent by that job in the system, divided by the minimum time it could have taken if the job was
alone in the system. We formalize the problem and explain the di↵erences with other models that
can be found in the literature. We prove that minimizing the max-stretch is NP-complete, even
in the simpler instance with no release dates (all jobs are known in advance). This result comes
from the proof that minimizing the max-stretch with homogeneous processors and without release
dates is NP-complete, a complexity problem that was left open before this work. We design several
algorithms to propose e�cient solutions to the general problem, and we conduct simulations based
on real platform parameters to evaluate the performance of these algorithms.

Key-words: Edge-cloud, maximum stretch, NP-completeness, algorithms

Minimization du stretch maximum sur une

plate-forme edge-cloud

Résumé : Nous considérons l’ordonnancement de jobs indépendants qui sont
générés par des processeurs edge. Ces jobs peuvent soit être exécutés localement,
soit envoyés à une plate-forme cloud plus puissante, mais il faudra alors prendre
en compte les communications montantes et descendantes. Ce type de plate-
forme à deux niveaux edge-cloud a de nombreuses applications. Le problème
est de décider où et quand exécuter chaque job, avec pour objectif de minimiser
le stretch maximal. Le stretch d’un job est le rapport du temps passé par le job
dans le système sur le temps qu’il aurait passé s’il avait été seul dans ce système,
et mesure donc un facteur de ralentissement dans le temps de réponse. Nous
formalisons le problème en expliquant les di↵érences avec des modèles classiques.
Nous prouvons des résultats de NP-complétude sur la complexité du problème
o✏ine, à partir d’un nouveau résultats sur un problème classique et ouvert,
celui de la minimisation du stretch avec des processeurs homogènes et sans
dates d’arrivées (release dates) des jobs. Nous proposons plusieurs heuristiques
pour le problème général online, que nous comparons à l’aide de simulations
basées sur des paramètres de plates-formes existantes.

Mots-clés : Edge-cloud, stretch maximum, NP-complétude, algorithmes

Max-stretch minimization on an edge-cloud platform 3

1 Introduction

Edge-Cloud computing is a recent paradigm that is currently deployed by many
vendors (see [19, 20, 21, 27] and many others). The idea is to execute some jobs
in-situ, directly on the edge server where they originate from, thereby providing
a flexible, cost-e↵ective and decentralized solution that dramatically reduces
the volume of data transfers. But some jobs may be too demanding in terms of
computing power, or some edge servers may be overloaded because they launch
too many jobs. This calls for coupling the edge server with a powerful cloud
platform, where some jobs can be delegated whenever needed.

Deciding which jobs should be executed locally and which ones should be
communicated (up and down) to the cloud platform is a challenging problem.
The main focus of this paper is to lay the foundations for solving the instance
of the problem dealing with response time as a single optimization criterion.
Response time is a very important criterion, in particular for the users, and
arguably the most important one in a real-time framework. But it is not the
unique criterion to optimize on an edge-cloud platform: energy consumption
and resource costs are important criteria too. However, we show that dealing
with response-time is already an intricate problem, and we leave multi-objective
optimization for further work.

The response time for a job [12, 28] (also called flow time in the scheduling
literature [8]) is the time spent by that job in the system, starting from its
release date and up to final completion (including output transfers if any). The
standard scheduling objective is to minimize the maximum response time over all
jobs1. However, maximum response time is not appropriate to ensure fairness,
because giving the same response time for all jobs results in worst performance
for short jobs, compared to the performance achieved for long ones. In order
to provide a fair processing of jobs, job lengths should be taken into account.
The stretch [11, 3] is the metric used to ensure fairness among jobs, and it is
defined as the response time normalized by the job length. More precisely, the
stretch is the response time divided by the best possible execution time for the
job if it were alone on the platform. Therefore, a job stretch measures how the
performance of a job is degraded compared to a system dedicated exclusively to
this job. The maximum stretch is the maximum of the stretches of all jobs2 and
provides a measure of the responsiveness of the system: it quantifies the user
expectation that the response time should be proportional to the load incurred
by the execution of the job by the system. For an illustration, consider two jobs
released at the same time, one lasting 1 hour and the other 10 hours. With a
single processor, executing the long job first leads to a maximum stretch of 11,
while executing the short job first leads to a maximum stretch of 1.1. Intuitively,
the latter scheduling is more fair to users than the former. A word of caution:
assume now that we have one edge processor and one cloud processor for the
two jobs. For each of them, the time that it would spend in a dedicated system

1Minimizing the average response time of all jobs, or equivalently the sum of the response
times of all jobs (also called total flow time), has been extensively studied too [8].

2Just as for response time, the average stretch has also been studied as a metric [5].

RT n° 9369

4 Benoit, Elghazi, Robert

must be computed as the minimum of its execution times on the edge and on
the cloud (including transfers), if it was the only job.

In this paper, we focus on the maximum stretch as the optimization metric,
and we investigate how to minimize the maximum stretch of independent jobs
executing on an edge-cloud platform. This is an online scheduling problem, as
the jobs have release dates that are unknown until the jobs are submitted. The
first task is to design a realistic model for such a platform. In a nutshell, we
propose a model with preemption and possible re-execution, but no migration:
jobs are either executed on the edge processor where they originate from, or on
a cloud processor, and can be dynamically re-assigned to another resource. If
this is case, the execution must then restart from scratch, thus the time spent
executing the job until re-assignment is lost. Note that migration would require
some kind of checkpoint mechanism to be able to restart the job on another
resource from its current state.

If a job is executed on the cloud, up and down transfers are accounted for.
We allow for computation and communication overlap, and many communi-
cations can occur in parallel across edge and cloud processors. However, we
enforce the one-port full-duplex communication model that states that any re-
source cannot be involved either in two sending operations, or in two receiving
operations, at the same-time step, but sending and receiving simultaneously
is allowed. Independent sender/receiver pairs can communicate in parallel. A
given message may be preempted (and resumed later) if the sender or the re-
ceiver has a more urgent message to process (because of the release of a new
job). This communication model [16, 18, 32, 33] has been advocated as being
much more accurate than the traditional macro-dataflow communication model
of the scheduling literature, which allows a processor to, say, send 100 di↵erent
messages in parallel without accounting for any bandwidth limitation.

After designing the model, we assess complexity results. The o✏ine problem
is shown to be NP-hard, even in the simpler instance with no release dates (all
jobs are known in advance). This result comes from the proof that minimizing
the max-stretch with homogeneous processors and without release dates is NP-
complete, a problem whose complexity was left open before this work. Given
these negative (but somewhat expected) results, we introduce several heuristics
for the general online problem, and compare their performance through simula-
tions. In summary, the main contributions of this paper are the following:

• A realistic model for scheduling jobs on edge-cloud platforms;

• Several complexity results for the o✏ine problem, proving in particular
the NP-hardness of an open problem;

• New heuristics and their experimental comparison for the online problem.

The rest of the paper is organized as follows. We first discuss related work
in Section 2. The detailed model of the edge-cloud platform is provided in
Section 3, along with the MinMaxStretch-EdgeCloud problem definition.

Inria

Max-stretch minimization on an edge-cloud platform 5

We then prove the NP-completeness of MinMaxStretch-EdgeCloud in Sec-
tion 4, and we design several heuristic algorithms to solve this problem in Sec-
tion 5. Finally, extensive simulations are presented in Section 6 to evaluate
and compare the algorithms. Conclusions and directions for future work are
presented in Section 7.

2 Related work

We discuss related work along three topics: edge-cloud platforms (Section 2.1),
communication models (Section 2.2), and maximum stretch (Section 2.3).

2.1 Edge-cloud platforms

A range of applications of edge computing is given in [7], and these include
e-health, disaster recovery, autonomous vehicles or flying drones. Although no
specific model is given, a state of the art is established with a list of objec-
tives and constraints that have been studied, such as the delay, the bandwidth,
the energy, QoS-assurance, etc. Some challenges of edge computing are also
discussed in [22].

Some papers influenced our choices related to the model. For example, we
chose a model that allows preemption but not migration. This was influenced
by papers such as [1], where it is shown that allowing migration does not a↵ect
the e�ciency of the algorithms that minimize the average flow time, whereas al-
lowing preemption does. This is also proven for the minimization of the average
stretch in [2].

We also reviewed papers specifically to design our edge/cloud model. For
example, in [25], even though the concern is not exactly the same as ours, a
model is proposed for mobile-edge computing systems. Our model is simpler
than theirs because we do not consider the power consumption, whereas they
do. Existing models include those from [30] and [29], where the focus is on the
placement of data stream processing applications. However, this latter approach
is application-specific, which our model aspires to be agnostic of the nature of
the application.

