
Research Paper

Overhead of using spare nodes

Atsushi Hori1, Kazumi Yoshinaga2, Thomas Herault3,
Aurélien Bouteiller3, George Bosilca3 and Yutaka Ishikawa1

Abstract
With the increasing fault rate on high-end supercomputers, the topic of fault tolerance has been gathering attention. To
cope with this situation, various fault-tolerance techniques are under investigation; these include user-level, algorithm-
based fault-tolerance techniques and parallel execution environments that enable jobs to continue following node failure.
Even with these techniques, some programs with static load balancing, such as stencil computation, may underperform
after a failure recovery. Even when spare nodes are present, they are not always substituted for failed nodes in an effective
way. This article considers the questions of how spare nodes should be allocated, how to substitute them for faulty nodes,
and how much the communication performance is affected by such a substitution. The third question stems from the
modification of the rank mapping by node substitutions, which can incur additional message collisions. In a stencil com-
putation, rank mapping is done in a straightforward way on a Cartesian network without incurring any message collisions.
However, once a substitution has occurred, the optimal node-rank mapping may be destroyed. Therefore, these ques-
tions must be answered in a way that minimizes the degradation of communication performance. In this article, several
spare node allocation and failed node substitution methods will be proposed, analyzed, and compared in terms of
communication performance following the substitution. The proposed substitution methods are named sliding methods.
The sliding methods are analyzed by using our developed simulation program and evaluated by using the K computer, Blue
Gene/Q (BG/Q), and TSUBAME 2.5. It will be shown that when failures occur, the stencil communication performance on
the K and BG/Q can be slowed around 10 times depending on the number of node failures. The barrier performance on
the K can be cut in half. On BG/Q, barrier performance can be slowed by a factor of 10. Further, it will also be shown that
almost no such communication performance degradation can be seen on TSUBAME 2.5. This is because TSUBAME 2.5 has
an Infiniband network connected with a FatTree topology, while the K computer and BG/Q have dedicated Cartesian
networks. Thus, the communication performance degradation depends on network characteristics.

Keywords
Fault tolerance, fault mitigation, spare node, communication performance, sliding method

1. Introduction

With the fault rate increasing on high-end supercompu-

ters, the topic of fault tolerance has been gathering

attention (Cappello et al., 2014), and jobs are being

aborted due to system errors (Di Martino et al., 2014).

To cope with this situation, various fault-tolerance tech-

niques have been investigated. Checkpoint and restart is

a well-known technique for parallel jobs, and enabling

jobs to continue execution from a previously defined

checkpoint (there are many studies and systems of

checkpoint and restart, but the most notable one is

Checkpointing Libraries for the Intel Paragon (CLIP);

Chen et al., 1997).

With the increase in size of parallel applications, the

total amount of Input/Output (I/O) needed for checkpoint/

restart begun to be problematic. A lot of research is cur-

rently undertaken on techniques to reduce the checkpoint

amount in order to alleviate the I/O issue (e.g. Sato et al.,

2012). On the other hand, user-level checkpoints, where

each program implements its own checkpoint/restart strat-

egy, have been attracting attention as a possible alternative.

Since the user knows which data should be saved and which

data can be lost, the amount of checkpoint data can be

drastically reduced, and thus the I/O time can also be

1 RIKEN Center for Computational Science, Kobe, Hyogo, Japan
2 Meguro-ku, Tokyo, Japan
3 Innovative Computing Laboratory, The University of Tennessee,

Knoxville, TN, USA

Corresponding author:

Atsushi Hori, RIKEN Center for Computational Science, 7-1-26

Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.

Email: ahori@riken.jp

The International Journal of High
Performance Computing Applications
2020, Vol. 34(2) 208–226
ª The Author(s) 2020
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/1094342020901885
journals.sagepub.com/home/hpc

mailto:ahori@riken.jp
https://sagepub.com/journals-permissions
https://doi.org/10.1177/1094342020901885
http://journals.sagepub.com/home/hpc
http://crossmark.crossref.org/dialog/?doi=10.1177%2F1094342020901885&domain=pdf&date_stamp=2020-02-04

greatly reduced, at the cost of only some additional pro-

gramming by the user.

Davies et al. (2011) presented a method that allows a

user program to be fault-tolerant without using checkpoint-

ing (Chen and Dongarra, 2008). In this technique, the parity

to recover the lost data can be embedded into an lower-

upper (LU) decomposition algorithm, and the user program

can recover from failure without checkpointing. Having the

opportunity to address the failure at the algorithm level

opens interesting perspective and new research topics.

With support from the programming paradigm and the exe-

cution environment, users could write applications which

can handle faults in the most optimal way.

The Message Passing Interface (MPI) is the most widely

used communication library, and its specifications are well

defined (Message Passing Interface Forum, 2012). Unfor-

tunately, in the current MPI standard, a fatal error handler is

raised upon process failure, preventing any user-level fault

handling to be implemented at this time. To define the

behavior of MPI when a fault occurs, User-Level Failure

Mitigation (ULFM) has been proposed and a prototype is

being developed, capable of handling both process and

node failures (Bland et al., 2013). ULFM provides the

application program interface (API) so that the modifica-

tions to the existing MPI specifications are minimized.

Even with ULFM, user-level fault handling is not straight-

forward, and various frameworks have been proposed to

simplify it. Falanx is a fault-tolerant framework for

master-worker programming (Takefusa et al., 2014). Local

Failure Local Recovery (LFLR) is another fault-tolerant

framework (Teranishi and Heroux, 2014), and it covers a

wider range of programming models than are supported by

Falanx. Both Falanx and LFLR are implemented by using

ULFM. Global View Resilience (GVR) is another user-

level fault mitigation system; it is based on partitioned

global address space programming model (Chien et al.,

2015; Fujita et al., 2014).

We believe that the user-level fault-handling code must

be as simple as possible. It is important to avoid situations

in which the code for handling the first node failure is

different from the code for handling subsequent failures,

because it is very hard to produce this type of situation

when testing a program. This type of complexity must be

hidden within the system software.

Figure 1 shows an example of a node failure in a 2D

network consisting of 36 nodes. Here, it is assumed that a

job is running on this machine, and the job is written with a

fail-stop-free runtime system, such as ULFM. When node

21 goes down (left panel in Figure 1), the job running on

those 36 nodes can take one of the following actions:

� abort the job and resubmit it (from a previous check-

point, if possible), or

� allow the remaining 35 nodes to continue to execute

the job.

In the first strategy, user-level fault handling is not

required. In the second strategy, the task allocated to the

failed node must be equally shared by the remaining 35

nodes, otherwise, a load imbalance occurs. If the job can

balance a dynamic load, which is a capability of master-

worker models and particle-in-cell simulations, then the

load can be rebalanced by the application itself, without

the need to extensively modify the code. However, if the

job is a stencil application, which, in most cases, does not

have dynamic load balancing capability, then fault han-

dling is more difficult. In most stencil applications, both

the communication pattern and the load balancing are sta-

tic. To preserve the communication pattern, one possibility

for handling a node failure is to exclude the row and col-

umn that include the failed node (middle panel in Figure 1);

this preserves the stencil communication pattern. However,

the task allocated to the failed node must be shared equally

by the remaining nodes (right panel in Figure 1). This load-

leveling requires additional code for handling the fault, and

this must be avoided if possible.

