
MIXED-PRECISION ALGORITHM FOR FINDING SELECTED1

EIGENVALUES AND EIGENVECTORS OF SYMMETRIC AND2

HERMITIAN MATRICES ∗3

YAOHUNG M. TSAI† , PIOTR LUSZCZEK‡ , AND JACK DONGARRA§4

Abstract. As the new hardware is being equipped with powerful low-precision capabilities5
driven primarily by the needs of the burgeoning field of Artificial Intelligence (AI), mixed-precision6
algorithms are now showing far greater potential and renewed interest in scientific computing com-7
munity. The multi-precision methods commonly follow approximate-iterate scheme by first obtaining8
the approximate solution from a low-precision factorization and solve. Then, they iteratively refine9
the solution to the desired accuracy that is often as high as what is possible with traditional ap-10
proaches. While targeting symmetric and Hermitian eigenvalue problems of the form Ax = λx, we11
revisit the SICE algorithm proposed by Dongarra et al. By applying the Sherman-Morrison formula12
on the diagonally-shifted tridiagonal systems, we propose an updated SICE-SM algorithm. By in-13
corporating the latest two-stage algorithms from the PLASMA and MAGMA software libraries for14
numerical linear algebra, we achieved up to 3.6× speedup using the mixed-precision eigensolver with15
the blocked SICE-SM algorithm for iterative refinement when compared with full double complex16
precision solvers for the cases with a portion of eigenvalues and eigenvectors requested.17

Key words. mixed-precision algorithms, eigenvalue solver, hardware accelerators18

AMS subject classifications. 65F15, 65F25, 65Y20, 68N0119

1. Introduction. The symmetric eigenvalue problem is one of the most impor-20

tant problems in numerical linear algebra for analysis of invariant subspace. For real21

matrices, the objective is to find an eigenvalue λ and the corresponding eigenvector x22

such that23

(1.1) Ax = λx where A = A⊺, A ∈ Rn×n
24

The Hermitian eigenvalue problem is to find the eigenvalues and eigenvectors in com-25

plex domain. For an Hermitian matrix A, the conjugate transpose (adjoin) operation26

is idempotent: A = A∗ and the eigenvalues are real which implies shared properties27

with the symmetric eigenvalue problem in real domain.28

As mixed-precision algorithms for solving a linear system of equations experi-29

enced a substantial interest that resulted in recent developments [10, 11, 25]. These30

were mostly driven by the introduction of new hardware platforms that provide in-31

creased low-precision performance for AI workloads. However, there was not as much32

focus on eigenvalue problems. And with the latest two-stage tridiagonalization ap-33

proach [24, 26], the multicore and multi-GPU eigensolvers’ algorithms for refining34

eigenvalues should be reviewed carefully in order to ascertain the possibility to im-35

prove the performance especially on this new hardware.36

∗This material is also based upon work supported by the National Science Foundation under OAC
Grant No. 2004541 and the University of Tennessee grant MSE E01-1315-038 as Interdisciplinary Seed
funding. This research used the computational resources of the Oak Ridge Leadership Computing
Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the
U.S. Department of Energy under Contract No. DE-AC05-00OR22725 provided by the Exascale
Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office
of Science and the National Nuclear Security Administration. The software library integration work
was supported by the National Science Foundation under OAC Grant No. 2004541.

†University of Tennessee (ytsai2@icl.utk.edu)
‡University of Tennessee (luszczek@icl.utk.edu)
§University of Tennessee, Oak Ridge National Laboratory, University of Manchester (don-

garra@icl.utk.edu)

1

This manuscript is for review purposes only.

mailto:ytsai2@icl.utk.edu
mailto:luszczek@icl.utk.edu
mailto:dongarra@icl.utk.edu
mailto:dongarra@icl.utk.edu

2. Contribution. The motivation of this paper is to develop a mixed-precision37

algorithm for the symmetric/hermitian eigenvalue problem. In this context, we made38

the following contributions:39

• We formulted and implemented the SICE-SM algorithm for symmetric and40

Hermitian matrices using Sherman-Morrison formula to solve the resulting41

tridiagonal systems with rank-one updates based on the SICE algorithm pro-42

posed by Dongarra et al. for iteratively refining a pair of eigenvalues and43

corresponding eigenvectors.44

• We also developed the blocked SICE-SM algorithm to refine multiple eigen-45

values and corresponding eigenvectors simultaneously and improve the per-46

formance by aggregating the matrix-vector multiplication operations for im-47

proved utilization of the memory hierarchy.48

• We implemented a mixed-precision algorithm by rearranging the tasks in49

the 2-stage eigensolver on the machines with heterogeneous architecture by50

improving the utilization of both the CPUs and GPUs.51

• We achieved performance improvement of the mixed-precision algorithm with52

the iterative refinement for the case that only a portion of eigenpairs are53

requested.54

3. Releated Work.55

3.1. Eigenvalue refinement. Symm and Wilkinson[41] proposed an algorithm56

to determine the error bounds of computed eigenvalues and eigenvectors, which can57

also be used to improve the accuracy of a given eigen-pair. Dongarra, Moler, and58

Wilkinson[18, 19, 20] later improved the algorithm with reduced computational cost59

and provided additional error analysis, including the comparison to Newton’s method[36,60

47], numerical results, and discussion of extending the algorithm for ill-conditioned61

problems with multiple close eigenvalues. More detail will be reviewed in subsec-62

tion 3.4 as it is also the core of the algorithm used in this work.63

Other related work from Stewart[40] and Chatelin[13] answered the same question64

from the point of view of the invariant subspace problem. Demmel[16] later pointed65

out that these two methods and the one from Dongarra, Moler, and Wilkinson [18,66

19, 20] can all be reduced to solving the same Riccati equation. He also extended the67

algorithm for the generalized eigenvalue problem of the form Ax = λBx.68

Alefeld and Spreuer[3] followed the same approach but specifically targeted prob-69

lems with doubly-repeated or numerically close eigenvalues. Tisseur[42] did the analy-70

sis of Newton’s method under floating-point arithmetic for generalized eigenvalue71

problems. Prikopa and Gansterer[37] used the symmetry of the matrix and House-72

holder tridiagonalization A = QTQ⊺ to reduce the computational cost.73

Ogita and Aishima[31] proposed a different iterative scheme, which heavily relies74

on matrix-matrix multiplication for those applications which require accuracy that is75

higher than the base IEEE-754 double precision. The algorithm is applied on the entire76

spectrum of eigenvalues but it is capable of improving at the same time the orthogonal-77

ity and eigenvalue accuracy. However, it requires high-precision computation for the78

most parts of the algorithm, making it costly in practice. Later the authors extended79

the algorithm for clustered eigenvalues and singular value decomposition[32, 33].80

3.2. Parallel Eigensolvers. To build an efficient mixed-precision algorithm,81

the latest advances in parallel eigensolvers should also be incorporated. The symmet-82

ric dense eigensolvers are mainly composed of two phases: tridiagonal reduction and83

tridiagonal eigensolver. Firstly, through similarity transformations based on orthog-84

2

This manuscript is for review purposes only.

onal/unitary matrices, the symmetric/Hermitian matrix is reduced to a tridiagonal85

form without altering the spectrum in infinite precision or with numerically stable86

perturbation in final precision. Then the problem is solved in tridiagonal form with87

much less cost than operating on a full matrix by applying different methods which88

will be described later in the section. If needed, the eigenvectors can be computed89

from the eigenvectors of the tridiagonal system and applying back-transformations of90

tridiagonal reduction.91

3.2.1. Tridiagonal Reduction. The first phase is to convert a full dense ma-92

trix into upper Hessenberg form, which has zeros below the first subdiagonal. The93

real symmetric and complex Hermitian cases result in even better structured form: a94

symmetric tridiagonal matrix with only nonzeros on the diagonal, the first superdiag-95

onal, and the first subdiagonal. The tridiagonalization of complex Hermitian matrix96

is usually chosen to be real tridiagonal symmetric matrix to reduce the computation97

cost in following steps. The Householder transformation is a natural choice for the98

reduction because of its simplicity and numerical stability. Furthermore, Dongarra et99

al.[21] introduced a blocked version of Householder vector application in which the100

transformations are aggregated and applied in a blocked fashion, so they can benefit101

from the high performance matrix-matrix multiplications rather than be bound by102

matrix-vector performance.103

Bischof et al.[8] proposed the approach based on successive band reduction (SBR).104