Finally, we decided to consider heterogeneous edge processors but kept ho-
mogeneity inside the cloud platform. This decision is motivated by the fact that
users can always request identical virtual machines on cloud platforms. On the
theoretical side, dealing with heterogeneous processors might be an obstacle to
finding competitive algorithms: in some cases [15], having heterogeneous pro-
cessors invalidates the theoretical bounds of some usual scheduling algorithms.
However, it is not di�cult to extend our model with heterogeneous cloud pro-
cessors, and all the algorithms can be modified in a straightforward manner to
handle a fully heterogeneous edge-cloud platform.

RT n° 9369

6 Benoit, Elghazi, Robert

2.2 Communication model

Contention-aware task scheduling has been considered since many years in
the scheduling literature [16]. In particular, [32, 33] showed through simulations
that taking contention into account is essential for the generation of accurate
schedules. They investigate both end-point and network contention. Here end-
point contention refers to the bounded multi-port model [17]: the volume of
messages that can be sent/received by a given processor is bounded by the lim-
ited capacity of its network card. Network contention refers to the one-port
model, which has been advocated by [6] because “current hardware and soft-
ware do not easily enable multiple messages to be transmitted simultaneously.”
Even if non-blocking multi-threaded communication libraries allow for initiating
multiple send and receive operations, all these operations “are eventually serial-
ized by the single hardware port to the network.” Experimental evidence of this
fact has been reported by [31], which reports that asynchronous sends become
serialized as soon as message sizes exceed a few megabytes. The one-port model
fully accounts for end-point contention. Coupled with message preemption, it
provides a very realistic model for communications.

2.3 Stretch

The stretch is a particular case of weighted response time [11] and has been
studied extensively because of its fairness. Here is a quote from [5]: “Flow
time measures the time that a job is in the system regardless of the service it
requests; the stretch measure relies on the intuition that a job that requires a
long service time must be prepared to wait longer than jobs that require small
service times.” An interesting analogy is made in [13] between maximum stretch
and distributive justice, defined as the perceived fairness in the way costs and
rewards are shared within a group of individuals.

Stretch optimization was studied for independent jobs without preemption [4],
bag-of-tasks applications [24, 10], multiple parallel task graphs [9], and for shar-
ing broadcast bandwidth between client requests [34].

On the algorithmic side, [26] proposes an algorithm called Shortest Remain-
ing Processing Time (SRPT), that is an approximation for the online case with
the average stretch as an objective. It is a greedy approach. Then [3] pro-
poses an algorithm for minimizing the maximum stretch in the online case of
only one processor. This algorithm is optimal for the o✏ine problem, and is
�-competitive for the online problem, where � is the ratio between the longest
and the shortest job. Another version of this algorithm in given in [4], with a
better time complexity but similar bounds on the resulting stretch.

Inria

Max-stretch minimization on an edge-cloud platform 7

3 Model

We introduce the framework in Section 3.1, we survey schedule constraints in
Section 3.2, and we work out an example in Section 3.3.

3.1 Framework

We consider a two-level platform, with P
c homogeneous processors in a cloud,

and P
e edge computing units. The cloud processors have a speed normalized

to 1, while edge computing units run at a slower pace. Hence, the j-th edge
computing unit, with 1  j  P

e, is operating at a speed sj  1.
The application consists in n independent jobs J1, . . . , Jn, where each job is

issued from an edge computing unit. Job Ji is generated by the edge computing
unit oi (with 1  oi  P

e), and this edge computing unit must obtain the result
of job Ji, either by executing Ji locally, or by delegating the job to the cloud,
and getting the result back. Parameters for job Ji are as follows:

• oi is the origin processor on the edge ;

• wi is the number of operations required by the job;

• ri is the release date;

• upi and dni are the communication times required to send the job to the
cloud and get the result back (uplink/downlink communications).

The execution time of job Ji hence depends whether it is executed directly
at the edge processing unit where the job originates from, or whether it is sent
for an execution on the cloud. If the job is executed on the edge, it takes a time
t
e
i = wi

soi
, since the edge processing unit oi operates at speed soi . Computation

may be faster on the cloud, but we must then account for communication time,
hence an execution on the cloud takes a time tci = upi+wi+dni (send the job up
to the cloud, compute at speed 1, and get the result back down). In both cases,
the execution of the job can be preempted, which means that we can interrupt
its execution (to schedule another job), and resume it at a later time. Once
started on a given resource, the execution cannot migrate to another resource,
but re-execution from scratch is possible (and the time spent up to re-execution
is lost).

Let fi denote the time at which the execution of Ji is completed. Then, the
stretch Si of job Ji is defined by:

Si =
fi � ri

min(tei , t
c
i)
.

Indeed, job Ji is released at time ri and spends a time fi � ri in the system,
while it could have taken a time min(tei , t

c
i) in the best case of a dedicated

system. Hence, the stretch of each job is equal to one if the job is executed with
the minimum possible time, and we want the maximum stretch (over all jobs)

RT n° 9369

8 Benoit, Elghazi, Robert

to be as close to one as possible. Overall, the objective function is to minimize
the maximum stretch, which is defined as max1in Si.

While several jobs may be competing for cloud resources, several constraints
must be enforced within a schedule of jobs. We overlap computations and com-
munications, and we consider communication channels to be full-duplex between
an edge processor and a cloud processor, hence it is possible to perform in par-
allel a computation, an uplink communication, and a downlink communication.
However, communications involving a common processor must be sequential-
ized: if two jobs originating from the same edge processing unit are delegated
to the cloud, we cannot perform the two uplink (and then downlink) commu-
nications in parallel. Similarly, if two jobs (that may come from di↵erent edge
processing units) are sent to the same cloud processor, their communications
(uplink and then downlink) must be sequentialized.

Furthermore, communications, just as computations, are preemptive, which
means that we can interrupt a communication (for instance, to schedule a com-
munication for a smaller job), and resume the interrupted communication at a
later time.

Optimization problem: The goal is to find a schedule that respects all
constraints, with the aim of minimizing the maximum stretch. This problem is
denoted as MinMaxStretch-EdgeCloud.

3.2 Schedules

For each job Ji, we first need to decide where it is executed: alloc(i) = 0 if
the job is executed on its local edge processor oi, otherwise we set alloc(i) = k,
where k is the cloud processor on which Ji is executed (1  k  P

c). Formally, a
schedule consists in sets of disjoint execution intervals Ei for each job (recall that
we allow preemption), and disjoint uplink/downlink communication intervals for
jobs executed on the cloud (alloc(i) 6= 0), Ui(oi, alloc(i)) and Di(alloc(i), oi).

Several constraints must be ensured for the schedule to be valid. In particu-
lar, for any two jobs Ji, Ji0 (with 1  i, i

0  n), executed on the same processor,
i.e., alloc(i) = alloc(i0) 6= 0 (cloud), or alloc(i) = alloc(i0) = 0 and oi = oi0

(edge), all their execution intervals must be disjoint:

8I 2 Ei, 8I 0 2 Ei0 , I \ I
0 = ;.

We must also ensure that communications are serialized, i.e., for any two sets
Ui(j, k) and Ui0(j0, k0) (resp. Di(k, j) and Di0(k0, j0)), if j = j

0 or k = k
0,

then the communication originates from or targets the same processor, and
hence all intervals must be pairwise disjoint. Finally, we must ensure that all
computations and communications are done, in the correct order. Given a set
of intervals E, we denote by min(E) (resp. max(E)) the smallest (resp. largest)
extremity of all intervals in E. Hence, for job Ji (1  i  n):

• If alloc(i) = 0, then
P

I2Ei
|I| � wi

soi
;

• Otherwise,

Inria

Max-stretch minimization on an edge-cloud platform 9

–
P

I2Ei
|I| � wi;

–
P

I2Ui(oi,alloc(i))
|I| � upi;

–
P

I2Di(alloc(i),oi)
|I| � dni;

– we must complete uplink communications before starting computa-
tion: max(Ui(oi, alloc(i)))  min(Ei);

– and we must complete computation before starting downlink com-
munications: max(Ei)  min(Di(alloc(i), oi)).

3.3 Example

An example of a valid execution with one edge processor and one cloud processor
is depicted in Figure 1, where J1, J4 and J6 are executed on the edge, while J2, J3
and J5 are sent to the cloud. Job parameters are as follows, where the speed of
the edge processor is 1

3 :

• J1: r1 = 0, w1 = 1, up1 = dn1 = 5;

• J2: r2 = 0, w2 = 4, up2 = dn2 = 2;

• J3: r3 = 3, w3 = 2, up3 = 2, dn3 = 1;

• J4: r4 = 5, w4 = 4/3, up4 = dn4 = 5;

• J5: r5 = 5, w5 = 2, up5 = 2, dn5 = 1;

• J6: r6 = 6, w6 = 1/3, up6 = dn6 = 5.

The execution intervals, as well as uplink/downlink communication intervals,
are depicted. At time-step 6, we compute at the same time on the cloud, on the
edge, and we perform an uplink communication and a downlink communication.
Also, this is the time when J6 preempts job J4, since it can be executed locally
within one time unit, while J4 is a longer job and will be delayed only by one
time unit.