If a system software reserves a set of spare nodes in

advance, and the failed node is replaced by a spare node,

then the user-level handling of node failure is simplified,

because the number of nodes involved in the computation

remains the same. LFLR assumes the use of spare nodes,

and although the detailed recovery process is hidden from

Figure 1. Example of node failure and recovery.

Hori et al. 209

users, GVR may utilize spare nodes. However, to the best

of our knowledge, there has been no discussion of the best

way to reserve spare nodes or of how to use them to replace

failed nodes. As an evaluation index, we chose communi-

cation performance, because the use of spare nodes may

introduce extra message collisions.

The scenario we assumed to recover from a node failure

is; (1) user program detects a node failure, (2) select a spare

node from a spare node set to substitute the failed node, (3)

recover the process(es) on the spare node possibly from a

checkpoint, (4) rearrange the physical process-to-node map-

ping to minimize the communication performance degrada-

tion and MPI communicator(s) to minimize the change of

user program, (5) if the new process-to-node mapping

requires migration of some processes, do the migration, and

(6) finally, the user program resumes its execution.

This article presents the results of our investigations into

these issues. As a first step to address these issues, we

propose several methods for using spare nodes to replace

faulty ones in addition to the spare node allocations. The

proposed methods are discussed and compared from the

viewpoint of communication performance degradation.

The contributions of this article are as follows:

� spare node allocation methods are proposed;

� failure node substitution methods are proposed;

� focusing on stencil communication and some collec-

tive performance, the behavior and characteristics of

proposed spare node allocation and substitution

methods are revealed by simulations; and

� evaluations results on the two supercomputers hav-

ing a Cartesian network topology and one supercom-

puter having a FatTree network topology are shown

to how a network topology affects the communica-

tion performance degradation.

2. Using spare nodes

For the remainder of this article, we will assume that the

networks being considered have a multidimensional Carte-

sian (mesh and/or torus) topology, otherwise noticed. We

make this assumption because four of the top five machines

have networks with this topology (as listed on the TOP500

Supercomputer Site; Strohmaier et al., 2015); see Table 1.

From the programmers’ point of view, it is not compli-

cated to have spare nodes held ready or to have them sub-

stituted in for faulty nodes. With MPI, the modification is

as follows: (1) a new MPI communicator is created at the

location from which the faulty node is extracted (in ULFM,

the command MPI_Comm_shrink will do this), and a

selected spare node replaces the faulty node; (2) the spare

node is set up to take over the functions of the failed node.

The remaining parts of the program can remain as they

were. This means that the logical topology provided by the

new MPI communicator can remain the same as it was

before the failure; however, the actual physical topology

is altered. New message collisions that would not have

happened under the failure-free physical topology will hap-

pen under the recovered topology (Figure 4).

Therefore, replacing faulty nodes with spare nodes must

be done carefully in order to minimize the communication

performance degradation. There are many other aspects

that should be considered, such as system utilization, job

turnaround time, ease of user programming, and the frame-

work that needs to be developed. Unfortunately, almost no

research has been done on this topic, so in this article, we

will focus primarily on the communication performance.

Throughout this article, we will be concerned only with

the node failure. Network failures can also occur, but we

will assume that this recovery is the responsibility of the

network itself (Domke et al., 2014; see also Section 5). The

Tofu network, which is used by the K computer, uses

redundant links to detour around failed nodes (Ajima

et al., 2009; Sumimoto, 2012). We will assume that a job

can survive even with the failure of one or more nodes

when it is operating in a parallel computing environment

that provides a user-level fault mitigation mechanism, such

as ULFM, and any processes running on the failed node can

be recovered from a checkpoint or by using parity with

viable processes. Finally, we will assume that the processes

running on a node can be migrated to any other node.

In the next subsection, we will discuss the allocation of

spare nodes, and the possibility of this degrading the com-

munication performance will be shown. Then, three meth-

ods for substituting a spare node for a faulty node will be

proposed and compared.

2.1. Spare node allocation

In this section for simplicity, we will consider mostly 2D

networks with static XY routing (Zhang et al., 2009).

Figure 2 shows three different ways of allocating spare

nodes. Each small square represents a node. In the left

panel, the right-hand column is reserved for spare nodes;

this pattern is denoted as 2D(1,1). In the middle panel, two

sides (the right-hand column and the bottom row) are

reserved for spare nodes, denoted 2D(2,1). In the right-

hand panel, two two-node thick sides (the two right-hand

columns and two bottom rows) are reserved, denoted

2D(2,2). In this notation, “2D” means that the allocation

applies to the 2D plane, the first number in the brackets is

Table 1. Network topologies in the TOP500 list.

Rank Name # Cores Topology

1 Tianhe-2 3120K FatTree
2 Titan (Cray XK7) 561K 3D torus
3 Sequoia (BG/Q) 1573K 5D torus/mesh
4 The K computer 705K 6D torus/mesh
5 Mira (BG/Q) 786K 5D torus/mesh
11 JUQUEEN (BG/Q) 459K 5D torus/mesh
25 TSUBAME 2.5 76K (þGPU) FatTree

Source: Strohmaier et al., 2015.
BG/Q: Blue Gene/Q; GPU: graphics processing unit.

210 The International Journal of High Performance Computing Applications 34(2)

the number of sides in which spare nodes are reserved, and

the second number is the thickness, number of columns or

rows, of a side of spare nodes reserved. On a 3D network, a

job is generally allocated on a cube. Here, 3D(2,*) means

two 2D side planes out of three dimensions of the cube are

allocated as spare nodes. If the allocated cube is regular,

having the same size in all dimensions, which side to be

allocated does not matter. Otherwise, the number of spare

nodes in the two side planes matters.

Spare nodes are allocated at the side(s) of a 2D grid, as

shown in Figure 2; thus, a stencil application with non-

periodic boundaries will not have any overhead. This will

not be the case for stencil applications that have periodic

boundaries or for networks that have torus topology. How-

ever, the hop count is only increased by one, so the

increase in run time will be very small (100 ns per hop

on the K computer).

The percentage of the nodes that are reserved as spare

nodes in the 2D(2,2) case is as follows

R2Dð2;2Þ ¼ 1� N 1=2 � 2
� �2

�
N

where N is the number of nodes. In the more general

qDðr; sÞ case, the percentage of spare nodes can be

expressed as follows

RqDðr;sÞ ¼ 1� ðN
1=q � sÞr � ðN 1=qÞq�r

N

Here, r � q and AHs < N 1=q. Note that this expres-

sion is not precise, because the number of nodes is an

integer, and the flooring effect is ignored. However, this

information can be useful for determining how the spare

node percentage relates to the total number of nodes

used for a job.