Each reduction sweep results in a narrower band matrix, and the reduction is done via105

a bulge-chasing procedure. The algorithm consists of a series of sweeps: each sweep106

will zero-out one column below subdiagonal but create fill-ins down the diagonal as the107

transformations are applied to the remaining matrix. Then additional transformations108

are applied to zero out the fill-in which was just created and this is repeated all the109

way down to the lower-right corner until it disappears from the matrix, hence the110

algorithm name: the bulge chasing. The algorithm is naturally parallelizable as the111

subsequent sweeps can be chosen to not overlap with each other, making it especially112

suitable for multicore CPUs in shared-memory environments.113

Later work introduced a hybrid 2-stage algorithm[24, 26]. The first stage still114

consisted of blocked Householder transformations but it only reduced the matrix to115

a band form. Then, the left transformation will only be needed, as the right trans-116

formation will not be touching the first block of columns. It thus becomes an LQ117

factorization for the block of columns, which is much faster than applying the trans-118

formations from both sides (LQ and QR). The second stage uses the bulge-chasing119

algorithm from the successive band reductions.120

3.2.2. Tridiagonal Eigensolvers. After tridiagonalization completes, a few121

standard eigensolver algorithms could be considered. As this is not the main focus of122

this work, these will only be reviewed briefly. The QR algorithm with shifts[46] is123

one of the most popular choices because of its superb stability and cubic convergence124

rate in general case. At each iteration, it computes a QR factorization and multiplies125

them back in reverse order: QkRk = Ak − µkI;Ak+1 = RkQk + µkI. There are other126

variants of QR iteration for strategically choosing the shifts µk.127

Another algorithm is called divide and conquer[14] that observes that with a128

rank-1 update, the initial problem can be divided into two independent subproblems129

with half the size. This results in repeatably reducing the problem down to the130

1 × 1 case which admits a trivial solution. In practice, there is a threshold size and131

the implementation switches to another method for below-threshold sizes for better132

performance on small problems. The independent problems can easily be parallelized.133

3

This manuscript is for review purposes only.

There are other methods based on the LDL⊺ factorization. The Bisection134

method[45] uses a suitable factorization to identify the number of eigenvalues pres-135

ent within a section and then it consecutively reduces the size of sections until the136

eigenvalues of interest are located with desired accuracy.137

Finally, Multiple relatively robust representations (MRRR)[35] takes the138

bisection further by the theoretically estimating the gaps between neighboring eigen-139

values. This algorithm divides the whole spectrum into clusters of eigenvalues that140

each have a relatively robust representation (LDL⊺ factorization).141

3.3. Software Packages for Symmetric/Hermitian Eigenvalue Problems.142

This section provides details on the software packages that are available for numerical143

linear algebra and include dense eigensolvers.144

EISPACK[39] is one the earliest open source software libraries to solve eigen-145

problems. It contains subroutines for the following nine classes of matrices: complex146

general, complex Hermitian, real general, real symmetric, real symmetric banded, real147

symmetric tridiagonal, special real tridiagonal, generalized real, and generalized real148

symmetric matrices. Providing performance portability of EISPACK motivated estab-149

lishment of Basic Linear Algebra Subprograms (BLAS)[29] as the standard building150

blocks for performing basic vector and matrix operations. BLAS was later extended151

to include three levels of operations: Level 1 scalar-vector and vector-vector, Level 2152

matrix-vector, and Level 3 matrix-matrix. Availability of BLAS proliferated as almost153

all hardware vendors provided their own optimized implementations and thus unified154

interface for numerical linear algebra software became the de facto standard upon155

which more complex methods are implemented including eigensolvers. The vendor156

renditions of BLAS for particular architectures include Intel MKL[28] and oneMKL,157

IBM ESSL[27], ARM Performance Libraries[7], NVIDIA cuBLAS[30], AMD AOCL[4]158

for CPUs and rocBLAS[5] for GPUs. The implementations from academia and open-159

source communities also exist and include BLIS[44] and OpenBLAS[34], both of which160

build on the success story of portable performance of GotoBLAS[23].161

LAPACK[6] was designed to utilize Level 3 BLAS routines by introducing blocked162

algorithms to bring out the performance from hardware platforms based on then163

modern architecture of deep memory hierarchies. LAPACK provides routines for164

all the major numerical linear algebra problems, ranging from solving systems of165

linear equations, least-squares solutions of linear systems, eigenvalue problems, and166

singular value problems. Over the years, the library kept expanding and became the167

standard reference for dense numerical linear algebra applications as it includes the168

implementations of all the major algorithms in the field.169

Several software libraries were subsequently developed that aimed to provide sim-170

ilar functionality as LAPACK while targeting different kinds of hardware platforms171

and environments. ScaLAPACK[9] was designed to scale on distributed-memory ma-172

chines by partitioning the matrices into blocks and cyclically distributing the data173

across the nodes. Its algorithms were implemented to iterate over these blocks to174

achieve parallelism. As the multicore CPUs were emerging, PLASMA[2] took a simi-175

lar idea of breaking the matrix down, but instead used smaller submatrices called tiles176

that better exploit the hardware structure of these shared-memory multicore systems.177

A task-based scheduler was introduced to remove the synchronization points in the178

algorithms and replace them with runtime scheduling of small tasks which operate on179

the tiles and are tracked based on their data dependences. MAGMA[43] was designed180

for heterogeneous architecture settings by exploiting hybrid hardware environment.181

These systems were equipped with hardware accelerators, usually GPUs, along with182

4

This manuscript is for review purposes only.

multicore CPUs. As the GPU brought a lot of computational power in terms of183

floating-point operations, the communications between the CPU and GPU remained184

a bottleneck, as the bandwidth between the two continues to be much more limited185

in comparison to internal memory structure of either a CPU or GPU. Thus the im-186

plementations in MAGMA were redesigned to distribute different tasks to the CPU187

and GPU to optimally fit their strengths and at the same time overlap the CPU-GPU188

communication with computations as much as possible. Software for Linear Algebra189

Targeting Exascale (SLATE)[22] aims to replace the venerable ScaLAPACK library.190

As the latest supercomputer installations are commonly accelerated by multiple GPUs191

on every distributed node, it would be hard to modify ScaLAPACK to take advantage192

of such machines. SLATE is designed with this modern HPC hardware in mind and193

features support for multiple computational backends. SLATE also embraces the open194

standards like MPI and OpenMP to promote portability while retaining performance195

and parallel efficiency.196

3.4. The SICE Algorithm. In this section, we review the SICE algorithm by197

Dongarra el al. [18, 19, 20]. Given the base eigenpair λ, x and its nearby eigenpair198

λ+ µ, x+ ỹ, then based on the original eigenproblem we have:199

(3.1) A(x+ ỹ) = (λ+ µ)(x+ ỹ)200

Assuming that x is normalized in infinite norm: |x|∞ = 1 ≡ xs, we can remove one201

degree of freedom by requiring ỹs = 0. Rearranging Eq. (3.1) we get:202

(3.2) (A− λI)ỹ − µx = λx−Ax− µỹ203

The last term is the second order term for the error in λ and x. By simplify the204

equation, we introduce vector y, defined as:205

(3.3) y⊺
def

= (ỹ1, ỹ2, . . . , ỹs−1, µ, ỹs+1, . . . , ỹn−1, ỹn)206

So y would encode information from both ỹ and µ and thus Eq. (3.2) becomes:207

(3.4) By = r + ysỹ = r + µỹ208

where r = λx−Ax is the residual vector of λ and x and B is the matrix A− λI with209

column s replaced by −x.210

We can also view it as the Newton’s method. In particular, by setting v =
(
x
λ

)
211

we can be formulate the eigenvalue problem as:212

(3.5) f(v) ≡
(
Ax− λx
e⊺sx− 1

)
= 0213

where es is the s-th column of the identity matrix of size n. The Newton’s method214

then solves the linear system of the Jacobian matrix:215

(3.6) J

(
ỹ
µ

)
=

(
A− λI −x

e⊺s 0

)(
ỹ
µ

)
=

(
r
0

)
= f(v)216

5

This manuscript is for review purposes only.