One can check, by an exhaustive look at all possible schedules, that this one
is optimal. Indeed, jobs J1 and J6 run at their minimum possible time wi⇥3 on
the edge, while executing them on the cloud would have cost at least 10 units

time

Cloud

C ! E

E ! C

Edge

J2 J3 J5

J2 # J3# J5#
J2 " J3 " J5 "

J1 J4 J6 J4

1 2 3 4 5 6 7 8 9 10 11

Figure 1: Example of a valid schedule, with P
e = P

c = 1.

RT n° 9369

10 Benoit, Elghazi, Robert

of communication time, hence they have a stretch of 1. On the other hand, J2
would take a time 12 on the edge, and it is sent to the cloud where the total
time is up2 + w2 + dn2 = 8, hence also a stretch of 1. Next, consider J3 and
J5, which have the same characteristics: they can be executed in time 6 on the
edge, but 5 on the cloud. Here, we execute them on the cloud, where they both
experience one time-step of delay (waiting for the processor to be available),
hence they have a stretch of 6

5 , and they could not have a better stretch on the
edge. Finally, job J4 takes a time 5 on the edge, while its minimum time is 4,
because it is preempted at time-step 6 to execute the shorter job J6 that would
greatly impact the stretch if it was delayed. On the cloud, it would have taken
a time at least 10 + 4

3 , hence much greater. Its stretch is 5
4 , which determines

the maximum stretch for this example.
Throughout this example, we see that decisions are more di�cult to take

when there is no knowledge about jobs that will be released in the future. For
instance, one could schedule job J3 either on the edge or on the cloud, since
it would complete in both cases within time 9, but depending on the jobs that
come next (computation-intensive vs communication-intensive), one decision
would be better than the other. The online case is the problem where jobs are
not known in advance, while in the o✏ine case, all job parameters are known
in advance. In the following, we prove that the problem is di�cult even in the
o✏ine case, and then we derive heuristics to address the general online problem
in Section 5.

4 Problem complexity

This section is devoted to assess the study of the complexity of MinMaxStretch-
EdgeCloud in the o✏ine case. To shorten notations, we write MMSECO
instead of MinMaxStretch-EdgeCloud-Offline throughout this section,
and MMSECO-Dec is the corresponding decision problem (is it possible to
achieve a target maximum stretch?). First, we prove that MMSECO-Dec is
in NP in Section 4.1. Then, we derive two main complexity results, that remain
true even without release dates (consider that all jobs are released at time 0).
The results are the following:

• For a fixed number of processors, MMSECO-Dec is NP-complete in the
weak sense (Section 4.2).

• For a variable number of processors, MMSECO-Dec is NP-complete in
the strong sense (Section 4.3).

4.1 NP membership

Lemma 1. MMSECO-Dec is in NP.

Proof. A solution to MMSECO-Dec is a sequence of events, where an event is
defined with the following list:

Inria

Max-stretch minimization on an edge-cloud platform 11

• a job Ji being released;

• a job Ji finishing its uplink communication;

• a job Ji finishing its execution;

• a job Ji finishing its downlink communication.

In between two events, there is no reason to reconsider any decision taken,
nor to preempt any computation or computation. There are only two events
for the jobs executed on edge processors, and four for those executed on a
cloud processor, so there are at most 4n events. Therefore, a schedule can be
represented in polynomial space: at each of these 4n time-steps, there might
be at most one event per processor. The validity of the solution can then be
verified in polynomial time by checking each constraint for a valid schedule, as
detailed in Section 3.2. Therefore, MMSECO-Dec is in NP.

4.2 Weak NP-completeness with two processors

We are now ready to prove the NP-completeness of MMSECO-Dec. We first
focus on minimizing the maximum stretch for a fixed number of homogeneous
processors, and without release dates (hence forgetting about the cloud-edge
system, called MMSH problem), and the associated decision problem MMSH-
Dec. The execution of job Ji hence takes wi time units, and there are no
communications. To the best of our knowledge, the complexity of MMSH has
not been established yet, and we prove its NP-completeness. In a second step,
we show that it is easy to create an instance of MMSECO-Dec from a general
instance of MMSH-Dec, hence proving the NP-completeness of MMSECO-
Dec.

As a preliminary, we derive an interesting result about the optimal order of
jobs in a schedule for MMSH: with a single processor, jobs should be ordered
from the shortest to the longest (i.e., by non-decreasing wi’s).

Lemma 2. For MMSH with a single processor, there always exists a schedule
that minimizes the maximum stretch by ordering the jobs from the shortest to
the longest, and without preemption.

Proof. First, we observe that preemption is not useful when all jobs have the
same release date (which is 0 here). To see this, assume we execute a sequence

with preemption (J (1)
i , J

(1)
j , J

(2)
i) of three job chunks, where Ji and Jj are two

di↵erent jobs. Here, J (1)
i and J

(2)
i are two chunks of job Ji, and J

(1)
j is one chunk

of job Jj . Swapping the first two chunks leads to the sequence (J (1)
j , J

(1)
i , J

(2)
i).

Because Ji and Jj have the same release date, this swap is valid: it does not
change the stretch of Ji and can only decrease or leave unchanged the stretch
of Jj . After a finite number of such swaps, we have a non-preemptive schedule
whose stretch does not exceed that of the original schedule with preemption.

Then, to prove that the jobs can be ordered as stated, we consider a schedule
that does not order the jobs from the shortest to the longest, and we construct

RT n° 9369

12 Benoit, Elghazi, Robert

another schedule with fewer mis-orderings, and which has a maximum stretch
that is smaller than or equal to the original maximum stretch. Let (k1, . . . , kn)
be (the indices of) the ordering of the jobs in the initial schedule, meaning
that we execute Jk1 first and Jkn last. By assumption, there exists i such that
wki > wki+1 (i.e., job Jki is longer than job Jki+1). We swap these two jobs,
which is possible because all jobs have same release dates, and which does not
change the stretch of the other jobs.

Since we consider the maximum stretch of the schedule, let us compare the
maximum between the stretches of the two jobs before and after the swap. If
X is the starting time of the earlier job, then the values that we consider are:

Sb = max

✓
X + wki

wki

,
X + wki + wki+1

wki+1

◆
before the swap;

Sa = max

✓
X + wki+1

wki+1

,
X + wki+1 + wki

wki

◆
after the swap.

As we have
X+wki+1

wki+1
< Sb and

X+wki+1
+wki

wki
< Sb, we indeed get Sa < Sb, so

the stretch after the swap is at most the stretch before the swap. We can repeat
the operation until there are no mis-orderings anymore, and we get a schedule
that orders the jobs from the shortest to the longest and has a maximum stretch
less than or equal to that of the initial schedule.

Theorem 1. MMSH-Dec with two homogeneous processors is NP-complete in
the weak sense.

Proof. It is easy to see that MMSH-Dec is in NP, since it is a simpler case of
MMSECO-Dec (see Section 4.1). We now prove that it is NP-complete.

Let I1 be an instance of 2-Partition-Eq [14], which is a special case of 2-
Partition where the partitions must have equal cardinality: Given 2n integers
{a1, . . . , a2n} with 2S =

P2n
i=1 ai, does there exist a subset I 2 {1, . . . , 2n} with

|I| = n and
P

i2I ai = S?
We create an instance I2 of MMSH-Dec with two processors and 2n + 2

jobs, such that:

• for 1  i  2n, the execution time of job Ji is wi = nS + ai;

• the execution time of the two additional jobs J2n+1 and J2n+2 is w2n+1 =
w2n+2 = (n + 1)S.

We ask whether it is possible to achieve a stretch of n2+n+2
n+1 .

Note that, building upon Lemma 2, we know that each processor will sort
its jobs by non-decreasing execution time in an optimal solution, so a schedule
is characterized only by a partition P1, P2 of the jobs. We now show that I1

has a solution if and only if I2 has a solution.

• Consider first that I1 has a solution, I. We consider the schedule with P1

containing jobs Ji with i 2 I and job J2n+1, while P2 contains all other

Inria

Max-stretch minimization on an edge-cloud platform 13

jobs (Ji, i /2 I and J2n+2). We prove that this schedule has a max-stretch

equal to n2+n+2
n+1 .

First, note that the sum of job weights in each set is:
X

i2I

(nS + ai) + (n + 1)S = n
2
S + S + (n + 1)S = (n2 + n + 2)S,

since there are exactly n jobs in set |I| (and the same number of jobs
for P2).

By Lemma 2, job J2n+1 (resp. J2n+2) is executed last in P1 (resp. P2),
since w2n+1 = w2n+2 > wi for all 1  i  2n. Therefore, these additional

jobs both complete at time (n2+n+2)S, and they have a stretch n2+n+2
n+1 .