Figure 3 shows the percentages of spare nodes to the

whole nodes allocated for a job over the various patterns of

spare node allocation. As shown in this figure, the more

dimensions the network has, the higher the percentage of

spare nodes. The percentage is almost proportional to the

number of sides allocated to the spare nodes. Most notably,

the larger the job size, the lower the percentage. We will

discuss this point in Section 6.

It is possible to allocate spare nodes on four sides of

a 2D grid, but on a torus network, this is almost equal to

the 2D(2,2) case. In our investigation, we could not find

any significant difference between 2D(4,1) and 2D(2,2),

and so in this discussion, we will not further consider

cases in which r > q. The thickness, s, does not affect

the nature of the spare node substitution method

described in the next section, so we will investigate only

cases of single-node thickness.

Having spare nodes can decrease the system utilization

ratio. However, this does not always happen. On the K com-

puter, the size of each dimension of a job must be in a Tofu

unit, which has 12 nodes. When a user submits an 11� 11�
11 3D job, for example, it may be scheduled to have 12� 12

� 12 nodes. This results in 3D(2,1) spare nodes. The same

situation can be seen with the other machines that have a

Cartesian topology network and are listed in Table 1. On

Blue Gene/Q (BG/Q) machines, the number of nodes for a

job must be a power of 2 (IBM, 2013b). On a Cray XK/7,

jobs are allocated to 428 blocks (Peña et al., 2013). Thus, the

gap between the number of nodes required by a job and the

number of nodes actually allocated can be allocated as spare

nodes, without requiring additional nodes.

Figure 2. Patterns for allocation of spare nodes.

Figure 3. Percentage of spare nodes in a job.

Hori et al. 211

2.2. Substitution of a spare node for a faulty node

Communication performance degradation can be

observed when a spare node that replaces a faulty node

can be located far from the original node. Figure 4

shows the 5P-stencil communication pattern (left). In

5P-stencil communication on a Cartesian topology, no

messages collide, because nodes communicate only with

their neighbors. Here, static XY routing is assumed. In

the right-hand panel of Figure 4, when a faulty node

(denoted as “F”) is replaced by a spare node (denoted

as “S”), the regularity of the stencil communication pat-

tern is lost. As shown in this figure, there are five mes-

sage routes crossing through the circled link, this means

that up to five messages can collide.

We propose three methods for substituting nodes, and

these are shown in Figure 5. We call these methods the 0D,

1D, and 2D sliding methods. With higher-dimension net-

works, those proposed methods can be augmented in a

natural way, but for simplicity, we will explain them on a

2D network. We will use a 5P-stencil communication pat-

tern, in which messages from each node are sent up, down,

left, and right. In the 9P-stencil communication pattern,

there are an extra four directions, since messages can be

sent along the diagonals. However, in most cases, the

length of those diagonal messages is much shorter than

those in a 5P-stencil pattern, and so the effect on the com-

munication performance is expected to be small.

2.2.1. 0D sliding. The 0D sliding method is the simplest. The

faulty node is simply replaced by a spare node (as was

shown in Figure 5). There is a big drawback to this method,

however, when a node failure happens far from a spare

node: the hop distance from the failed node to the spare

node can be very large. This increases the possibility of

message collisions and results in a higher communication

latency due to the large number of hops. To minimize this,

the failed node should be replaced with the spare node to

which the Manhattan distance is the shortest.

Figure 6 shows examples of the results of replacing

multiple faulty nodes when using the 0D sliding method

with the 2D(1,1) allocation. In this figure, each rectangle

represents a node, assuming node space can be represented

in a 2D way. On the left-hand panel, nodes 1 through 5 have

failed and have been replaced by spare nodes 10 through 50,
respectively. The spare nodes were chosen so as to mini-

mize the number of hop counts between each faulty node

and its corresponding spare node. With nonperiodic

5P-stencil communication in the XY routing algorithm, the

messages from all of the spare nodes to the nodes

(A through F) adjacent to the failed nodes are routed

through node 10 (because of the X direction routing of

the XY routing algorithm). Thus, there are 11 messages

in the network links between 10 and A (these are shown

in the white boxes): these 10 plus the normal stencil com-

munication message between the nodes. This is the worst-

case scenario for the 0D sliding method, and the number of

faulty nodes is less than or equal to six.

The right-hand panel of Figure 6 shows a case for

which the network topology is a 2D mesh, spare nodes

are reserved in the 2D(1,1) pattern, and the faults hap-

pen within a row or column that is close to the side of

the network. Failed node 1 is replaced by spare node 10,
and so on. In this case, the failures happen close to the

side of the network, and it is not possible to replace the

spare nodes as in the left-hand panel of Figure 6. In

nonperiodic 5P-stencil communication, all messages

from spare nodes 40, 50, 60, and 70 to the neighbor nodes

A to V go through the link between 30 and 40. There are

16 messages, since each node sends 4 messages, one to

each of its neighbor nodes. This situation can happen

when the number of faults is greater than or equal to

seven. Below, we state the relation between the maxi-

mum number of possible message collisions (Cmax) and

the number of node failures (Fn). Note that when Cmax is

equal to one, then there is only one message on each

network link, and there are no collisions

Cmax ¼
2� Fn þ 1 Fn � 6 or torus topology

4� ðFn � 3Þ Fn � 7 and mesh topology

�

This worst-case scenario can be relaxed by having spare

nodes allocated in the 2D(2,1) pattern. If the failures hap-

pen in the same row or column, then the spare nodes must

be chosen from alternating sides.

2.2.2. 1D sliding. As described in the previous subsection, in

the 0D sliding method, even if the closest spare node is

chosen, the distance from the failed node is unlikely to

be small. The 1D sliding method can avoid this situation,

and it is shown in Figure 7. When node 21 fails, instead of

replacing it with a spare node, the nodes of the column (or

row) that include the failed node shift toward a spare node,

as shown in the upper left-hand panel of the figure. In this

way, the hop count in the 5P-stencil communication pattern

is increased by only one. This is much smaller than occurs

with the 0D sliding method.

In terms of hop counts, the 1D sliding method is super-

ior to the 0D sliding method; however, the recoverable

Figure 4. Message collisions.

212 The International Journal of High Performance Computing Applications 34(2)

number of faulty nodes is limited in some cases. Let us

consider a case in which a second node (16) fails (again

using the 2D(2,1) pattern); this is shown in Figure 7. This

time, the sliding direction is along the column. If a third

node (15) fails, then there is no space left for the 1D

sliding (top row of Figure 7). This situation can be

avoided by sliding along the column direction after the

second failure (middle row of Figure 7).

The number of nodes below which a third failure cannot

be handled by the 1D sliding method is the product of the

number of slidings in each direction, when the thickness of

the spare node set is one. Thus, it is not a good idea to

evenly distribute the sliding directions; instead, they should

be as uneven as possible. Even when this is done, however,

the 1D sliding method may be limited to three failures

(bottom row in Figure 7).