Expanding it, we arrive at Eq. (3.2) without the second-order term:217

(3.7) (A− λI)ỹ − µx = r218

This is the basic idea of the SICE algorithm: by iteratively solving Eq. (3.4) we219

obtain both the correction to the eigenvalue and to the eigenvector. The original220

algorithm uses Schur decomposition and applies two steps of Givens rotation in order221

to solve Eq. (3.4). For any real matrix A, there exists an orthogonal matrix Q and222

an upper quasi-triangular matrix T , such that223

(3.8) A = QUQ⊺
224

where U is upper quasi-triangular with some 2×2 diagonal blocks arising from complex225

conjugate eignevalue pairs. Here, we define Zλ ≡ Z−λI and zλs ≡ Zλes = (Z−λI)es.226

By rewriting Eq. (3.4), we get:227

(3.9) [Aλ − (x+ aλs)e
⊺
s]y = (A+ ce⊺s)y = r + ysỹ228

where c = −x− aλs. Using the Schur decomposition A = QUQ⊺, we have:229

(3.10) Q(Uλ +Q⊺ce⊺sQ)Q⊺y = r + ysỹ230

231

(3.11) (Uλ + df⊺)Q⊺y = Q⊺g232

where d = Q⊺c, f⊺ = e⊺sQ and g = r+ysỹ. Matrix d×f⊺ constitutes a rank-1 update.233

Then two steps of Givens rotation are introduced: the first one Q1 is constructed so234

that235

(3.12) Q1d = (P2P3 . . . Pn)d = γe1 where γ = ∥d∥2236

and Pi is the rotation in (i − 1, i) plane that eliminates the i-th component in237

Pi+1 . . . Pnd. We also have:238

(3.13) Q1(Uλ + df⊺) = Q1Uλ + γe1f
⊺

239

The transformation Q1 introduces one more nonzero element in the subdiagonal di-240

rection of Uλ. The new rank-one update γe1 × f⊺ has nonzero elements only in the241

first row, which preserves the original structure. The second step of Givens rota-242

tion Q2 can be applied subsequently in order to obtain the upper triangular form243

Ūλ = Q2Q1 (Uλ + d× f⊺) in244

(3.14) ŪλQ
⊺y = Q2Q1Q

⊺g245

The triangular solve requires O(n2) operations while the remaining steps of the iter-246

ation are only O(n). This procedure is shown in Algorithm 3.1.247

4. Algorithm and Implementation. The original SICE algorithm is designed248

for a general real matrices and here we first focus on symmetric ones. The proposed249

algorithm utilizes the tridiagonalization as well as the Sherman–Morrison formula250

to solve the linear system for eigenvalue and eigenvector corrections. The blocked251

version will also be discussed with the implementation details based on PLASMA252

and MAGMA software libraries.253

6

This manuscript is for review purposes only.

Algorithm 3.1 SICE algorithm

1: Input: Matrix A ∈ Rn×n. An approximate eigenvalue λ and the corresponding eigen-
vector x. itermax denotes the maximum number of iterations.

2: Output: Refined eigenvalue λ and its eigenvector x.
3: function [λ, x]← SICE(A, λ, x, iter)

4: [Q,U]← schur(A) ▷ obtain Schur decomposition A = QUQ⊺, QQ⊺ = I.
5: [m, s]← max(abs(x));x← x/m ▷ Normalizing x so that ∥x∥∞ = sx = 1.
6: for i in 1 : itermax do

7: r ← λx−Ax
8: c← −x− aλs

9: d← Q⊺c
10: f⊺ ← Q(s, :) = e⊺sQ ▷ s-th row of Q.
11: Ūλ ← Q1(U − λI); d̄← Q1d = ∥d∥2e1 ▷ Givens rotations Q1 from Eq. (3.12)
12: Ūλ ← Ūλ + d̄(1)f⊺

13: Ūλ ← Q2Ūλ ▷ Givens rotations Q2 to introduce upper triangular form.
14: Solve the triangular system Ūλz = Q2Q1Q

⊺r
15: y ← Qy
16: λ← λ+ y(s) ▷ Update eigenvalue.
17: y(s)← 0 ▷ Set y(s) to 0.
18: x← x+ y ▷ Update eigenvector.
19: if desired accuracy is reached then
20: break
21: end if
22: end for
23: end function

4.1. SICE-SM Algorithm. For symmetric eigenvalue problems, the matrix254

A is first reduced to tridiagonal through unitary similarity transformations: T =255

Q⊺AQ where QQ⊺ = I and T is a symmetric tridiagonal matrix. This corresponds256

to LAPACK routines SSYTRD and DSYTRD for single- and double-precision arithmetic,257

respectively. In the same fashion as SICE algorithm in Section 3.4, we start with258

Eq. (3.9) and apply the tridiagonal reduction to it. Eqs. (3.10) and (3.11) in this case259

become260

(4.1) Q (Tλ +Q⊺ce⊺sQ)Q⊺y = r + ysỹ261

and262

(4.2) (Tλ + d× f⊺)Q⊺y = Q⊺g263

the same with d = Q⊺c, f⊺ = e⊺sQ and g = r + ysỹ. Dongarra[18] discussed the264

approach of using the Sherman–Morrison formula[38]265

(4.3) (A− uv⊺)
−1

= A−1 − A−1uv⊺A−1

1 + v⊺A−1u
266

for solving the rank-one updated system. Eq. (4.2) does not apply since Tλ = T − λI267

is singular by construction. However, this may not be so in mixed-precision setting.268

Consider the scheme that first performs the tridiagonal reduction in single precision269

and then solves the tridiagonal eigenvalue problem in double precision. The initial λT270

will be the eigenvalue of T with double-precision accuracy, but it only approximates271

λA, the eigenvalue of A with single-precision accuracy. With suitably chosen offset δ272

7

This manuscript is for review purposes only.

Algorithm 4.1 SICE-SM algorithm: SICE algorithm with Sherman–Morrison for-
mula
1: Input: Matrix A = A⊺ ∈ Rn×n. An approximate eigenvalue λ and the corresponding

eigenvector x. itermax denotes the maximum number of iterations.
2: Output: Refined eigenvalue λ and eigenvector x.
3: function [λ, x]← SICE SM(A, λ, x, iter)

4: [Q,T]← tridiag(A) ▷ Tridiagonalization A = QTQ⊺, QQ⊺ = I.
5: [m, s]← max(abs(x));x← x/m ▷ Normalization of x so that ∥x∥∞ = sx = 1.
6: for i in 1 : itermax do

7: r ← λx−Ax
8: c← −x− aλs

9: d← Q⊺c
10: f⊺ ← Q(s, :) = e⊺sQ ▷ s-th row of Q.
11: rhs← Q⊺r
12: u← (T − λI)−1d
13: v ← (T − λI)−1rhs
14: y ← v − f⊺v

1+f⊺u
u ▷ Sherman–Morrison formula

15: y ← Qy
16: λ← λ+ y(s) ▷ Update eigenvalue.
17: if i ̸= 1 then

18: y(s)← 0 ▷ Set y(s) to 0.
19: x← x+ y ▷ Update eigenvector.

20: end if
21: if desired accuracy reached then
22: break
23: end if
24: end for
25: end function

of order of ϵsingle, T − (λ+ δ)I will no longer be singular in double precision, and the273

Sherman–Morrison formula can be applied. The special case in which this would fail274

is when ∥λT − λA∥ = O(ϵdouble): the initial eigenvalue is also an accurate eigenvalue275

of A in double precision. In such a case, we do not need to refine the eigenvalue and276

can simply apply the inverse iteration to find the eigenvector.277

Applying Sherman–Morrison formula from Eq. (4.3) to Eq. (4.2) we get278

(4.4) Q⊺y =

(
T−1
λ −

T−1
λ d× f⊺T−1

λ

1 + f⊺T−1
λ d

)
Q⊺g279

or280

(4.5) Q⊺y = T−1
λ Q⊺g −

f⊺(T−1
λ Q⊺g)

1 + f⊺(T−1
λ d)

T−1
λ d281

These involve solving the tridiagonal system Tλ with two different right hand sides d282

and Q⊺g. It can be easily done with the Thomas algorithm which is a special case of283

Gaussian elimination. There are other parallel tridiagonal solvers available and we will284

discuss them in Section 4.3.1. We outline the SICE algorithm with Sherman–Morrison285

formula in Algorithm 4.1.286

The main difference between Algorithms 3.1 and 4.1 is the use of the Sher-287

man–Morrison formula to solve the system from line 12 to 14 instead of using the288

8

This manuscript is for review purposes only.