For any other job Ji, the stretch is Si = knS+X
nS+ai

, where there are k  n

jobs before Ji (including Ji) with a total weight knS + X, where X =P
j2Pred(i) aj . Here, Pred(i) denotes the indices of the k jobs that precede

Ji, and we have X  S. We have the following inequalities:

(i) knS+X
nS+ai

 (n2+1)S
nS+ai

 n2+1
n (constraints on k and X), and

(ii) n2+1
n  n2+n+2

n+1 (for any n � 1).

Therefore, job Ji has a stretch Si  n2+n+2
n+1 , meaning that the max-stretch

of the schedule is n2+n+2
n+1 , and hence I2 has a solution.

• Consider now that I2 has a solution: Let P1, P2 be a schedule with max-
stretch n2+n+2

n+1 or less. We prove that P1, P2 is a partition of the jobs into
two sets of equal sum and equal size, with J2n+1 2 P1 and J2n+2 2 P2.

We first prove that each processor finishes its whole execution at a time
tfinish such that tfinish  (n2 + n + 2)S. Let Ji be the last job to finish,

its stretch is Si = tfinish

wi
. Since wi  (n + 1)S for all jobs, Si � tfinish

(n+1)S .

Hence, since P1, P2 is a solution to I2, it means that Si  n2+n+2
n+1 and

therefore tfinish  (n2 + n + 2)S. Furthermore, since the sum of all
execution times is 2(n2 + n + 2)S, this means that both processors finish
at exactly time tfinish = (n2 + n + 2)S.

Now, we specifically look at the two jobs that finish their execution at
time (n2 + n + 2)S, one on each processor. We prove that these two jobs

are J2n+1 and J2n+2. For their stretch to be at most n2+n+2
n+1 , they need

to have an execution time wi � (n + 1)S. The only jobs for which this
constraint holds are J2n+1 and J2n+2. So, we indeed have J2n+1 and J2n+2

that are scheduled on di↵erent processors, say J2n+1 in P1 and J2n+2 in P2

(the two jobs are identical).

Let us now consider the jobs in P1, excluding the large job J2n+1. Their
total weight is hence tfinish � (n + 1)S = n⇥ nS + S, which means that
there are exactly n jobs (the ai’s are small in comparison with nS). Since
their sum is n

2
S + S, we obtain that

P
i2P1\{2n+1} ai = S, and the set of

jobs from P1 is a solution to 2-Partition-Eq, and I1 has a solution.

RT n° 9369

14 Benoit, Elghazi, Robert

Overall, I1 has a solution if and only if I2 has a solution, and the construction
of I2 from I1 can obviously be done in polynomial time, hence MMSH-Dec is
NP-complete. This NP-completeness result is established in the weak sense
since 2-Partition-Eq can be solved by a pseudo-polynomial algorithm.

We can now derive the result for the original cloud-edge problem, by per-
forming a simple reduction from MMSH-Dec.

Corollary 1. MMSECO-Dec is NP-complete in the weak sense, even with
one edge processor, one cloud processor, and no release dates.

Proof. By Lemma 1, MMSECO-Dec is in NP. We perform a reduction from
MMSH-Dec with two processors, where P

e = P
c = 1, the speed of the edge

processor is set to 1, and all communication costs of jobs are set to upi = dni = 0.
The problem is then exactly equivalent to the original instance, which concludes
the proof.

4.3 Strong NP-completeness for a variable number of pro-

cessors

Theorem 2. MMSH-Dec with a variable number of homogeneous processors
is NP-complete in the strong sense.

Proof. We already showed that MMSH-Dec is in NP when proving Theorem 1.
We now prove that it is strongly NP-hard, i.e., it remains NP-hard even if the
input parameters are bounded above by a polynomial in p, where p is the number
of processors.

Let I1 be an instance of 3-partition [14]: Given 3n integers {a1, . . . , a3n}
whose sum is nB =

P3n
i=1 ai and with B

4 < ai <
B
2 for 1  i  3n, does there

exist a partition of {1, . . . , 3n} into n subsets S1, . . . , Sn such that
P

i2Si
ai = B

for 1  i  n? We create an instance I2 of MMSH-Dec with n processors and
4n jobs as follows:

• For 1  i  3n, the execution time of job Ji is wi = ai;

• For 3n + 1  i  4n, the execution time of job Ji is wi = B
2 ; these n

additional jobs are hence larger than any other jobs;

• The bound on the max-stretch is set to 3.

We now prove that I1 has a solution if and only if I2 has a solution, and
the solution of I2 always maps exactly one of the additional large jobs on each
processor.

• Consider first that I1 has a solution, {S1, . . . , Sn}, with
P

i2Si
ai = B.

Given the constraints on the ai’s, there are exactly three elements per
set Si. We consider the schedule with jobs from Si and one additional
job on processor i, hence four jobs per processor. As already stated, jobs
are scheduled from the shortest to the longest, and therefore, the k-th job

Inria

Max-stretch minimization on an edge-cloud platform 15

always has a stretch that is at most k. Hence, the first three jobs have a
stretch at most 3 (equal to three if the three jobs have a weight B

3 , and
then the third job has a stretch B

B/3 = 3). The last job finishes at time

3B/2 and it has a length B/2, hence it has a stretch of 3. Finally, each
processor has a stretch of 3, hence we have constructed a solution to I2.

• Consider now that I2 has a solution, that is a partition of jobs onto pro-
cessors, {P1, . . . , Pn}, such that the max-stretch is at most 3. Since the
max-stretch is 3 and all jobs are of length at most B

2 , no job can finish
after 3B

2 and only a job of length B/2 can finish at 3B
2 (a smaller job would

lead to a larger stretch). Furthermore, the total work is 3nB
2 and there

are n processors, so each processor finishes exactly at time 3B
2 , with one

of the n large jobs. Consider Si = Pi \ {k | k > 3n}: Si consists in three
jobs of sum B (since all job weights are between B/4 and B/2), hence the
Si’s are a solution to I1.

To conclude, I1 has a solution if and only if I2 has a solution, and we have
performed in polynomial time the reduction from 3-Partition that is NP-hard
in the strong sense, therefore MMSH-Dec is NP-complete is the strong sense
when considering a variable number of homogeneous processors.

Corollary 2. MMSECO-Dec with an arbitrary number of processors is strongly
NP-complete.

Proof. By Lemma 1, MMSECO-Dec is in NP. We perform a reduction from
MMSH-Dec with p processors, where P

e = 1, P c = p�1, the speed of the edge
processor is set to 1, and all communication costs of jobs are set to upi = dni = 0.
The problem is then exactly equivalent to the original instance, since all jobs
originate from the only edge processor, and they can be scheduled either on the
edge processor or at one of the cloud processors, and each of these processors
(cloud and edge) behave similarly; the platform is hence fully homogeneous.

5 Algorithms

Since MinMaxStretch-EdgeCloud is NP-complete even in the o✏ine case,
we design general heuristic algorithms to address the problem in the most gen-
eral online setting, with P

e di↵erent edge computing units generating jobs, that
can be processed either locally, or on one of the P

c cloud processors.
We first propose a strategy that does not exploit the cloud platform, but

executes all jobs locally following a competitive strategy (Section 5.1). We then
design a simple greedy algorithm that greedily decides whether to execute a
job locally or on the cloud (Section 5.2). Finally, we revisit e�cient algorithms
from the literature to adapt them to the edge-cloud setting, building upon the
shortest remaining processing time of a job in Section 5.3, and on an earliest
deadline first strategy in Section 5.4.

RT n° 9369

16 Benoit, Elghazi, Robert

The algorithms are event-based, i.e., we reconsider decisions only when an
event occurs, so that they all remain of polynomial cost. There are at most 4n
events, corresponding to the time-steps at which job Ji, for 1  i  n,

1. is released at edge processor oi (event Er(i));

2. completes its execution on processor alloc(i) (event Ef (i));

3. completes an uplink communication (event Eup(i));

4. completes a downlink communication (event Edn(i)).

5.1 Baseline: Edge-Only strategy

We first consider a simple heuristic, Edge-Only, that does not use the cloud
platform, but where all jobs are executed locally on the edge. This might
actually be a good strategy when edge processing units have a good processing
speed and/or when communications are costly.

Since all edge processors are independent with this strategy, the problem
consists in minimizing the max-stretch on one processor, and this is done in-
dependently at each edge processing unit. We use the Stretch-So-Far Earliest-
Deadline-First algorithm, designed by Michael Bender et al. [3]. Indeed, this
algorithm is �-competitive with a single processor, where � is the ratio between
the longest and the shortest job.

Note that we have to modify the algorithm of [3] to account for the edge-
cloud framework: when computing the stretch of a job, we consider its potential
execution time on the cloud. We will compare heuristics exploiting the cloud
with this edge-only strategy in Section 6.