The relation between the maximum number of message

collisions and the number of failed nodes with the 2D(2,1)

spare node allocation pattern can be expressed as shown

below. Note that there may be cases in which this method

cannot handle more than three node failures

Cmax ¼ 2þ Fn

2.2.3. 2D sliding, 3 sliding, . . . , qD sliding. In the 2D sliding

method, the rows and columns of the node space are shifted

by one unit to empty the row or column of the failed node

(bottom panel of Figure 5). This 2D sliding method can

handle only one node failure with the 2D(1,1) pattern or

two node failures with the 2D(2,1) pattern.

If the network has a higher-dimensional Cartesian topol-

ogy than 2D, then the 3D or higher-order sliding can take

Figure 5. Substitution methods for faulty nodes.

Hori et al. 213

place in the same way. The highest degree of a sliding

method is equal to the number of dimensions of a Cartesian

network and this sliding method can handle up to the num-

ber of dimensions.

With the XY routing, the messages pass orthogonally

through the vacant rows or columns. All message routes are

the same as they were before the failure. Thus, unlike the

0D and 1D sliding methods, although the hop counts are

increased by one, message congestion can be avoided. Fur-

ther, this behavior is independent of the communication

pattern of the application.

2.3. Comparison of proposed methods

Figure 8 shows the number of possible message collisions

versus the number of failed nodes for the 0D sliding

method with the 2D(1,1) and 2D(2,1) spare node allocation

patterns, 1D sliding with the 2D(2,1) pattern, and 2D slid-

ing with the 2D(2,1) pattern. These numbers are obtained

by our developed simulation program with which every

possible combination of node failures is simulated so that

the number of message collisions in a 5P-stencil commu-

nication is counted at every link and the highest number of

message collisions is reported. In this simulation, it is

assumed that four messages of 5P-stencil communication

are sent simultaneously.

As already described, the number of possible message

collisions with 0D sliding with the 2D(1,1) allocation pat-

tern for a given number of failed nodes depends on the

network topology (mesh or torus) when the number of

faults is greater than six (upper left-hand panel in the fig-

ure). With 2D(2,1) case, up to five failures are simulated. It

is possible to handle more number of failures with the 0D

sliding method; however, the exponential growth of failure

combinations was the obstacle for us to simulate more.

The 1D sliding method with the 2D(2,1) spare node

allocation pattern can handle up to three failures perfectly.

More number of failures can be handled when the failures

happen at some specific locations. This is shown as a

dashed line in Figure 8.

The 1D sliding method can handle no more than the

number of spare nodes minus one, since the spare node at

the corner of the 2D(2,1) allocation cannot be used. The 2D

sliding with 2D(2,1) can handle only two failures as

described before.

The sliding method has a good characteristic where node

migration can take place in a pipeline fashion. Therefore,

the time to migrate nodes can be independent (Oð1Þ,
assuming the amount of data to be migrated are the same

over nodes) from the number of migrating nodes.

2.3.1. Hybrid method. The substitution methods described so

far are independent and can be applied in a combined way.

Figure 9 shows an example of a hybrid method. The first

and second failures are handled by using the 2D sliding

method (left-hand and middle panels), and the third failure

is handled by using the 1D sliding method (right-hand

panel). In this way, message collisions can be avoided even

up to two failures, and the job can survive even with a

greater number of failures.

Thus, a hybrid sliding method can be expressed with the

set of sliding methods and the order of their applications.

As described in Section 2.3, the higher-order sliding meth-

ods incur lower message collisions but the number of fail-

ure able to handle is smaller. Thus, the order of sliding

methods to be applied in a hybrid method should be a

descending order of the degree of sliding method. Herein-

after, a hybrid method will be expressed as “hybrid(2D þ
1D þ 0D),” for example, meaning 2D sliding is applied

whenever it is possible, then 1D sliding method is applied,

and finally 0D sliding method is applied. Since 0D sliding

method can be applied in any circumstances, any hybrid

method should have 0D sliding method as a last resort. In

this article, a hybrid sliding method combining all possible

sliding methods with the descending order of degrees is

also denoted as “hybrid(all)” for short. Another hybrid

method combining all possible methods except X is

denoted as “hybrid(-X).”

In the next section, some simulation results will be

shown followed by an evaluation section on the K com-

puter, BG/Q, and TSUBAME 2.5 (Endo et al., 2014). One

may argue that the numbers (percentages) of failed nodes

simulated and evaluated in this article are too many and not

realistic. However, those simulations and evaluations are

done to reveal the behavior and characteristics of the pro-

posed substitution methods. We believe that the research on

how to utilize spare nodes is a new frontier of fault

mitigation.

Figure 6. Worst-case scenarios for 0D sliding.

214 The International Journal of High Performance Computing Applications 34(2)

3. Simulation

We developed a simulator to imitate the proposed slid-

ing methods on a stencil communication with a Carte-

sian network and counted the maximum number of

possible message collisions. We made the assumption

that all stencil messages are sent on all stencil dimen-

sions simultaneously. Thus, the counted message colli-

sions is the theoretical maximum and the actual message

collisions on a real machine can be less than the simu-

lated numbers because of the skew of sending messages

to all dimensions. The skeleton of the simulation algo-

rithm is described below:

(1) choose one alive node randomly,

(2) mark the chosen node as failed and apply a sliding

method if the chosen node is not a spare node,

(3) repeat above procedure until the number of failed

nodes reaches the specified number of failure,

(4) save the node-rank mapping information to a file,

(5) simulate a stencil communication and increment

msg_count of all links on the paths from the source

nodes to the destination nodes, and

(6) report the maximum value of msg_count at all net-

work links.

Since the number of combination of failed nodes is the

factorial of the number of failed nodes, it is impossible to

simulate all possible cases especially when the number of

nodes is large. Instead of having the exhaustive search, the

simulation results shown in this section are obtained with

random sampling. The resulting node-rank mapping pattern

is saved into a file so that we can evaluate it on the real

platform allowing the assessment of the quality of the eva-

luation with real data on a realistic scenario.

We chose the node spaces, 100 � 100 (2D), 12 � 12 �
12 (3D), and 24� 24� 24 (3D). We chose the base number

of 12 in 3D cases because the minimum unit of the K

computer network is 12 (called Tofu unit) to make the

Figure 7. Example of 1D sliding.

Hori et al. 215

simulation results comparable with the actual evaluation on

the K computer in the next section.

Figures 10 to 12 show this simulation results on 2D

network (5P-stencil, 100 � 100, 2D(2,1) spare node

allocation, 3,340,000 random cases), 3D network (7P-

stencil, 12 � 12 � 12, 3D(2,1) spare node allocation,

3,686,400 random cases), and 3D network (7P-stencil,

24 � 24 � 24, 3D(2,1) spare node allocation, 3,686,400

random cases), respectively. Each graph compares

hybrid sliding method (three thick lines, worst, average,

and best from top to down) and 0D sliding (three thin

lines, similarly, worst, average, and best from top to

down) method. “Best” in the legend means the lowest

number of message collisions, “Worst” means the larg-

est number of collisions and “Average” means the aver-

age of all cases.

Figure 8. Comparison of 0D, 1D, and 2D sliding (5P-stencil, worst cases with exhaustive search).