Table 1
Performance of n × n matrix times n × m aggregated vectors on NVIDIA V100-SXM2-32GB

GPU, DGEMM routine from cuBLAS v11.0.

Matrix size Number of vectors Time (ms) Performance (GFLOP/s)

20000 1 3.76 212.65
20000 8 3.79 1688.17
20000 32 6.48 3949.32
20000 128 13.57 7544.43

Givens rotations for that purpose. It is applied to solving the same tridiagonal sys-289

tem Tλ with two different right hand sides d and Q⊺g. The two vector inner products290

are needed to obtain the scalar in order to form the solution. Note that in line 17, we291

only update the eigenvalue at the first iteration and leave the eigenvector unchanged292

because Tλ at the first iteration is nearly singular. Other approaches to this issue293

include manually applying a shift to the initial eigenvalue or using the Ritz value294
x⊺Ax
x⊺x as the starting point. Apart from tridiagonalization, the computational cost for295

algorithm 4.1 is dominated by the matrix-vector multiplications which require O(n2)296

operations. The remaining steps of the algorithm are all order O(n) including the297

tridiagonal solve.298

Alternatively, as described in [37], one can also solve the Jacobian matrix with299

the special structure J =

(
T − λI y

z⊺ 0

)
, which is a tridiagonal system with an extra300

row and column at the bottom and right. However, it is hard to parallelize the301

corresponding solver for this special structure and it is even harder make it scalable.302

This is in stark contrast with the approach of solving the tridiagonal system which303

is well studied and admits several parallel implementations that target a variety of304

computing environments.305

4.2. Blocked SICE-SM Algorithm. The computational cost of Algorithm 4.1306

is dominated by matrix-vector multiplications especially inside the refinement itera-307

tion. In the matrix-vector multiplication, the whole matrix is read once and only a308

single multiplication and addition are performed per each of the fetched elements.309

This results in a low arithmetic intensity of 2, which results in very low inefficient on310

modern hardware including CPU, GPUs, and computational accelerators. To improve311

on this implementation aspect, we can aggregate several eigenpairs simultaneously and312

refine them at the same time while they are cached in higher levels of the memory313

hierarchy. This blocking strategy is common in numerical linear algebra since it was314

introduced in LAPACK[6] and relies on grouping computations so that Level 3 BLAS315

may be utilized to perform operations that are rich in matrix-matrix multilications.316

These operations perform more efficiently as they have higher arithmetic intensity317

resulting from higher data reuse in fast portions of the cache hierarchy. In our case,318

we assume that the matrix size is far greater than the number of eigenpairs to refine.319

Then the matrix-vector multiplication is dominated by the reading of the matrix ele-320

ments. And with the blocked version, it the additional cost of refining extra eigenpairs321

is negligible. In Table 1, we show examples of the performance rates and execution322

times for different numbers of vectors submitted to the DGEMM routine from cuBLAS323

on the NVIDIA V100 GPU. The times for 1 and 8 vectors are almost the same. And324

for 32 or 128 vectors the elapsed time increases 3.6×.325

There are a few issues we need to solve while formulating a blocked variant of326

9

This manuscript is for review purposes only.

the algorithm. First, in SICE, the eigenvector is first normalized in infinity norm.327

The index s is also picked so that ∥x∥∞ = sx = 1. If we allow different s for each of328

the eigenpairs, then we will have to access different columns in A to construct vector329

c, and also different rows of Q for vector f⊺. The row access required for the latter330

is performed in column major layout and results in non-coalescing memory accesses331

which are extremely slow and should be avoided as much as possible due to their332

low utilization of the GPU’s memory bandwidth. To show that it is fine to choose333

s arbitrarily, we need to take a closer look at the matrix in Eq. (4.1) and expand it334

without canceling any terms we get335

(4.6) (QTλQ
⊺ +QQ⊺ve⊺sQQ⊺)y = r + ysỹ336

Again, for our mixed-precision scheme, we would like to perform the tridiagonaliza-337

tion in single precision. Hence QTλQ
⊺ is only an approximation of A with precision338

ϵsingle, i.e. ∥Aλ − QTλQ
⊺∥ ∼ O(ϵsingle). The same applies to QQ⊺ which is only an339

approximation of I with ∥QQ⊺ − I∥ ∼ O(ϵsingle). So no matter which index s we340

pick, we will always get an error of order ϵsingle in the correction of eigenvalue ys341

coming from the other elements in the solution vector y. There could be a potential342

problem if the eigenvalue itself is small and the error is preventing the eigenvalue to343

be refined to desire accuracy. This can be remedied by pre-scaling the matrix so that344

the eigenvalues are not too small.345

The other issue is that by treating the eigenpairs independently they might lose346

their orthogonality. In the worst case, they might all converge to the same eigenpair.347

However, it is easy to reorthogonalize with348

(4.7) X ′ = X +
1

2
X(I −X⊺X)349

In practice, we found that it is sufficient to reorthogonalize after the refinement is done.350

Doing so in each iteration would not speed up the convergence. The computation of351

I −X⊺X also lets us detect if they converged to the same eigenvector. By combining352

these considerations, we arrive at Algorithm 4.2.353

Because a Hermitian matrix can also be tridiagonalized into real matrix, algo-354

rithm 4.2 can easily be extended to be applied on Hermitian matrices. The transfor-355

mation matrix Q now becomes complex, as well as the intermediate vectors. However,356

the coefficients in T − λI are all real so it can be optimized to avoid doing all the357

operations in complex space.358

4.3. Implementation Details. In this section, we will describe some of the359

details of our implementation. We implemented the Blocked SICE-SM (Algorithm 4.2)360

in two software packages: PLASMA[2] and MAGMA[43].361

PLASMA is a dense linear algebra software package targeting multi-core shared-362

memory environments with OpenMP directives. It divides the work into small sub-363

matrices called tiles in order to exploit the parallelism and dynamically schedule tasks364

based on data interdependence. PLASMA used to have a runtime scheduler called365

QUARK but it is now based on OpenMP tasking directives to embrace the open and366

portable standard for runtime scheduling of computational Direct Acyclic Graphs367

(DAGs). OpenMP 4 added the depend clause for task dependencies and is able to re-368

solve the task DAGs from PLASMA algorithms. PLASMA has two-stage eigensolver369

implemented in one of its development branches.370

MAGMA is also a linear algebra software package but it targets heterogeneous371

hardware accelerated with GPUs. Due to the characteristically high floating-point372

10

This manuscript is for review purposes only.

Algorithm 4.2 Blocked SICE-SM algorithm

1: Input: A = AT ∈ Rn×n, initial eigenvectors X = [x1|x2|...|xℓ] ∈ Rn×ℓ and the corre-
sponding initial eigenvalues Λ = (λ1, λ2, . . . , λℓ)

T ∈ Rl. itermax denotes the maximum
number of iterations.