5.2 Greedy

We design a greedy heuristic, called Greedy, that greedily schedules first the
job that would currently achieve the highest stretch, as it is the job that might
impact most the maximum stretch. Decisions are taken only when an event
occurs (new job released, job completion, completion of an uplink or downlink
communication).

The algorithm works as follows: at each event, as long as there are available
resources, we compute for each job the minimum stretch that can be achieved
using an available resource immediately. We select the job that maximizes this
value, and execute the job on the resource (edge or cloud) on which it achieves
the minimum stretch.

The complexity of the routine that runs at each event is O(n(1 + P
c)):

compute the stretch for each job, for either a local execution, or the execution
on one of the P

c cloud computing units. Since there are at most 4n events, the
worst case complexity is O(n2

P
c). Of course, in an online setting, we expect

the number of jobs that are simultaneously processed in the system to be far
less than n. Hence, the average complexity is expected to be much lower.

Inria

Max-stretch minimization on an edge-cloud platform 17

time

Cloud

C ! E2

E2 ! C
E2

C ! E1

E1 ! C
E1

J2 J3 J2

J2#
J2 " J4 "

J4 J2 J4

J3#
J3 "

J1

1 2 3 4 5 6 7 8 9

Figure 2: Example of a schedule obtained with Greedy.

We give an example with P
c = 1, P e = 2, n = 4, and both edge speeds s =

0.5. Two jobs are released at time 0, J1 on the first edge processing unit E1, and
J2 on the second edge processing unit E2. Both jobs have the same parameters:
w = 4, up = 2, and dn = 1. A stretch of 1 can be obtained by scheduling these
jobs on the cloud, but since there is only one cloud processing unit, one of the
jobs is executed locally, say J1, on the first edge processor E1, with a stretch 8

7 .
At time 2, J2 completes its uplink communication (event Eup(2)), and a new job
spawns at each processor (J3 on E1 and J4 on E2), with w = 2, up = 2, dn = 1
(events Er(3) and Er(4)). Both of these new jobs have a minimum stretch of 1
with a local execution, and J2 still has a minimum stretch of 1 as well. However,
J1 has the maximum stretch and it pursues its execution on E1, while J3 is sent
on the cloud. J4 begins its execution on E2 expecting a stretch of 1 if it is not
preempted. At time 4, corresponding to event Eup(3), the maximum minimum
stretch is obtained by J3 (54), which preempts J2 on the cloud. As the cloud is
currently unavailable, J2 takes the priority on E2, thus preempting J4. When
the cloud is available at time 6, J2 resumes its execution on the cloud, as it is
expected to end faster on the cloud. It finishes at time 9 with a stretch of 9

7 .
The max-stretch is finally reached by J4, that can resume its execution on E2

after being delayed by J2, and that completes at time 8, with a stretch of 3
2 , see

Figure 2. The parts of execution or communication that were not used because
of preemption are in grey.

5.3 Shortest Remaining Processing Time

The SRPT heuristic builds on the classical Shortest Remaining Processing Time
strategy, which assigns to a processing unit the job that it can finish the earliest,
so that shortest jobs will be executed with little delay. Again, decisions are taken
at each event.

The incentive for the use of this algorithm is that it is a O(1)-competitive
algorithm for the average stretch problem, as shown in [26]. However, this is
not the case for the maximum stretch: a long job could be blocked by short
jobs for an arbitrary long duration. Note that migration is not allowed, but
full re-execution is possible, thus a job that has been preempted by another job

RT n° 9369

18 Benoit, Elghazi, Robert

might start again (from scratch) on another processor, if it becomes the job that
will finish first on that other processor.

The algorithm takes new decisions at each event. As long as we still have
a processor on which we can execute a job, we choose the job that can be
completed the earliest and execute it on the processor that can complete it
the earliest, and we remove this job and processor from the list of available
jobs/processors. The algorithm is detailed in Algorithm 1, where we handle a
priority queue with jobs ordered by release dates (releases), and we keep track
of the next release event nextRelease, corresponding to an event Er(i), with
1  i  n. Also, nextF inish corresponds to the next completion event, and it
can be either the completion of a job, or the completion of a communication.
Once the time of the next event is known (tnew), we compute the remaining
work and communication at this time, given that processors have been working
and communicating for a time tnew � t. These updates are done through the
procedure execute, which is detailed in Algorithm 2, where initially w

e
i,k =

w
e
i = wi, upci = upi and dn

c
i = dni, and then these values may decrease when

some work has already been completed for job i. Note that at the first iteration
of the loop, all the arrays executing, upcom and downdom are empty, hence
execute does nothing. We will e↵ectively start scheduling jobs once the first
job release has been done, at the first time tnew. Then, we compute all possible
finish times of jobs (on edge or cloud) and decide of the SRPT schedule by
calling the SRPT-schedule routine, see Algorithm 3: jobs are sorted by non-
increasing finish times, and we assign them in this order to processors (cloud
or edge). The current assignment of jobs to processors and communications is
then stored in the arrays executing, upcom and downcom, and nextF inish is
the next event given this assignment (which communication or computation will
complete first).

The complexity of the routine that runs at each event is in O(n(P e + P
c)),

and since there are at most 4n events, the worst case complexity is O(n2(P e +
P

c)).

We consider the same example as in Section 5.2: P
c = 1, P e = 2, n = 4,

and both edge speeds s = 0.5. Jobs J1 and J2 are such that r = 0, w = 4,
up = 2, dn = 1, and o1 = 1, o2 = 2. J3 and J4 are such that r = 2, w = 2,
up = 2, dn = 1, and o3 = 1, o4 = 2. The schedule returned by SRPT is given by
Figure 3, with max stretch 11

7 . When the two first jobs are released at time 0,
their SRPT is reached by sending the jobs to the cloud. However, once J1 has
been sent to the cloud, the uplink communication channel for the cloud is busy
and T2 is hence executed locally at E2. The next events occur at time 2, with
the release of new jobs. Remaining processing times are updated with the work
already done (upc1 = 0 since T1 has completed its uplink communication). J3

and J4 have then the shortest remaining processing time for an execution on
the edge, and J4 preempts J2. Since the uplink communication channel is now
available, J2 is sent to the cloud. At time 6, J1 has a finish time of 7 and its
downlink communication is first scheduled, while J2 would finish the earliest by
pursuing its execution on the cloud.

Inria

Max-stretch minimization on an edge-cloud platform 19

Algorithm 1: SRPT heuristic

Data: Job and platform parameters.
1 releases PriorityQueue(i, ri) // Jobs ordered by release dates;
2 executing array(None) // Job currently executed on each processor

1  j  P
c + P

e);
3 upcom array(None);
4 downcom array(None);
5 Jobs = {};
6 t 0;
7 nextF inish None;
8 i releases.pop();
9 nextEvent = nextRelease (ri,Er(i)) ;

10 while nextEvent 6= None do
/* Actualize state of jobs */

11 (tnew, e) nextEvent;
12 if e = Ef (i) then
13 Jobs.remove(i);
14 if e = Er(i) then
15 Jobs.insert(i);
16 i

0 releases.pop();
17 nextRelease (ri0 ,Er(i0));

/* Update remaining work */
18 execute(t, tnew, {wc

i,k, w
e
i , up

c
i , dn

c
i}i2Jobs,1kP c) ;

/* Compute all possible finish times and SRPT schedule */
19 finishingT imes List();
20 t tnew;
21 foreach i 2 Jobs do

22 t
e
i

we
i

soi
;

23 finishingT imes.insert(t + t
e
i , (i, oi));

24 foreach pk 2 P
c do

25 t
c
i,k w

c
i,k + up

c
i + dn

c
i ;

26 finishingT imes.insert(t + t
c
i , (i, P

e + k));
27 executing, upcom, downcom, nextF inish

SRPT-schedule(finishingT imes);
28 if nextRelease 6= None then
29 nextEvent min (nextRelease, nextF inish);
30 else
31 nextEvent nextF inish;

RT n° 9369

20 Benoit, Elghazi, Robert

Algorithm 2: Update of remaining work

Data: Two timestamps t1, t2, remaining work and communication at
time t1

Result: Remaining work and communication at time t2

1 execute(t1, t2, {wc
i,k, w

e
i , up

c
i , dn

c
i}i2Jobs,1kP c)

2 begin
3 foreach j 2 P

e do
4 i executing[j];
5 w

e
i w

e
i � soi(t2 � t1);

6 foreach k 2 P
c do

7 i executing[P e + k];
8 w

c
i,k w

c
i,k � (t2 � t1);

9 foreach k 2 P
c do

10 i upcom[k];
11 up

c
i up

c
i � (t2 � t1);

12 i downcom[k];
13 dn

c
i dn

c
i � (t2 � t1);

time

Cloud

C!E2

E2!C
E2

C!E1

E1!C
E1

J2J1

J2#
J2 "

J4J2

J1#
J1 "

J3

1 2 3 4 5 6 7 8 9 10 11

Figure 3: Example of a schedule obtained with SRPT.