Figure 9. Example of hybrid(2D þ 1D) sliding.

216 The International Journal of High Performance Computing Applications 34(2)

In the graphs in Figures 10 and 11, hybrid sliding

method outperforms 0D sliding method in terms of best,

average, and worst cases in the smaller number of node

failures. In Figure 12, however, the hybrid method outper-

forms 0D sliding not so much as in the cases of 100 � 100

and 12 � 12 � 12. Comparing the worst numbers, 0D

sliding is better in the range of the number of node failures

between 10 and 155. Comparing the average numbers, 0D

sliding is better in the range of the number of node failures

between 248 and 740.

It is obvious that stencil communication matches with

Cartesian topology and no message collisions happen if the

degree of the network is equal to or higher than the degree

of the stencil communication. When a sliding method

higher than 0D takes place, the network links connecting

the nodes adjacent to the sliding planes can result in mes-

sage congestion. Here, sliding plane is defined as the planes

which surround the sliding nodes, except 0D sliding. The

number of nodes (or the size of area of the plane) adjacent

to the 1D sliding plane is smaller than that of 2D sliding.

Although the maximum number of message collisions of

1D sliding and 2D sliding are the same, the number of

network links having collisions caused by the 2D sliding

is bigger than that of 1D. So, the possibility of adding more

message collision(s) to the link(s) gets higher. From this

viewpoint, 1D sliding might be better than 2D sliding.

Based on this idea, hybrid(-2D) or hybrid(3D þ 1D þ
0D) might outperform hybrid(all).

Figure 13 shows the simulation results of hybrid(all),

already shown in Figure 12, and hybrid(-2D) to compare.

In this figure, the lines of hybrid(-2D) are thick. When

attention is paid to the average lines, hybrid(all) outper-

forms hybrid(-2D) at the rages at the leftmost part, from

1 to 18, and the rightmost part, from 993 to 1128 which is

the number of spare nodes. Middle part excepting those

ranges, however, hybrid(-2D) performs very well.

Figure 14 shows the rates of which sliding methods are

used in the sampling set. Figure 15 shows the accumulated

selection rate. As shown in these figures, the first two node

failures are substituted by using the 3D sliding method.

Figure 10. Hybrid(all) versus 0D, 2D network (100 � 100),
2D(2,1) spare nodes. Figure 12. Hybrid(all) versus 0D, 3D network (24 � 24 � 24),

3D(2,1) spare nodes.

Figure 11. Hybrid(all) versus 0D, 3D network (12 � 12 � 12),
3D(2,1) spare nodes.

Figure 13. Hybrid(all) versus hybrid(-2D), 3D network (24 � 24
� 24), 3D(2,1) spare nodes.

Hori et al. 217

Because spare node allocation is 3D(2,1), two is the max-

imum number of 3D sliding methods. 2D sliding method

dominates until having 38 node failures. Then, 1D sliding

method takes over until 915 node failures. Finally, 0D slid-

ing method takes the rest. As shown in Figure 15, when all

the spare nodes are substituted, 0D, 1D, and 2D sliding

methods occupy 25%, 71%, and 5%, respectively.

4. Evaluations on K, BG/Q,
and TSUBAME 2.5

In this section, the sliding methods described so far are

evaluated by using the actual supercomputers; the K com-

puter JUQUEEN (Stephan, 2012), a BG/Q machine, and

TSUBAME 2.5 listed in Table 1. This experimental cam-

paign will characterize the difference between the theore-

tical analysis and observed practical consequences.

The stencil communication is simulated by replicating

the usual communication pattern in an MPI-based stencil:

non-blocking communications with the neighbors

(MPI_Isend, MPI_Irecv, and MPI_Wait functions); all

send and receive buffers are contiguous and no MPI-

derived datatype is used. Processes were placed such that

a single MPI process per compute node was used. In addi-

tion to the point-to-point communications, we simulate

widely used collective operations, MPI_Barrier and

MPI_Allreduce, which were measured by repeating the

collective call. The message size of the stencil communi-

cation was set to 4 MiB and the message size of allreduce

communication is set to 64 KiB. A node failure was simu-

lated by excluding a node from the computation. It was

almost impossible to have a real node failure since all the

machines we used were in operation and a real node fail-

ure, even if it could be simulated by making it offline, may

affect the jobs of the other users running at that time. On

the K computer and BG/Q, the MPI implementations pro-

vided by the vendors were used. Supposedly, those col-

lective operations are tuned for their network topology

and mapping. This would reveal how the spare node allo-

cation and sliding substitution would affect the collective

performance. On TSUBAME 2.5, MVAPICH2, an open-

source MPI implementation, was used.

We have focused our analytical effort on the maximum

number of message collisions, which has the implicit

assumption that all messages are sent from nodes simulta-

neously, thereby always resulting in collisions if their path

follows the same link. However, the number of message

that can be sent simultaneously is dependent on network

hardware features (i.e. the number of Direct Memory

Access (DMAs)). When the actual number of simultaneous

sends is only one, for example, the number of messages

injected into the network is decreased and the number of

collisions is also reduced.

The rank mapping after the node failure(s) used in this

evaluation are the same as the ones used in the simulation

in the previous section. We measured the latency of those

communication operations and the slowdown ratio is cal-

culated based on the latency having spare nodes without

having any node failure.

Ri ¼ Lno sub=Li
sub

where Li
sub is the measured communication latency after ith

substitution, Lno sub is the latency without having any node

failure but having spare node set, and the Ri is the slow-

down ratio at that time.

The proposed sliding methods have been explained and

discussed by using a 2D Cartesian network; however, the

actual physical network can be more complex, having five

or more number of dimensions, as shown in Table 1. Even

if users require their jobs to run in 2D node spaces, those

2D node spaces are folded to fit in the actual network

topologies. On the K computer, any 2D Cartesian node

planes are mapped to the 6D Tofu network so that the

neighbor relationship of the 2D or 3D Cartesian topology

can be preserved. On the BG/Q system, the node-rank map-

ping is the user’s responsibility. To preserve the neighbor

relationship of the 2D or 3D Cartesian topology, “snake-

like pattern” is recommended (IBM, 2013a). On TSU-

BAME 2.5, the physical node space is one-dimensional,

dare to say. Anyhow, the mapping or folding of users’

topologies to fit into a physical network topology may

Figure 14. Selection rate of hybrid(all) sliding, 3D network (24�
24 � 24), 3D(2,1) spare node allocation.

Figure 15. Accumulated selection rate of hybrid(all) sliding, 3D
network (24 � 24 � 24), 3D(2,1) spare node allocation.

218 The International Journal of High Performance Computing Applications 34(2)

affect the communication performance in different ways

discussed so far.

Table 2 lists some characteristics of the K computer,

BG/Q, and TSUBAME 2.5. The K computer has four DMA

engines and up to four messages can be sent simultane-

ously. BG/Q has 11 FIFOs and up to 10 messages can be

sent simultaneously. On the other hand, the network of

TSUBAME 2.5 is Infiniband (Infiniband Trade Associa-

tion, n.d.). TSUBAME has two Infiniband Host Channel

Adapters (HCAs) on a node, one of them is used in this

article to avoid the interference with the other jobs. So,

TSUBAME 2.5, in this evaluation, can send only one mes-

sage at a time.