2: Output: Refined eigenvectors X and refined eigenvalues Λ.
3: function [X,Λ]← SICE SM BLK(A,X,Λ, iter)

4: [Q,T]← tridiag(A) ▷ Tridiagonalization A = QTQ⊺, QQ⊺ = I.
5: for i in 1 : itermax do
6: s← i
7: R← X × diag matrix(Λ)−A×X ▷ Residual vectors need higher precision.
8: for j in 1 : ℓ do
9: cj ← −xj −A(:, s)

10: end for
11: Compose matrix C = [c1|c2|...|cℓ] from column vectors cj
12: C(s, :)← C(s, :) + ΛT

13: D = [d1|d2|...|dℓ]← QT × C ▷ Can be in lower precision.
14: RHS = [rhs1|rhs2|...|rhsℓ]← QT ×R ▷ Can be in lower precision.
15: f ← Q(s, :) ▷ s-th row of Q.
16: for j in 1 : ℓ do
17: ui ← (T − λI)−1di
18: vi ← (T − λI)−1rhsi
19: yi ← vi − f⊺vi

1+f⊺ui
ui ▷ Sherman–Morrison

20: end for
21: Compose matrix Y = [y1|y2|...|yℓ] from correction vectors yj
22: Y ← Q× Y
23: Λ← Λ + Y (s, :)T ▷ Update eigenvalues.
24: if i ̸= 1 then
25: Y (s, :)← 0 ▷ Set yi(s) to 0.
26: X ← X + Y ▷ Update eigenvectors.
27: Normalize eigenvectors xi in X.
28: end if
29: if desired accuracy reached then
30: break
31: end if
32: end for
33: X ← X + 1

2
X(I −X⊺X) ▷ Orthogonalization.

34: end function

performance of GPUs and the limited bandwidth between the CPUs and GPUs,373

MAGMA algorithms need to be redesigned and refactored to split up the work be-374

tween CPU and GPU and to overlap communication and computation. MAGMA375

includes both one- and two-stage eigensolvers. And we used them as building blocks376

for implementing Algorithm 4.2 for both solvers.377

The one-stage eigensolver has the following components with its corresponding378

LAPACK routine names:379

Algorithm 4.3 One stage symmetric eigensolver

1: DSYTRD: Tridiagonalization via Householder transformations.
2: DSTEDC: Tridiagonal symmetric eigensolver (divide and conquer).
3: DORMTR: back transformation for eigenvectors.

11

This manuscript is for review purposes only.

First the system is transformed to the tridiagonal form via Householder transfor-380

mations. Then the tridiagonal eigensolver is called. We will not discuss the details381

of eigensolvers here, as it is not the focus of this work. After the eigenvalues and382

eigenvectors of the tridiagonal system are computed, the back transformation is ap-383

plied, which is the inverse of the Householder transformations from tridiagonalization384

stage. Because the transformation is orthogonal, the inverse is simply a transpose. If385

only a portion of the eigenvectors are requested, the transform would not be explicitly386

formed for performance reasons. The transform in the form of elementary reflectors is387

directly applied on eigenvectors of the tridiagonal system to obtain the eigenvectors388

for the original matrix.389

For the mixed-precision eigensolver, we first perform tridiagonalization in single390

precision as it is computationally intensive requiring O(n3) operations. After the391

system is transformed to tridiagonal form, the eigensolver is applied. The eigensolver392

operates in double precision as we need to be able to distinguish nearby eigenvalues393

that are closer than ϵsingle but not closer than ϵdouble. If single precision is used for394

this case, the eigenvalues are very likely to be considered as repeated, and the returned395

eigenvectors could be an arbitrary orthogonal basis of the eigenspace. For the back396

transformation, the matrix Q needs to be explicitly formed in order for us to solve397

Eq. (4.2). Then the Blocked SICE-SM (Algorithm 4.2) is used to iteratively refine the398

eigenpairs to the desired accuracy. Most of the operations in the refinement process399

are matrix-matrix operations, which have been developed internally. The batched400

tridiagonal solver in line 16 will be discussed in section 4.3.1.401

Algorithm 4.4 Mixed precision one stage symmetric eigensolver with iterative re-
finement
1: SSYTRD: Tridiagonalization via Householder transformations in single precision.
2: DSTEDC: Tridiagonal symmetric eigensolver (divide and conquer) in double pre-

cision.
3: SORGTR: Generate the transformation matrix Q from elementary reflectors in

single precision.
4: Blocked SICE-SM (algorithm 4.2) for iterative refinement.

For two-stage algorithms, the structure is similar to the one-stage method but402

both the forward- and back-transformations are split into two staps:403

Algorithm 4.5 Two stages symmetric eigensolver

1: First stage symmetric to band via Householder transformations.
2: Second stage band to tridiagonal via bulge chasing.
3: Tridiagonal symmetric eigensolver (divide and conquer).
4: back transformation for second stage on eigenvectors.
5: back transformation for first stage on eigenvectors.

In MAGMA, the first stage is similar to QR factorization with the panel performed404

completely on the CPU and the update of the trailing matrix performed on the GPU.405

The second stage bulge chasing is implemented only for the CPU as the multicore406

architecture with larger cache is a more suitable compared to the GPU. The divide-407

and-conquer eigensolver is also mainly performed on the CPU except for the final step408

of merging with large blocks. Both back transformations are applied on the GPU as409

they are aggregated into matrix-matrix operations.410

12

This manuscript is for review purposes only.

Algorithm 4.6 Mixed precision two stages symmetric eigensolver with iterative re-
finement
1: First stage symmetric to band via Householder transformations in single precision.
2: Second stage band to tridiagonal via bulge chasing in single precision.
3: Tridiagonal symmetric eigensolver (divide and conquer) in double precision.
4: Generate the transformation matrix Q from first stage in single precision. This

can start as soon as 1. finishes.
5: Apply the back transformation for second stage onto Q in single precision. This

can start as soon as both 2. and 4. finish.
6: Blocked SICE-SM (algorithm 4.2) for iterative refinement.

Mixed precision for a two-stage eigensolver is actually more problematic performance-411

wise. The main reason is that accumulation of the back transformations from the412

second stage of bulge chasing is costly: it has a lot of small transformations and is413

expensive to apply on a square transform matrix Q compared to the case of only414

computing the eigenvectors. However, we need to explicitly form Q for the later re-415

finement. Here, we exploit the fact that the back transformation is not applied on416

the eigenvectors; it can actually start as soon as the first stage is finished. So we417

are reversing the order of back transformations to start it first. Similarly, the back418

transformation of the second stage can start when both the second stage and the back419

transformation of the first stage are completed. This is shown in Algorithm 4.6. For420

the case of MAGMA implementation, this would enable more parallelism. The back421

transformation of the first stage can be done on the GPU while the second stage of422

bulge chasing is done on the CPU. The eigensolver, which is mainly done on the CPU,423

can be overlapped with the back-transformation of the second stage on the GPU.424

4.3.1. Batched Tridiagonal Solver. Line 16 in Algorithm 4.2 iterates over425

all the eigenvalues and solves the shifted tridiagonal system for each of them. This426

kind of computational pattern is suitable for batched interface. The term “batched”427

comes from the Batched BLAS[17, 1] that defines the interface for performing identical428

operation on multiple matrices independently and simultaneously. In our case, all429

the systems are also independent and we can solve them in a batched fashion. On430

multicore CPUs, the straightforward and efficient approach is to assign one system431

to each thread at a time which is likely bound to a single CPU core. Each thread432

can use the Thomas algorithm, which is a special case of Gaussian elimination. But433

on the GPU, we need more parallelism to saturate the computational potential of434

the hardware. There are previous studies[48, 15, 12] that investigated the solving of435

one big tridiagonal system on GPUs. One of the techniques is based on the cyclic436

reduction (CR). Consider a tridiagonal system with 8 unknowns:437

(4.8)



b1 c1
a2 b2 c2

a3 b3 c3
a4 b4 c4

a5 b5 c5
a6 b6 c6

a7 b7 c7
a8 b8





x1

x2

x3

x4

x5

x6

x7

x8


=



y1
y2
y3
y4
y5
y6
y7
y8


438

By combing all the even-indexed equations with odd-indexed equation, we are439

13

This manuscript is for review purposes only.