Inria

Max-stretch minimization on an edge-cloud platform 21

Algorithm 3: Scheduling between two events using SRPT

Data: List of tuples (t, (i, j)): t is the remaining duration needed to
finish executing job i on processor j

Result: Job allocations to processors and communication channels, and
next completion event

1 SRPT-schedule(finishingT imes)
2 begin
3 executing array(None) // for

processors 1  j  P
e + P

c ;
4 UpCloud,DownCloud array(None); // for

1  k  P
c ;

5 UpEdge,DownEdge array(None); // for
1  j  P

e;
6 nextF inish (1,Ef (�1));
7 sort(finishingT imes);
8 foreach (t, (i, j)) 2 finishingT imes do
9 assigned false;

10 if executing[j] = None and i is not in executing and (j  P
e or

upi = 0) then
11 executing[j] i;
12 event = (t,Ef (i));
13 assigned true;
14 else
15 if j > P

e and UpCloud[j � P
e] = None and UpEdge[oi] =

None and upi 6= 0 then
16 UpCloud[j � P

e] = i;
17 UpEdge[oi] = i;
18 event = (t,Eup(i));
19 assigned true;
20 if j > P

e and DownCloud[j � P
e] = None and

DownEdge[oi] = None and upi = 0 and w
c
i = 0 then

21 DownCloud[j � P
e] = i;

22 DownEdge[oi] = i;
23 event = (t,Edn(i));
24 assigned true;
25 if assigned then
26 nextF inish min (nextF inish, event);
27 if nextF inish = (1,Ef (�1)) then
28 nextF inish None;
29 return executing, UpCloud,DownCloud, nextF inish

RT n° 9369

22 Benoit, Elghazi, Robert

5.4 Stretch-so-far EDF

For one processor in the o✏ine case, the algorithm in [4] finds the optimal
maximum stretch in polynomial time. This algorithm was extended to the online
case, and obtained an algorithm that is �-competitive, where � is the ratio
between the longest and the shortest job. The core idea of this algorithm consists
in giving deadlines to jobs, based on an estimate of the maximum stretch. This
estimate can change over the course of the algorithm and is computed by finding
the lowest stretch we can get, through a binary search on the stretch. More
precisely, these deadlines are computed as di = ri + Se ⇥ ti, where Se is the
stretch estimate. This estimate is computed as Se = ↵⇥ S

⇤
k, where S

⇤
k is the

optimal stretch of the jobs that have already been released (computed through
binary search), and ↵ is a parameter of the algorithm. Then, the algorithm
schedules the jobs by taking the earliest of these deadlines first. With a well
chosen ↵, this algorithm has a competitive ratio that is a function of � = wmax

wmin
.

More specifically, for ↵ = 1, it is �-competitive, which is optimal up to a
constant factor. However, the result can be better if � is known in advance.
This algorithm is called Stretch-so-far Earliest-Deadline-First, since it is the
algorithm Earliest Deadline First, with, as input, deadlines derived from the
optimal stretch so far.

In the original problem, this algorithm relies on the fact that Earliest Dead-
line First (EDF) is optimal with a single processor. However, this is not the
case anymore when we consider the MinMaxStretch-EdgeCloud problem,
since we need to account for uplink and downlink communications for each job.
We provide an example of the non-optimality of EDF with two jobs and one
cloud processor:

• J1 with up1 = 3, w1 = 1, dn1 = 0, and deadline d1 = 5;

• J2 with up1 = 1, w2 = 3, dn2 = 0, and deadline d2 = 6.

EDF establishes that the job with the highest priority is J1, since d1 <

d2. Therefore, it first sends J1 to the cloud, and hence J2 starts its uplink
communication at time 3 and completes at time 3 + 1 + 3 = 7 > d2. However,
by executing J2 first, J1 is able to also fit its deadline (uplink communication
starting at time 1 while J2 is executed on the cloud, and execution of J1 at
time 4).

Still, we propose an adaptation of this algorithm for MinMaxStretch-
EdgeCloud. However, while EDF tells us which job to execute, we now also
have to decide on which processor we execute the job with the highest priority.
We decide to execute the job on the processor that minimizes the stretch of this
job (or, equivalently, its finishing time). This algorithm is called SSF-EDF.

At each event corresponding to the release of a job (event Er(i)), we compute
deadlines for each of the jobs currently on the platform, accounting for the
remaining working time for the job if part of it has already been executed.
These deadlines are computed using a target stretch and ↵ = 1, and a binary
search is done to try di↵erent stretches. Indeed, the goal is to find the best

Inria

Max-stretch minimization on an edge-cloud platform 23

possible achievable stretch at the current time, but as already pointed out, the
EDF strategy is no longer optimal and we may not get the optimal stretch. In
some cases, a stretch might not be achievable, while a smaller stretch would
have been possible with another scheduling strategy.

Given a set of deadlines (and hence a target stretch), we assign the job with
the smallest deadline on the processor where it completes the earliest (either the
origin edge processor of the job, or one of the P

c cloud processors), and then
iterate on other jobs sorted by non-decreasing deadlines. If all deadlines can be
respected, a smaller stretch might be considered, and when the binary search
is done, we update remaining processing and communication times, similarly to
SRPT, with the assignment returned by SSF-EDF until the next event.

The complexity of SSF-EDF algorithm is O(n(1 +P
c)) at each event, as for

the greedy (compute for each job its shortest execution time locally or on one
of the cloud processors), but we should re-execute the routine as many times
as needed by the binary search. So the actual worst case complexity that we
get is O(n2

P
c log(1✏)), where ✏ is the relative precision we want to keep on the

estimate of the stretch (the binary search takes a time log(1✏)).

If we consider the same example as in Section 5.2 and 5.3, then we find out
that SSF-EDF outputs the same schedule as SRPT for this specific example,
with the same maximum stretch of 11

7 (see Figure 3).

6 Simulations

In order to test the e�ciency of the proposed algorithms and to compare them
with the Edge-Only strategy, we implemented and simulated them in di↵er-
ent scenarios, using parameters from real edge-cloud platforms. All heuris-
tics are implemented in C++ and the code can be downloaded at github.com/
Redouane-Elghazi/Max-Stretch-Minimization-on-an-Edge-Cloud-Platform.
git for reproducibility purpose.

6.1 Simulation setup

We consider two main problem instances: instances with random scenarios to
experiment with the various parameters, and instances with parameters coming
from [23], inspired by a real-life situation.

Random instances: We first consider a platform with:

• 20 cloud processors;

• 10 slow edge processors with speed s = 0.1;

• 10 fast edge processors with speed s = 0.5.

The jobs are generated using a uniform distribution for the execution and
communication times, as well as the release date and the origin processor. Both
execution and communication times follow the same distribution. The param-
eters of the distribution for communication are tied to the parameters of the

RT n° 9369

24 Benoit, Elghazi, Robert

distribution for execution, through the notion of Communication/Computation-
Ratio (CCR). More precisely, both distributions are chosen so that the ra-
tio between their expected values is equal to some value determined in ad-
vance. We consider CCRs ranging from 0.1 (compute-intensive scenario) to 10
(communication-intensive scenario).

Kang instances: These instances are meant to be closer to a real life situ-
ation, inspired from [23]. They contain di↵erent types of edge processors de-
pending on whether:

• their computational unit is a GPU or a CPU;

• their communication channel is 3G, LTE, or Wi-Fi.

Then, the jobs are created with an execution time and a communication
time that is directly inferred from the type of computational unit and the type
of communication channel. More precisely, the values are chosen as follows
(expected values and speeds according to [23]):

• the execution time follows a normal distribution with mean 6 and relative
standard deviation 1

3 ;

• the uplink communication time follows a normal distribution with mean
t and relative standard deviation 1

3 , where:

– t = 95 if the communication technology is Wi-Fi;

– t = 180 if the communication technology is LTE;

– t = 870 if the communication technology is 3G.

• the downlink communication time is 0 for all jobs.

Also, the speed of an edge processor is:

• 6
81 if the processor computes on a GPU;

• 6
382 if the processor computes on a CPU.

Release dates and load: With both instance types, the distribution of the
release dates is chosen to control the load on edge processors, i.e., the average
number of jobs originating from the edge processor that are simultaneously in

the system. Hence, for a load `, the maximum release date is set to
Pn

i=1 wi

`
PPe

j=1 sj
:

the sum of the work over the aggregated speed is the average execution time
using all processors; dividing this ratio by, say, ` = 0.1, augments release times
by a factor ten, thereby decreasing the load accordingly. By default, we consider
a load of 5% (` = 0.05), hence the processors are able to cope with the jobs
before new jobs arrive in the system, but we still have some interesting collisions
on both the edge and the cloud.