The rightmost two columns of this table show the ratios

to send multiple messages simultaneously, four messages

with 5P-stencil, six messages for 7P-stencil, based on the

time to send one message. These values, except TSU-

BAME 2.5, are measured by our program. In theory, five

message collisions, for example, means the communica-

tion time gets slower five times. On the K computer, only

three times slower communication time was observed

because simultaneous four message sending takes

1.7 times of the time of sending one message

(3 � 5=1:7) (Hori et al., 2015). One possible reason to

explain this slowness (1.7 with 5P-stencil and 3.7 with

7P-stencil) is the insufficient bandwidth between the

memory and the network controller chip.

In the following subsection, the evaluation results of the

K computer and BG/Q are shown, followed by the evalua-

tion results of TSUBAME 2.5. This is because they have

Cartesian network topologies while TSUBAME 2.5 has

FatTree network topology. And the behavior of the K and

BG/Q is very different from that of TSUBAME 2.5.

4.1. Evaluations on K and BG/Q

4.1.1. Stencil communication. Figure 16 shows the simula-

tion results on the 3D (12 � 12 � 12) network and the

evaluation results of the K computer with the 12 � 12 �
12 node allocation. Spare nodes are allocated in the way

of 2D(2,1). The upper graph in this figure shows and

compares the results using hybrid(all) sliding method,

and the lower graph shows the results of using

hybrid(-2D) sliding method. The 768 failure patterns

(the set of failed nodes) are chosen from the worst cases

in the simulation.

As shown in both graphs, the average lines observed on

the K computer is almost always better than the result of the

simulations. This is considered as that the actual network

degree of the K computer (6D) is higher than the degree of

the simulation (3D). The links provided by the additional

dimensions give the paths to bypass resulting lower mes-

sage collisions. Comparing the best lines, the simulation

outperforms in the rage of less than or equal to 10 node

failures. This is because of the sampling effect, the number

of simulation cases is much bigger than that of evaluation

and the best cases found in the simulation could not be

found in the evaluations. The same situation happens on

the worst cases.

To compare hybrid(all) and hybrid(-2D), Figure 17

shows the evaluation results of them (the same data used

in Figure 16). The effect of hybrid(-2D) shown in this

figure is very similar to the one found in Figure 13.

Figure 18 shows the simulation results on the 3D (16� 8

� 8) network and the evaluation on BG/Q computer with

the 16� 8� 8 node allocation. Spare nodes are allocated in

the way of 2D(2,1). As in the previous graphs, the upper

graph in this figure shows and compares the results using

hybrid(all) sliding method, and the lower graph shows the

results of using hybrid(-2D) sliding method. Here again, the

Figure 16. Stencil communication on K (12 � 12 � 12), 3D(2,1)
spare node allocation.

Figure 17. Hybrid(all) versus hybrid(-2D) on K (12 � 12 � 12),
3D(2,1) spare node allocation.

Hori et al. 219

768 failure patterns (the set of failed nodes) are chosen

from the worst cases in the simulation.

Comparing the BG/Q results and the K computer results

(Figure 16), the differences between the evaluation and the

simulation in the range of less than or equal to 10 node

failures are very small. This might come from the fact that

the network degree of the BG/Q (5) is less than the degree

of the K computer (6) and/or that the network topology of

BG/Q and the K computer are different. The BG/Q network

topology is full five dimensions, while the K computer, the

last three dimensions (A, B, C links out of X, Y, Z, A, B, C)

are used to form a 2 � 3 � 2 subnetwork unit (Tofu unit).

Figure 19 shows the evaluations of hybrid(all) and

hybrid(-2D) (the same data used in Figure 18). Unlike the

case on the K computer (Figure 17), the difference between

hybrid(all) and hybrid(-2D) is very small.

4.1.2. Collective communication. Up to now, the peer-to-peer

(P2P) communication performance in 5P-stencil communi-

cation pattern has been the primary focus. In this subsec-

tion, we will extend to the case of collective

communication performance. The communication patterns

of collective communications are more varied than the

stencil pattern, thereby providing a wider insight about less

regular P2P communication patterns as well.

On the K computer, the Tofu network supports hardware

barrier. The other various collective communications are

tuned so that the best performance can be obtained based on

the Tofu network topology and characteristics. The tuning

of collective protocols is also very important for the Cray’s

Gemini network (Peña et al., 2013). However, it is very

difficult to predetermine optimized collective protocols for

any possible set of node failures.

In order to use the tuned collective protocol for the Tofu

network, each MPI collective communication has some

conditions for the physical shape of the communicator.

Some of the conditions come from the special protocol

tuned for the Tofu network, and the others come from

implementation issues. When a substitution is made for a

failed node, one or more of these conditions cannot be met

and generic algorithms are used. Thus, the performance of

the collective communication can degrade much more than

that of the stencil communication, because the special

tuned protocols cannot be applied in addition to the colli-

sion issue.

Figure 20 shows the relative performance of barrier

(upper graph) and allreduce (lower graph) collective

Figure 18. Stencil communication on BG/Q (16 � 8 � 8),
3D(2,1) spare node allocation. BG/Q: Blue Gene/Q.

Figure 19. Hybrid(all) versus hybrid(-2D) on BG/Q (16� 8� 8),
3D(2,1) spare node allocation. BG/Q: Blue Gene/Q.

Figure 20. Barrier and allreduce on K (12 � 12 � 12), 3D(2,1)
spare node allocation.

220 The International Journal of High Performance Computing Applications 34(2)

communications based on the performance of no substitu-

tions are made. Nodes of the evaluation job are allocated in

3D (12 � 12 � 12) and the sampling set is the same as the

evaluation of stencil on the K computer in the previous

subsection.

In the allreduce case, the slowdown cannot be seen with

one node failure and two node failures. In this evaluation,

the hybrid sliding methods are used and spare nodes are

allocated in 3D(2,1), so 3D sliding method can be applied

up to two node failures. The sliding method having the

largest degree happens with no message collision. And this

property of the sliding method with the largest degree does

not break the conditions where the optimized allreduce

protocol on the K computer can be applied.

Figure 21 shows the barrier and allreduce performance

on BG/Q. We found that the collective performance on the

node set having spare nodes is slower than the cases with-

out having any spare node; 8.2 times slower with the barrier

operation and 1.8 times slower with the allreduce opera-

tion. Such slowdown cannot be seen on the K computer.

To make sure, we evaluated the barrier performance

without the snake-like pattern mapping. When the spare

nodes were allocated on one specific physical dimension out

of the five dimensions of the BG/Q network, such barrier

performance degradation could not be seen. However, when

one node was excluded from MPI_COMM_WORLD, then the

barrier performance was slowed down to one-tenth. Appar-

ently, the barrier operation on BG/Q is optimized for MPI_-

COMM_WORLD. Thus, the best way is to apply the snake-like

pattern only to the nodes not reserved for spares.