able to have an updated system with half of the size:440

(4.9)


b′1 c′1
a′3 b′3 c′3

a′5 b′5 c′5
a′7 b′7



x1

x3

x5

x7

 =


y′1
y′3
y′5
y′7

441

The coefficients of the updated system can be computed with the following for-442

mulas:443

k1 =
ai
bi−1

, k2 =
ci

bi+1

a′i = −ai−1k1, b
′
i = bi − ci−1k1 − ai+1k2

c′i = −ci+1k2, y
′
i = yi − yi−1k1 − yi+1k2

(4.10)444

By recursively reducing the size of the system by half, it is possible to bring the445

size down to a single unknown with a trivial solution. Then, the back-substitutions446

follows the same path in reverse order and thus the solution of the full system is447

obtained. Alternatively, while reducing the size of systems, we can produce two448

independent systems, one with odd-indexed unknowns and the other with the even-449

indexed unknowns. Both systems can be solved independently with only its own450

coefficients. By repeating the process, we will arrive at trivial systems with a single451

unknown b′′i xi = y′′i for all of the unknowns xi. The back substitutions wold not be452

needed for this approach, which is called parallel cyclic reduction (PCR). The PCR453

method exposes more parallelism towards the end but with requires more computation454

which represents a design trade-off. For our GPU implementation, we used PCR to455

solve one tridiagonal system by each of the thread blocks.456

5. Numerical Results and Performance Experiments. The numerical ex-457

periments in this section will be divided into two parts. The first one examines the458

convergence behavior for refining different portions of the eigenvalues and eigenvec-459

tors in the spectrum. Then the performance results with PLASMA and MAGMA460

software libraries are be given with detailed profiling data to highlighted particular461

performance cases.462

5.1. Numerical Convergence. The numerical experiments in this section were463

performed in MATLAB version R2020a with implementations of Algorithm 4.2 (blocked464

SICE-SM). The expression A = gallery(’randsvd’,n,-cond) was used to generate465

symmetric test matrices with a prescribed condition number from random eigenvec-466

tors and geometrically distributed eigenvalues in range (1, 1
cond

). The input matrix467

is first converted to single precision and subsequently tridiagonalized using [Q,T]468

= hess(A) function in single precision. Then converted back to double precision for469

finding the eigenvalues and eigenvectors using expression [V,D] = eig(A). The eigen-470

vectors in D and column eigenvectors in QV will be used as the starting point of our471

refinement algorithms.472

Figure 1 shows the convergence of Algorithm 4.2: the blocked SICE-SM. The473

input symmetric input matrix had size 100 with geometrically distributed eigenvalues474

from 1 to 10−7. The convergence in terms of residual ∥Ax−λx∥∞ of each eigenvalues475

are plotted in different colors from blue as largest eigenvalue 1 to red as the smallest476

eigenvalue 10−7. For the first iteration, we only updated the eigenvalues so there477

was no initial improvement. For large eigenvalues, the method converges quickly in478

14

This manuscript is for review purposes only.

two iterations. However, for small eigenvalues, that are much closer to each other479

due to the geometrical distribution and thus we observer the resulting slowdown of480

convergence.481

Fig. 1. Blocked SICE-SM convergence of a 100 × 100 matrix with geometrically distributed
eigenvalues from 1 (blue) to 10−7 (red).

5.2. Performance Results. The system we are using has two sockets of In-482

tel(R) Xeon(R) CPU E5-2650 v3 CPUs. But only one is being used for more stable483

results. The system is accelerated by a Tesla V100 GPU. The theoretical peak per-484

formance of a V100 is 7.8 TFLOP/s in double precision and 15.6 TFLOP/s in single485

precision. The software stacks was composed of Intel Parallel Studio Cluster 2020.486

(for C and Fortran compilers and BLAS rouintes from MKL library), NVIDIA CUDA487

v11.0.2, and MAGMA version 2.5.4. The input symmetric matrix A ≡ [aij] was gen-488

erated with random elements from a uniform distribution in range (0, 1): aij ∼ U(0, 1)489

and aij = aji. The Hermitian matrix is also generated in the same fashion for it’s490

imaginary part. The largest eigenvalues in the spectrum were requested. The blocked491

SICE-SM algorithm was implemented in both PLASMA and MAGMA.492

First, we show the profiling results from the PLASMA experiments in left of Fig-493

ure 2. PLASMA was used in a CPU-only mode and no GPUs were used in the system.494

The symmetric input matrix had size n = 10000. The three stacked bars represent the495

breakdown of time from mixed-precision with refinement, single precision, and double496

precision from the two-stage algorithm, respectively. The time for single precision is497

about half of that of double precision and each of the components take proportion-498

ally the same time for both precisions. The mixed-precision algorithm is slower than499

double precision in this setup because of the requirement of explicitly forming the500

transformation matrices from the first and second stages. They also take much more501

time compared to the double precision algorithm, which only applies transformations502

to the eigenvectors.503

Figure 3 shows the performance results from the MAGMA. First the solid lines504

are the one-stage algorithm in double, single, and mixed precision (with iterative505

refinement). The input matrix sizes range from 1000 to 20000, and the largest 32506

eigenpairs are requested. Single precision is about 1.7× faster than double precision507

15

This manuscript is for review purposes only.

Fig. 2. Breakdown of timings of two-stage eigensolvers with 32 largest eigenparis requested
in PLASMA (left), MAGMA on NVIDIA Volta V100, and MAGMA on NVIDIA GTX1060. The
problem sizes are 10 000, 20 000, and 12 000, respectively.

and the mixed precision is about 1.3× faster. The dashed lines represent the two-508

stage algorithm. They are at least 2× faster than their corresponding single stage509

algorithm in general. The performance improvement over double precision is about510

1.2×. Figure 4 shows the performance results of complex Hermitian solvers. Complex511

operations has higher arithmetic intensity so the performance gap between single and512

double would also be larger. Mixed precision algorithm can also have greater chance513

to benefit it. On the system wit NVIDIA V100, we are observing complex single is514

2.44× faster than complex double and mixed precision solver is 1.45×515

Fig. 3. Performance comparison of single, double, and mixed precision solvers for real sym-
metric matrix on MAGMA for both single stage and two-stage algorithms on NVIDIA V100 GPU
with varying sizes of matrices and fixed number of requested eigenpairs.

Figure 5 shows the performance when requesting different numbers of eigenpairs516

with the input matrix size fixed at n = 20000. Mixed precision is noticeably faster517

than double precision if 64 or fewer eigenpairs are requested. For larger eigenpair518

count, the time in iterative refinement grows linearly with the number of requested519

eigenpairs and it eventually looses its performance advantage.520

The middle of Figure 2 shows the detailed profile for matrix size n = 20000 and521

16

This manuscript is for review purposes only.

Fig. 4. Performance of single, double, and mixed precision solvers for complex Hermitian
matrix based on MAGMA two-stage algorithm on NVIDIA V100 GPU with varying sizes of matrices
and fixed number of requested eigenpairs.

32 eigenvalues/eigenvectors requested. The details of computational components were522

explained in Section 4.3. The single precision routine took 60% of time compared to523

double, and the ratios between components across precisions were about the same. For524

mixed precision, there is a 0.5 second overhead at the beginning to convert the whole525

matrix from double to single precision. Then the two-stage reduction is done in single526

precision which is about twice as fast in single precision. The back-transformation of527

the first stage is overlapped with the second stage, and is not shown in the bar. The528

same applies for the eigensolver, which is overlapped with the back-transformation529

from the second stage. Finally, at the top is the timing for the iterative refinement530

stage. As can be easily observed, the back transformation of second stage for mixed531

precision is the bottleneck as it takes almost 40% of the total time in this case.532

We tested another machine with a drastically different setup by using a consumer-533

grade gaming GPU. It has the same CPUs as the V100 system. The GPU is NVIDIA534

GTX1060 6GB GPU. The theoretical peak performance of GTX1060 is 136.7 GFLOP/s535

in double and 4.375 TFLOP/s in single precision. This is a notable different as the536

gaming maintains 1:32 double-single ratio compared to server-grade NVIDIA V100537

with the ratio being 1:2. Figure ?? shows the performance with different matrix sizes538

on GTX1060 when requesting the largest 32 eigenpairs. The performance of single539

precision is about 8× better than that of double precision and the mixed precision540

with refinement is about 2× better than double precision. Figure 6 is the complex541

Hermitian solver and the the speed up over complex double is 3.6× as In Figure 7 we542

show performance results when the matrix size was fixed at n = 12000 but with varied543

number of requested eigenpairs. The mixed precision solver is still faster than dou-544

ble precision when 128 eigenpairs are requested, but the time in iterative refinement545

became significant if more eigenvalues and eigenvectors were requested.546

The right of Figure 8 shows the profiling results with timing breakdown for ma-547

17

This manuscript is for review purposes only.