Inria

Max-stretch minimization on an edge-cloud platform 25

SRPT Greedy SSF-EDF Edge-Only

102 103 104

number of jobs

5

10

15

20

25

30

35

m
ax

im
um

st
re

tc
h

102 103 104

number of jobs

1.0

1.2

1.4

1.6

1.8

2.0

m
ax

im
um

st
re

tc
h

0 5000 10000 15000 20000
number of jobs

0.0

0.5

1.0

1.5

2.0

2.5

ex
ec

ut
io

n
tim

e
in

se
co

nd
s

Figure 4: Maximum stretch and execution time with a Communica-
tion/Computation Ratio of 0.1 (Random instances).

RT n° 9369

26 Benoit, Elghazi, Robert

SRPT Greedy SSF-EDF Edge-Only

102 103 104

number of jobs

5

10

15

20

25

m
ax

im
um

st
re

tc
h

102 103 104

number of jobs

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

m
ax

im
um

st
re

tc
h

0 5000 10000 15000 20000
number of jobs

0.0

0.5

1.0

1.5

2.0

2.5

ex
ec

ut
io

n
tim

e
in

se
co

nd
s

Figure 5: Maximum stretch and execution time with a Communica-
tion/Computation Ratio of 1 (Random instances).

Inria

Max-stretch minimization on an edge-cloud platform 27

SRPT Greedy SSF-EDF Edge-Only

102 103 104

number of jobs

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

m
ax

im
um

st
re

tc
h

102 103 104

number of jobs

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

m
ax

im
um

st
re

tc
h

0 5000 10000 15000 20000
number of jobs

0.0

0.5

1.0

1.5

2.0

2.5

3.0

ex
ec

ut
io

n
tim

e
in

se
co

nd
s

Figure 6: Maximum stretch and execution time with a Communica-
tion/Computation Ratio of 10 (Random instances).

RT n° 9369

28 Benoit, Elghazi, Robert

SRPT Greedy SSF-EDF Edge-Only

10�1 100 101

communication/computation ratio

5

10

15

20

25

30

m
ax

im
um

st
re

tc
h

10�1 100 101

communication/computation ratio

1.0

1.5

2.0

2.5

3.0

3.5

4.0

m
ax

im
um

st
re

tc
h

10�1 100 101

communication/computation ratio

0.0

0.1

0.2

0.3

0.4

0.5

0.6

ex
ec

ut
io

n
tim

e
in

se
co

nd
s

Figure 7: Maximum stretch and execution time as a function of the CCR, with
n = 4000 jobs (Random instances).

Inria

Max-stretch minimization on an edge-cloud platform 29

6.2 Simulation results

For each experiment, we report the maximum stretch (with and without the
Edge-Only heuristic, since it often leads to much higher and out-of-range stretch
values), as well as the execution time of each algorithm (time to compute the
schedule). Each point corresponds to the average of 1000 instances created with
the same parameters.

Random instances: We first run the heuristics on random instances, with
three di↵erent values of CCR (0.1, 1, and 10), and study the impact of the
number of jobs (100  n  20, 000). As seen on Figures 4, 5, and 6, the
proposed heuristics lead to much better stretches than the Edge-Only strategy,
in particular when communications are not too costly (CCR of 0.1 or 1). Indeed,
when the communication cost increases, it is better to handle most jobs on the
edge. SSF-EDF almost always gives the lowest stretch. SRPT is very close
to SSF-EDF, it can even become better than SSF-EDF when there are cheap
communications (CCR of 0.1). Even though Greedy was designed to minimize
the maximum stretch, it always leads to higher stretches compared to the more
sophisticated heuristics SRPT and SSF-EDF.

In terms of execution time, SRPT and Greedy have similar small execution
times, while SSF-EDF and Edge-Only are significantly slower. Indeed, these
latter two heuristics must run a binary search at each new job release to fix
deadlines, and hence they take much longer to execute. Overall, all heuristics
have an expected execution time that scales linearly and not quadratically as a
function of n; only the constants vary.

We also study in more depth the impact of the CCR on Figure 7, where the
number of jobs is set to n = 4000, and the CCR varies from 0.1 to 10. This
confirms that the new heuristics gain more compared to Edge-Only for small
values of CCR, because it is then very useful to send jobs to the cloud. When
looking at the other algorithms, SSF-EDF is the best in all scenarios, with
SRPT being very close. Their stretch exceeds two only for the largest values
of CCR. Greedy is slightly behind, with stretches going up to 3.5. However,
execution times are not impacted by the CCR, they remain roughly constant
for each algorithm.

Finally, we investigate scenarios with a higher load, with a load ` up to 2,
except for Edge-Only, which becomes too costly since all jobs compete on the
edge. We focus on the instance with a CCR of 1 and n = 1000 jobs (Figure 8)
or n = 4000 (Figure 9). Again, SSF-EDF is clearly the best, and this is even
more striking when the load increases, where the stretch of SRPT and Greedy
drastically increases while it stays under three for SSF-EDF. It is also interesting
to note that Greedy becomes slightly better than SRPT with an increased load,
in particular with n = 1000. Execution times follow the same trend as before,
with an increase in execution time when the load increases, in particular for SSF-
EDF and Greedy; in this case, Greedy becomes as costly as SSF-EDF (around
10 seconds) with a load ` = 2 and n = 4000.

Kang instances: For the Kang instances, the CCR is dictated by the plat-
form parameters, so we only vary the number of jobs, in two di↵erent scenarios

RT n° 9369

30 Benoit, Elghazi, Robert

SRPT Greedy SSF-EDF

0.0 0.5 1.0 1.5 2.0
load

2

4

6

8

10

12

m
ax

im
um

st
re

tc
h

0.0 0.5 1.0 1.5 2.0
load

0.0

0.5

1.0

1.5

2.0

2.5

3.0

ex
ec

ut
io

n
tim

e
in

se
co

nd
s

Figure 8: Maximum stretch and execution time with n = 1000 jobs and a CCR
of 1 (Random instances).

Inria

Max-stretch minimization on an edge-cloud platform 31

SRPT Greedy SSF-EDF

0.0 0.5 1.0 1.5 2.0
load

5

10

15

20

m
ax

im
um

st
re

tc
h

0.0 0.5 1.0 1.5 2.0
load

0

2

4

6

8

10

ex
ec

ut
io

n
tim

e
in

se
co

nd
s

Figure 9: Maximum stretch and execution time with n = 4000 jobs and a CCR
of 1 (Random instances).

RT n° 9369

32 Benoit, Elghazi, Robert

SRPT Greedy SSF-EDF Edge-Only

102 103 104

number of jobs

10

20

30

40

50

60

m
ax

im
um

st
re

tc
h

102 103 104

number of jobs

1

2

3

4

5

6

7

m
ax

im
um

st
re

tc
h

0 5000 10000 15000 20000
number of jobs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

ex
ec

ut
io

n
tim

e
in

se
co

nd
s

Figure 10: Maximum stretch and execution time: Kang instance with 20 mixed
edge processors and 10 cloud processors.

Inria

Max-stretch minimization on an edge-cloud platform 33

SRPT Greedy SSF-EDF Edge-Only

102 103 104

number of jobs

10

20

30

40

50

60

m
ax

im
um

st
re

tc
h

102 103 104

number of jobs

1.0

1.5

2.0

2.5

3.0

3.5

4.0

m
ax

im
um

st
re

tc
h

0 5000 10000 15000 20000
number of jobs

0

5

10

15

20

25

ex
ec

ut
io

n
tim

e
in

se
co

nd
s

Figure 11: Maximum stretch and execution time: Kang instance with 100 mixed
edge processors and 10 cloud processors.

RT n° 9369

34 Benoit, Elghazi, Robert

with 20 or 100 edge processors, while keeping ten cloud processors (see Fig-
ures 10 and 11). Again, SRPT and SSF-EDF are clearly the best heuristics,
and Edge-Only cannot keep up when the number of jobs increases. It is in-
teresting to see that with more edge processors (Figure 11), and hence more
competition for cloud resources, Greedy gets a stretch that is close to the ones
achieved by SRPT and SSF-EDF.

The execution times are much higher in the scenario with 100 edge pro-
cessors, and as before, Greedy and SRPT are much faster than Edge-Only and
SSF-EDF.

Summary: Overall, we conclude that it is always a better option to choose
SRPT over Greedy for lightly loaded systems, since it always leads to smaller
stretches, and has approximately the same time complexity. Greedy however
may outperform SRPT when the system is heavily loaded, but then also becomes
more costly. Then, choosing between SRPT and SSF-EDF is a matter of trade-
o↵ between e�ciency and execution time, since SSF-EDF is more costly than
SRPT, but also more e�cient. Edge-Only is a costly solution that does not
exploit the cloud, and a comparison to this strategy highlights the importance
of using cloud resources when available, in particular when communication costs
are not too important.