Unlike the K computer collective cases, the barrier and

allreduce performance of BG/Q is quite stable over the

number of node failures independently from the hybrid

methods. The 3D sliding method which is effective up to

two node failures in this case does not help to improve the

situation.

4.2. Evaluations on TSUBAME 2.5

We ran the same evaluation programs used in the previous

subsection on TSUBAME 2.5, 7 � 7 � 7 node space with

2D(2,1) spare node allocation. Unlike the K and BG/Q

cases, we could not see any significant slowdown. The

communication performance is almost constant within the

range of 1.0–1.2 over the sliding methods and the number

of node failures, without obvious correlation. To make sure

of this phenomenon, we additionally evaluated the sliding

methods with random node-rank mapping. As far as we

tried, no obvious performance degradation can be seen.

One possible reason for this phenomenon is that the

network topology of TSUBAME 2.5 is two-stage FatTree.

The node space is expressed in one-dimensional way for

the sake of convenience. However, there is no significance

on the node numbers of the nodes connecting to the same

“edge” switch. Any changes on node-rank mapping on

those nodes have no effect.

The other factor for this phenomenon is that the network

of TSUBAME 2.5 is Infiniband. Indeed, TSUBAME 2.5

has two network sets so that the communication bandwidth

can be doubled by utilizing them in the multi-rail way (Liu

et al., 2004). One of the network sets is also used for Lustre

file system and it is likely to have I/O traffics of the other

jobs. So we decided to use the other network set to avoid

the interference with the other jobs. Each Infiniband HCA

has one DMA engine and, unlike the K computer and BG/

Q, only one message can be sent from an HCA at a time. In

a stencil communication, in theory, multiple messages can

be sent simultaneously, however, TSUBAME 2.5 has the

capability of sending only one message in this case. This

situation is very different from the K computer able to send

up to 4 messages and BG/Q able to send up to 10 messages

simultaneously (Table 2). This leads to have less injected

messages in the network and to have less chance to have

message collisions. This may happen also with the collec-

tive communications.

Figure 21. Barrier and allreduce on BG/Q (16 � 8 � 8), 3D(2,1)
spare node allocation. BG/Q: Blue Gene/Q.

Table 2. K, BG/Q, and TSUBAME 2.5.

Machine Name Topo. # DMAs

Ratio to 1
message sending

5P-stencil 7P-stencil

K 6D Cart. 4 1.7 3.7
BG/Q (Chen et al.,

2011)
5D Cart. 10 1.1 1.3

TSUBAME FatTree 1a 4b 6b

BG/Q: Blue Gene/Q.
aTSUBAME 2.5 has two IB networks but only one of them is used to avoid
interference with the other jobs.

bEstimated values.

Hori et al. 221

5. Related work

Shadow replication proposes another replication scheme

for fault handling to meet service level agreement (SLA)

(Mills et al., 2014). Their unique feature is to minimize the

additional power consumption by having replication

(shadow) processes. The authors mind the cloud service

providers, SLA, and the cost for power consumption. They

assume that the speed and power consumption of applica-

tion execution running as the shadow processes can be

controlled by using Dynamic Voltage and Frequency Scal-

ing (DVFS). In HPC, unlike cloud computing, applications

are supposed to run as fast as they can. Further, most super-

computer users do not make SLA contracts. Having any

sort of replication process consumes twice hardware

resource. In our proposed spare node utilization model, the

additional resource for fault mitigation is far less than twice

as shown in Figure 3.

Ferreira et al. (2011) indicated that dual hardware redun-

dancy while utilizing only 50% of the hardware resource,

might be under some assumptions more efficient than the

traditional checkpoint and restart method in Exascale

systems. These redundancies can be thought of as spare

nodes. The difference is that the redundant nodes are hot-

ter-standby than the hot-standby nodes waiting for

the intermediate computational results. The spare nodes

can be substituted for the failed nodes, and they can almost

immediately take over the computations.

Domke et al. (2014) showed the difference in commu-

nication performance between the presence or absence of

network failure (link or switch) over different network

topologies and routing algorithms. They analyzed the com-

munication performance degradation when network links

or switches failed; this was done by simulation using TSU-

BAME 2.0. In the K computer, the Tofu direct network has

redundant routes to bypass failed nodes. However, a job is

aborted and resubmitted by the operating system if it uses a

failed part. In this work we focus on node failures rather

than network failures. There is a long way to go until we

reach the goal where any kind of failures, node and/or

network, can be mitigated.

Brown et al. (2015) proposed a visualizing system of

message traffics in a communication network and they suc-

ceeded to identify hot spots. In their case study using the

samplesort program running on TSUBAME 2.5, 5% perfor-

mance gain was obtained by avoiding the hot spots which

they discovered by using their tool. Conversely speaking,

their paper reveals that finding an optimal node-rank map-

ping to level hot spots according to network topology and

communication pattern of an application is not an easy task.

Fang et al. (2015) argued about the shrinking and non-

shrinking post-recovery strategies. Although they use the

spare node for the non-shrinking strategy, they did not

propose any strategy on how to allocate a spare node set,

how to select a spare node from the spare node set, nor how

the failed node is substituted. Further, their evaluation was

done only with BG/Q, whereas we evaluated three different

supercomputers, the K, BG/Q, and TSUBAME 2.5, and

revealed that the communication performance degradation

depends on the network. They focused on the increased hop

counts after the recovery, but we focused on the number of

message collisions. As already described, the modern high

performance network exhibits very small latency per hop

(below 100 ns). The point here is that the larger the number

of hops, the higher the possibility of having message colli-

sions, and therefore an increased impact on the communi-

cation performance. It should be noted that they reported

the non-shrinking strategy by using spare nodes as superior,

in terms of efficiency, to the shrinking strategy if failure

rate is high. We believe the non-shrinking strategy pro-

posed in this article would be accepted by users in terms

of ease of programming and performance.

As reported so far, our proposed sliding methods are to

reduce the additional latency for the communication after

the failed node substitution. There are ongoing works to

reduce the communication time by introducing new algo-

rithms to improve the communication time in parallel pro-

grams. Communication avoiding algorithms (Demmel

et al., 2012) for linear algebra and temporal blocking algo-

rithm for stencil computation (Muranushi and Makino,

2015) are the examples of this approach. These algorithms

could improve both of the program execution time without

having any failed nodes and the execution time after having

failed node substitution. An application that succeeds to

hide communication latency perfectly may fail to hide the

increased latency due to the spare node substitutions. Thus,

it is important to explore the way to minimize the latency

introduced by spare node substitutions.

ULFM proposed by Bland et al. (2013) supports

both shrinking and non-shrinking recovery. Upon the

occurrence of a failure, instead of aborting the application

like in legacy MPI, ULFM produces an error code from the

impacted communication routines at surviving processes.

Surviving processes may then continue to operate using

point-to-point routine between themselves, or interrupt the

communication pattern of the application with MPIX_-

Comm_revoke and rebuild fully functional communicators

excluding failed processes with MPIX_Comm_shrink.