Fig. 5. Performance comparison of single, double, and mixed precision solvers on top of
MAGMA on NVIDIA V100 GPU with varying number of requested eigenpairs and fixed matrix
size.

trix size n = 12000 and the 32 largest eigenpairs requested. In double precision,548

almost 80% of time was spent at the first stage to reduce the matrix from symmet-549

ric to band-symmetric form. The operation is compute-bound and relies on GPU’s550

matrix-matrix multiplication efficiency. But the consumer-grade GPU does not have551

hardware to support high-efficiency processing for the double floating-point units and552

consequently extra clock cycles are used to emulate higher precision with single pre-553

cision instructions. The mixed-precision algorithm does the first-stage reduction in554

single precision and does not suffer from the same penalty. The back-transformation555

of second stage is still costly but it is done with single precision on the GPU. Over-556

all, the performance of mixed precision with the iterative refinement algorithm is 2×557

faster over purely double two-stage algorithm.558

6. Conclusions and Future Work. We developed an iterative refinement al-559

gorithm for symmetric and Hermitian eigenvalue problems based on the initial work560

from the SICE algorithm. By utilizing the Sherman–Morrison formula, our new solver561

has more opportunity to be parallelized compared to the serial Givens rotations in the562

SICE algorithm. The blocked version of the algorithm was also proposed in order to563

refine multiple pairs of eigenvalues and eigenvectors simultaneously for higher utiliza-564

tion of the computational resources with lower demand for memory bandwidth. The565

implementation of the mixed-precision algorithm is based on the two-stage eigen-566

solver in either the PLASMA and MAGMA software libraries for numerical linear567

algebra, which gives our implementation the advantage of both portability and per-568

formance. The computational components inside the mixed-precision algorithm have569

been reordered to create more parallelism at runtime and allow additional overlap to570

computational stages more efficiently. Compared to the double-precision solver, the571

performance benefit has been shown for the cases in which only a portion of eigenval-572

18

This manuscript is for review purposes only.

Fig. 6. Performance of single, double, and mixed precision solvers for complex Hermitian
matrix based on MAGMA two-stage algorithm on the NVIDIA GTX1060 GPU.

ues and corresponding eigenvectors are requested. This remains true across hardware573

with a varying ratio of performance of single and double precision units.574

As we can see in the profiling result featuring time breakdown of the computa-575

tional tasks, the back-transformation of the second stage that performs bulge chasing576

is slow on either CPU or GPU and becomes the bottleneck for some experiments.577

Although the two stage reduction is a far superior method in terms of performance, if578

only the forward transforms are considered then back-transformations take over the579

performance and must be taken into account while designing mixed-precision algo-580

rithms. One possible approach would be to start aggregating the transformations on581

the GPU as soon as they are generated by GPU-based bulge chasing and not wait582

until all the reductions have been computed.583

For distributed systems, the matrix is usually too large and it might not be584

feasible to explicitly form the transform matrix. Consequently, the cost of applying585

the transformation Q during iterative refinement needs to be reevaluated. Also, if586

different eigenpairs are being distributed and refined on different nodes, synchronizing587

and applying Q to eigenvectors across disparate nodes needs to be designed and588

implemented with care as this is not a usual operation.589

Another direction is to try different low-precision formats in addition to just590

mixing single and double precisions. The recently released NVIDIA Ampere GPU591

provides TF32 Tensor Cores, which uses all 8 exponent bits and 10 out of 23 mantissa592

bits from the FP32 single precision format, and thus offering 8× speedup. Because593

our initial eigenpairs and the reduced systems are all coming from the low-precision594

tridiagonalization, the convergence rate of the iterative refinement is affected signifi-595

cantly. Based on our experiments, the FP16 half-precision tensor cores do not provide596

sufficient accuracy and TF32 might appears to be a more promising target with more597

balanced mix of precision and performance.598

19

This manuscript is for review purposes only.

Fig. 7. Performance comparison of single, double, and mixed precision solvers on top of
MAGMA on NVIDIA GTX1060 GPU with varying number of requested eigenpairs and fixed matrix
size n = 12000.

REFERENCES599

[1] A. Abdelfattah, T. Costa, J. Dongarra, M. Gates, A. Haidar, S. Hammarling, N. J.600
Higham, J. Kurzak, P. Luszczek, S. Tomov, and M. Zounon, A set of batched basic601
linear algebra subprograms and LAPACK routines, ACM TOMS, 47 (2020), p. 1–23, https:602
//doi.org/10.1145/3431921. DOI: 10.1145/3431921.603

[2] E. Agullo, J. Dongarra, B. Hadri, J. Kurzak, J. Langou, J. Langou, H. Ltaief,604
P. Luszczek, and A. YarKhan, PLASMA users guide, tech. report, Technical report,605
ICL, UTK, 2009.606

[3] G. Alefeld and H. Spreuer, Iterative improvement of componentwise errorbounds for invari-607
ant subspaces belonging to a double or nearly double eigenvalue, Computing, 36 (1986),608
pp. 321–334.609

[4] AMD optimizing CPU libraries (AOCL). https://developer.amd.com/amd-aocl/, 2020. [On-610
line; accessed 2-August-2020].611

[5] rocBLAS: AMD’s library for BLAS on ROCm. https://github.com/ROCmSoftwarePlatform/612
rocBLAS, 2020. [Online; accessed 2-August-2020].613

[6] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,614
A. Greenbaum, S. Hammarling, A. McKenney, et al., LAPACK Users’ guide, SIAM,615
1999.616

[7] ARM performance libraries. https://developer.arm.com/tools-and-software/server-and-hpc/617
compile/arm-compiler-for-linux/arm-performance-libraries, 2020. [Online; accessed 2-618
August-2020].619

[8] C. H. Bischof, B. Lang, and X. Sun, A framework for symmetric band reduction, ACM620
Transactions on Mathematical Software (TOMS), 26 (2000), pp. 581–601.621

[9] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra,622
S. Hammarling, G. Henry, A. Petitet, et al., ScaLAPACK users’ guide, SIAM, 1997.623

[10] E. Carson and N. J. Higham, A new analysis of iterative refinement and its application624
to accurate solution of ill-conditioned sparse linear systems, SIAM Journal on Scientific625
Computing, 39 (2017), pp. A2834–A2856.626

[11] E. Carson and N. J. Higham, Accelerating the solution of linear systems by iterative refine-627
ment in three precisions, SIAM Journal on Scientific Computing, 40 (2018), pp. A817–628

20

This manuscript is for review purposes only.

https://doi.org/10.1145/3431921
https://doi.org/10.1145/3431921
https://doi.org/10.1145/3431921
https://developer.amd.com/amd-aocl/
https://github.com/ROCmSoftwarePlatform/rocBLAS
https://github.com/ROCmSoftwarePlatform/rocBLAS
https://github.com/ROCmSoftwarePlatform/rocBLAS
https://developer.arm.com/tools-and-software/server-and-hpc/compile/arm-compiler-for-linux/arm-performance-libraries
https://developer.arm.com/tools-and-software/server-and-hpc/compile/arm-compiler-for-linux/arm-performance-libraries
https://developer.arm.com/tools-and-software/server-and-hpc/compile/arm-compiler-for-linux/arm-performance-libraries

Fig. 8. Breakdown of timings of two-stage eigensolvers based on MAGMA on the NVIDIA
GTX1060 GPU with size n = 12000 and 32 largest eigenpairs requested.