7 Conclusion

We have tackled the problem of scheduling independent jobs on an edge-cloud
platform, with the goal of minimizing the maximum stretch of jobs. Jobs are
produced by edge computing units, and they can be processed either locally (at
a slow speed), or delegated to a cloud (at the price of communications to pay).
We have designed a general model, accounting for a realistic communication
model, and formalizing the scheduling constraints in this particular setting.
While establishing problem complexity, we have encountered the problem of
minimizing the max-stretch without release dates on a homogeneous platform,
whose complexity was left open in the literature; we have proven that it is
NP-hard, filling a gap in fundamental scheduling complexity results. The NP-
hardness of the problem in the edge-cloud setting is then a corollary of this
result.

We designed heuristic algorithms to address the problem in the general on-
line setting, and we assessed the performance of these algorithms through sim-
ulations, using parameters coming from real-world edge-cloud platforms. The
algorithms delegating jobs to the cloud achieve much better stretches than a
competitor Edge-Only approach, in particular when communication costs are
not too high. The proposed SSF-EDF algorithm always achieves very good
stretches. SRPT is also is very e�cient, and computes its schedules more rapidly,
hence it might be an interesting alternative to SSF-EDF.

As future work, it would be very interesting to derive theoretical bounds
for the proposed online algorithms (competitive results), for instance for some
specific job distributions. Furthermore, we would like to investigate a more

Inria

Max-stretch minimization on an edge-cloud platform 35

complicated framework where cloud processors are not available full-time: in
practice, a realistic but intricate framework is to consider that cloud processors
may be dynamically requested by other applications at certain time intervals.

Acknowledgments: We thank Denis Trystram for several fruitful discussions on
edge computing.

References

[1] B. Awerbuch, Y. Azar, S. Leonardi, and O. Regev. Minimizing the flow
time without migration. SIAM J. on Computing, 31(5):1370–1382, 2002.

[2] L. Becchetti, S. Leonardi, and S. Muthukrishnan. Average stretch without
migration. J. Comput. Syst. Sci., 68:80–95, 02 2004.

[3] M. A. Bender, S. Chakrabarti, and S. Muthukrishnan. Flow and stretch
metrics for scheduling continuous job streams. In Proc. of the 9th ACM-
SIAM Symp. on Discrete Algorithms, SODA’98, page 270–279, 1998.

[4] M. A. Bender, S. Muthukrishnan, and R. Rajaraman. Improved algorithms
for stretch scheduling. In Proc. of the 13th Annual ACM-SIAM Symp. on
Discrete Algorithms, SODA’02, page 762–771, USA, 2002.

[5] M. A. Bender, S. Muthukrishnan, and R. Rajaraman. Approximation al-
gorithms for average stretch scheduling. Journal of Scheduling, 7:195–222,
2004.

[6] P. Bhat, C. Raghavendra, and V. Prasanna. E�cient collective communi-
cation in distributed heterogeneous systems. Journal of Parallel and Dis-
tributed Computing, 63:251–263, 2003.

[7] A. Brogi, S. Forti, C. Guerrero, and I. Lera. How to place your apps in the
fog: State of the art and open challenges. CoRR, 1901.05717, 2019.

[8] P. Brucker. Scheduling Algorithms. Springer-Verlag, 2004.

[9] H. Casanova, F. Desprez, and F. Suter. Minimizing stretch and makespan of
multiple parallel task graphs via malleable allocations. In 39th International
Conference on Parallel Processing, pages 71–80, 2010.

[10] J. Celaya and L. Marchal. A Fair Decentralized Scheduler for Bag-of-Tasks
Applications on Desktop Grids. In 10th IEEE/ACM Int. Conf. on Cluster,
Cloud and Grid Computing, pages 538–541, 2010.

[11] C. Chekuri and S. Khanna. Approximation schemes for preemptive
weighted flow time. In Proceedings of the Thiry-Fourth Annual ACM Sym-
posium on Theory of Computing, STOC ’02, page 297–305, 2002.

[12] P. Chrétienne, E. G. Co↵man Jr., J. K. Lenstra, and Z. Liu, editors.
Scheduling Theory and its Applications. John Wiley and Sons, 1995.

RT n° 9369

36 Benoit, Elghazi, Robert

[13] V. Gama Pinheiro. The management of multiple submissions in paral-
lel systems : the fair scheduling approach. Theses, Université de Greno-
ble & Universidade de São Paulo, 2014. Available at https://tel.
archives-ouvertes.fr/tel-01677743.

[14] M. R. Garey and D. S. Johnson. Computers and Intractability, a Guide to
the Theory of NP-Completeness. W.H. Freeman and Company, 1979.

[15] A. Gupta, S. Im, R. Krishnaswamy, B. Moseley, and K. Pruhs. Scheduling
heterogeneous processors isn’t as easy as you think. In Proc. of the 23rd
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA’12, page
1242–1253, USA, 2012.

[16] L. Hollermann, T. S. Hsu, D. R. Lopez, and K. Vertanen. Scheduling
problems in a practical allocation model. J. Combinatorial Optimization,
1(2):129–149, 1997.

[17] B. Hong and V. Prasanna. Distributed adaptive task allocation in hetero-
geneous computing environments to maximize throughput. In Int. Parallel
and Distributed Processing Symposium IPDPS’2004, 2004.

[18] T. S. Hsu, J. C. Lee, D. R. Lopez, and W. A. Royce. Task allocation on a
network of processors. IEEE Trans. Computers, 49(12):1339–1353, 2000.

[19] IBM. Cloud at the Edge, 2019. https://www.ibm.com/cloud/blog/
cloud-at-the-edge.

[20] Infradata. What is Edge-Cloud Computing, 2020. https://www.
infradata.com/resources/what-is-edge-cloud/.

[21] Intel. Edge-Cloud and Edge Servers, 2020. https://www.intel.com/
content/www/us/en/edge-computing/edge-cloud.html.

[22] C. Jiang, T. Fan, H. Gao, W. Shi, L. Liu, C. Cérin, and J. Wan. Energy
aware edge computing: A survey. Computer Communications, 151, 02 2020.

[23] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars, and
L. Tang. Neurosurgeon: Collaborative intelligence between the cloud and
mobile edge. In 22nd Int. conf. on Architectural Support for Prog. Lan-
guages and Operating Systems (ASPLOS), pages 615–629, 2017.

[24] A. Legrand, A. Su, and F. Vivien. Minimizing the stretch when scheduling
flows of divisible requests. Journal of Scheduling, 11:381–404, 2008.

[25] J. Liu, Y. Mao, J. Zhang, and K. B. Letaief. Delay-optimal com-
putation task scheduling for mobile-edge computing systems. CoRR,
abs/1604.07525, 2016.

[26] S. Muthukrishnan, R. Rajaraman, A. Shaheen, and J. E. Gehrke. Online
scheduling to minimize average stretch. In 40th Annual Symposium on
Foundations of Computer Science, pages 433–443, 1999.

Inria

Max-stretch minimization on an edge-cloud platform 37

[27] Nokia. Edge-Cloud, 2020. https://www.nokia.com/networks/
solutions/edge-cloud/.

[28] Y. Robert and F. Vivien, editors. Introduction to Scheduling. Chapman
and Hall/CRC Press, 2009.

[29] F. Rodrigo De Souza, A. Da Silva Veith, M. Dias de Assuncao, and
E. Caron. Scalable Joint Optimization of Placement and Parallelism of
Data Stream Processing Applications on Cloud-Edge Infrastructure. In
18th Int. Conf. on Service Oriented Computing (ICSOC), Dubai, 2020.

[30] F. Rodrigo De Souza, M. Dias de Assuncao, E. Caron, and A. da Silva Veith.
An Optimal Model for Optimizing the Placement and Parallelism of Data
Stream Processing Applications on Cloud-Edge Computing. In IEEE 32nd
Int. Symp. on Computer Architecture and High Performance Computing
(SBAC-PAD), Porto, Portugal, Sept. 2020.

[31] T. Saif and M. Parashar. Understanding the behavior and performance of
non-blocking communications in MPI. In Proceedings of Euro-Par 2004:
Parallel Processing, LNCS 3149, pages 173–182, 2004.

[32] O. Sinnen and L. Sousa. Experimental evaluation of task scheduling accu-
racy: Implications for the scheduling model. IEICE Trans. on Information
and Systems, E86-D(9):1620–1627, 2003.

[33] O. Sinnen and L. Sousa. Communication contention in task scheduling.
IEEE Trans. on Parallel and Distributed Systems, 16(6):503–515, 2005.

[34] Y. Wu and G. Cao. Stretch-optimal scheduling for on-demand data broad-
casts. In Proc. Tenth Int. Conf. on Computer Communications and Net-
works, pages 500–504, 2001.

RT n° 9369

RESEARCH CENTRE
GRENOBLE – RHÔNE-ALPES

Inovallée
655 avenue de l’Europe Montbonnot
38334 Saint Ismier Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-0803