A847.629
[12] L.-W. Chang, J. A. Stratton, H.-S. Kim, and W.-M. W. Hwu, A scalable, numerically sta-630

ble, high-performance tridiagonal solver using GPUs, in SC’12: Proceedings of the Inter-631
national Conference on High Performance Computing, Networking, Storage and Analysis,632
IEEE, 2012, pp. 1–11.633

[13] F. Chatelin, Simultaneous Newton’s iteration for the eigenproblem, in Defect correction meth-634
ods, Springer, 1984, pp. 67–74.635

[14] J. J. Cuppen, A divide and conquer method for the symmetric tridiagonal eigenproblem, Nu-636
merische Mathematik, 36 (1980), pp. 177–195.637

[15] A. Davidson, Y. Zhang, and J. D. Owens, An auto-tuned method for solving large tridiag-638
onal systems on the GPU, in 2011 IEEE International Parallel & Distributed Processing639
Symposium, IEEE, 2011, pp. 956–965.640

[16] J. W. Demmel, Three methods for refining estimates of invariant subspaces, Computing, 38641
(1987), pp. 43–57.642

[17] J. Dongarra, S. Hammarling, N. J. Higham, S. D. Relton, P. Valero-Lara, and643
M. Zounon, The design and performance of batched BLAS on modern high-performance644
computing systems, Procedia Computer Science, 108 (2017), pp. 495–504.645

[18] J. J. Dongarra, Improving the accuracy of computed matrix eigenvalues, tech. report, Argonne646
National Lab., Chicago, IL, USA, 1980.647

[19] J. J. Dongarra, Algorithm 589: SICEDR: a FORTRAN subroutine for improving the ac-648
curacy of computed matrix eigenvalues, ACM Transactions on Mathematical Software649
(TOMS), 8 (1982), pp. 371–375.650

[20] J. J. Dongarra, C. B. Moler, and J. H. Wilkinson, Improving the accuracy of computed651
eigenvalues and eigenvectors, SIAM Journal on Numerical Analysis, 20 (1983), pp. 23–45.652

[21] J. J. Dongarra, D. C. Sorensen, and S. J. Hammarling, Block reduction of matrices to con-653
densed forms for eigenvalue computations, Journal of Computational and Applied Math-654
ematics, 27 (1989), pp. 215–227.655

[22] M. Gates, J. Kurzak, A. Charara, A. YarKhan, and J. Dongarra, SLATE: design of a656
modern distributed and accelerated linear algebra library, in Proceedings of the Interna-657
tional Conference for High Performance Computing, Networking, Storage and Analysis,658
2019, pp. 1–18.659

[23] K. Goto and R. Van De Geijn, High-performance implementation of the Level 3 BLAS, ACM660
Transactions on Mathematical Software (TOMS), 35 (2008), pp. 1–14.661

[24] A. Haidar, H. Ltaief, and J. Dongarra, Parallel reduction to condensed forms for sym-662
metric eigenvalue problems using aggregated fine-grained and memory-aware kernels, in663

21

This manuscript is for review purposes only.

Proceedings of 2011 International Conference for High Performance Computing, Network-664
ing, Storage and Analysis, 2011, pp. 1–11.665

[25] A. Haidar, S. Tomov, J. Dongarra, and N. J. Higham, Harnessing GPU tensor cores for fast666
fp16 arithmetic to speed up mixed-precision iterative refinement solvers, in SC18: Inter-667
national Conference for High Performance Computing, Networking, Storage and Analysis,668
IEEE, 2018, pp. 603–613.669

[26] A. Haidar, S. Tomov, J. Dongarra, R. Solcà, and T. Schulthess, A novel hybrid CPU–670
GPU generalized eigensolver for electronic structure calculations based on fine-grained671
memory aware tasks, The International journal of high performance computing applica-672
tions, 28 (2014), pp. 196–209.673

[27] IBM engineering and scientific subroutine library (ESSL) version 6.3. https://www.ibm.com/674
support/knowledgecenter/SSFHY8 6.3/navigation/welcome.html, 2020. [Online; accessed675
2-August-2020].676

[28] Intel Math Kernel Library. https://software.intel.com/content/www/us/en/develop/tools/677
math-kernel-library.html, 2020. [Online; accessed 2-August-2020].678

[29] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh, Basic linear algebra subpro-679
grams for fortran usage, ACM Transactions on Mathematical Software (TOMS), 5 (1979),680
pp. 308–323.681

[30] NVIDIA cuBLAS. https://docs.nvidia.com/cuda/cublas/index.html, 2020. [Online; accessed682
2-August-2020].683

[31] T. Ogita and K. Aishima, Iterative refinement for symmetric eigenvalue decomposition, Japan684
Journal of Industrial and Applied Mathematics, 35 (2018), pp. 1007–1035.685

[32] T. Ogita and K. Aishima, Iterative refinement for symmetric eigenvalue decomposition II:686
clustered eigenvalues, Japan Journal of Industrial and Applied Mathematics, 36 (2019),687
pp. 435–459.688

[33] T. Ogita and K. Aishima, Iterative refinement for singular value decomposition based on689
matrix multiplication, Journal of Computational and Applied Mathematics, 369 (2020),690
p. 112512.691

[34] OpenBLAS. https://github.com/xianyi/OpenBLAS, 2020. [Online; accessed 2-August-2020].692
[35] B. N. Parlett and I. S. Dhillon, Relatively robust representations of symmetric tridiagonals,693

Linear Algebra and its applications, 309 (2000), pp. 121–151.694
[36] G. Peters and J. H. Wilkinson, Inverse iteration, ill-conditioned equations and Newton’s695

method, SIAM review, 21 (1979), pp. 339–360.696
[37] K. E. Prikopa and W. N. Gansterer, On mixed precision iterative refinement for eigenvalue697

problems, Procedia Computer Science, 18 (2013), pp. 2647–2650.698
[38] J. Sherman and W. J. Morrison, Adjustment of an inverse matrix corresponding to a change699

in one element of a given matrix, The Annals of Mathematical Statistics, 21 (1950),700
pp. 124–127.701

[39] B. T. Smith, J. M. Boyle, B. Garbow, Y. Ikebe, V. Klema, and C. Moler, Matrix eigen-702
system routines-EISPACK guide, vol. 6, Springer, 2013.703

[40] G. W. Stewart, Error and perturbation bounds for subspaces associated with certain eigen-704
value problems, SIAM review, 15 (1973), pp. 727–764.705

[41] H. Symm and J. H. Wilkinson, Realistic error bounds for a simple eigenvalue and its associ-706
ated eigenvector, Numerische Mathematik, 35 (1980), pp. 113–126.707

[42] F. Tisseur, Newton’s method in floating point arithmetic and iterative refinement of general-708
ized eigenvalue problems, SIAM Journal on Matrix Analysis and Applications, 22 (2001),709
pp. 1038–1057.710

[43] S. Tomov, J. Dongarra, and M. Baboulin, Towards dense linear algebra for hybrid GPU711
accelerated manycore systems, Parallel Computing, 36 (2010), pp. 232–240.712

[44] F. G. Van Zee and R. A. Van De Geijn, BLIS: a framework for rapidly instantiating BLAS713
functionality, ACM Transactions on Mathematical Software (TOMS), 41 (2015), pp. 1–33.714

[45] J. Wilkinson, Calculation of the eigenvalues of a symmetric tridiagonal matrix by the method715
of bisection, Numerische Mathematik, 4 (1962), pp. 362–367.716

[46] J. H. Wilkinson, Global convergene of tridiagonal QR algorithm with origin shifts, Linear717
Algebra and its Applications, 1 (1968), pp. 409–420.718

[47] T. Yamamoto, Error bounds for computed eigenvalues and eigenvectors, Numerische Mathe-719
matik, 34 (1980), pp. 189–199.720

[48] Y. Zhang, J. Cohen, and J. D. Owens, Fast tridiagonal solvers on the GPU, ACM Sigplan721
Notices, 45 (2010), pp. 127–136.722

22

This manuscript is for review purposes only.

https://www.ibm.com/support/knowledgecenter/SSFHY8_6.3/navigation/welcome.html
https://www.ibm.com/support/knowledgecenter/SSFHY8_6.3/navigation/welcome.html
https://www.ibm.com/support/knowledgecenter/SSFHY8_6.3/navigation/welcome.html
https://software.intel.com/content/www/us/en/develop/tools/math-kernel-library.html
https://software.intel.com/content/www/us/en/develop/tools/math-kernel-library.html
https://software.intel.com/content/www/us/en/develop/tools/math-kernel-library.html
https://docs.nvidia.com/cuda/cublas/index.html
https://github.com/xianyi/OpenBLAS

	Introduction
	Contribution
	Releated Work
	Eigenvalue refinement
	Parallel Eigensolvers
	Tridiagonal Reduction
	Tridiagonal Eigensolvers

	Software Packages for Symmetric/Hermitian Eigenvalue Problems
	The SICE Algorithm

	Algorithm and Implementation
	SICE-SM Algorithm
	Blocked SICE-SM Algorithm
	Implementation Details
	Batched Tridiagonal Solver

	Numerical Results and Performance Experiments
	Numerical Convergence
	Performance Results

	Conclusions and Future Work
	References