When deploying this shrinking recovery model with

ULFM, the underlying implementation has no notion of

active and spare ranks. From the ULFM perspective, all

ranks are application processes, with the same features. Our

work expands on this basic framework by adding at the user

level an initial spare allocation strategy as well as a sub-

stitution strategy that avoids communication hot spots in

the recovered application. The non-shrinking recovery in

ULFM builds on top of the previously described shrinking

model. Once a new communicator fit for issuing collective

operation has been reconstructed with the shrink routine,

spawning additional processes can be achieved with tradi-

tional MPI-2 dynamic process management routines (e.g.

MPI_Comm_spawn). The ULFM spawn accepts nonstan-

dard arguments to finely select where to allocate additional

processes; it is possible to select, from the application,

222 The International Journal of High Performance Computing Applications 34(2)

which node will host the supplementary processes. It is

important to note however that the default policy in ULFM

is a simple round-robin among the available slots in the

existing allocation. The user remains in charge of the

decision-making for advanced placement policy making

even in non-shrinking cases.

Fenix proposed by Gamell et al. (2014) is a framework

to automate the procedure to substitute failed node(s) with

spare node(s) and to resume execution from a checkpoint.

Laguna et al. (2014) proposed Reinit API which is an exten-

sion of existing MPI for bulk synchronous applications to

survive from node failure. Fenix and Reinit provide easier-

to-use API than ULFM and support a non-shrinking strat-

egy by assuming a spare node set. Both works depend on

the MPI_Comm_spawn* functions to substitute failed nodes.

This means that the selection of a spare node and definition of

a spare node set depend on the system and choosing a spare

node according to a specific substitution strategy is out of

control of applications. Further, both did not take into account

the possibility of communication performance degradation

after the recovery. In contrast, this article focused on the

possibility of such performance degradation and proposed

sliding substitution methods to minimize the degradation.

Our proposed sliding methods can be integrated into such

frameworks to improve the performance after recovery.

6. Discussion

6.1. Node utilization in a multijob environment

The possibility that a job has a failed node is proportional to

the number of nodes assigned to the job and execution time.

Thus, the number of spare nodes must also be proportional

to the number of nodes assigned and execution time. There-

fore, the number of spare nodes allocated by the proposed

method may be excessive when only a small number of

nodes are required by a given job. Ideally, the curves

shown in Figure 3 would be a horizontal line at the height

determined by node failure rate, if the execution times are

the same.

Figure 22 shows a countermeasure for this. Large jobs

should have a higher-order spare node allocation method,

and smaller jobs should have a lower-order method; this

will allow the spare node percentage to approximate a

horizontal line. In the example shown in Figure 22, the

spare node percentage is kept in the range from 2% to 5%
by using a combination of the 3D(2,1), 3D(2,1), and

3D(1,1) methods.

6.2. User-level versus system-level substitutions

So far in this article, we have considered methods in which

the spare nodes are allocated by the job. We would like to

develop a framework that uses something like ULFM and that

framework automatically replaces faulty nodes with spare

nodes, so that users do not need to be concerned with how

failures are handled. GVR supporting versioned data

backup and providing higher abstraction than that of ULFM

might be able to support the proposed spare node substitution.

When spare nodes are allocated and substitutions are

determined by user programs, this is called as user-level

substitution; when this is done at a lower system software

level, it is called system-level substitution. With the user-

level substitution, the user program is also invoked at each

spare node, and it waits in hot-standby mode for the data to

migrate from the failed node. This means that calling

MPI_Comm_spawn is not required. On the other hand,

system-level substitution can reduce the percentage of

spare nodes, because spare nodes can be shared by several

jobs. For example, spare nodes can be allocated at the

boundaries of jobs, and these can be used to replace failed

nodes on every side of the job boundaries. However, it is

not possible to have spare nodes on hot-standby, as with

user-level substitution. If the spare nodes are not adjacent

to the job in which they are needed, this can result in

uncontrollable message collisions with other jobs, and

unexpected communication performance degradation.

6.3. Job resubmission versus fault mitigation

One may argue that a job can be aborted and then resub-

mitted using a checkpoint, instead of mitigating the fault. In

this way, the problem of utilizing spare nodes and the degra-

dation of communication performance, described above, can

be avoided. Job resubmission, however, may incur a long

turnaround time, especially when the system is heavily

loaded, and user-level fault mitigation techniques, such as

those described in Davies et al. (2011), cannot be utilized.

When considering which is better, there are many aspects to

be considered. In this article, we considered only the effect

on communication performance. It is still an open question if

it is better to resubmit a job or mitigate the fault.

6.4. Worm-eaten node space

So far in this article, a job is allocated with a node space

where there is no node failure at the beginning. Usually,

when a node failure happens, the failed node is to be phy-

sically replaced with a new healthy node. To replace the

Figure 22. Combinations of spare node allocation methods.

Hori et al. 223

failed node, firstly this node is unplugged from a rack and

or chassis and then sanity node is plugged in. When a node

is unplugged from a rack or chassis and if its network is a

direct network, then the network switch (router) associated

with the node is also gone. Thus, unplugging a node simu-

lates a network switch failure. When a switch failure hap-

pens, network routing must be changed to bypass the failed

switch and this may affect the other running jobs. So, the

physical node replacement cannot take place soon after the

node failure happens.

It is expected that Mean Time Between Failure (MTBF)

is increasing in the future. And there will be the case where

node failure happens much more frequently. Thus, the

number of node failures will increase within the interval

of repairing nodes. This may result in the situation where

large jobs might be allocated with a “worm-eaten” node

space at the beginning, instead of having a healthy contig-

uous node space. In this case, node substitution methods

described in this article and/or algorithms to find an opti-

mal node-rank mapping can be applied at the beginning of

job execution. Therefore we believe the research on node

substitution and the algorithm to find (sub)optimal node-

rank mapping will be very important.

7. Summary and future work

In this article, we considered methods for allocating

spare nodes and replacing failed nodes in jobs whose

rank-node mapping is critical to performance. We com-

pared these methods in terms of communication perfor-

mance following substitutions. The substitution methods

are 0D, 1D, 2D, and higher sliding methods. In the

stencil communication, the higher the order of the slid-

ing method, the fewer message collisions but more fail-

ure distributions are unrecoverable for lack of spares.

Thus, a combination of these methods would seem to

be the best strategy. We also extended the evaluation to

widely used collective operations.

We also revealed that such performance degradation

after the substitution may depend on network charac-

teristics and node-rank mapping. If the high failure rate

becomes reality, a network might be designed in such a

way to minimize the performance degradation after the

substitution.

Utilizing spare nodes influences various fields in high

performance computer design, hardware and software. As

shown in the evaluations, a network topology plays an

important role. It is expected that the communication per-

formance degradation found in the substitutions can be

relaxed by having a dynamic routing. The mapping of

applications’ communication patterns and optimizations

of collective communication patterns to fit in the available

network topology becomes very difficult with the presence

of failed node substitutions. Because there is no regular

pattern where node failure happens and the number of node

failure patterns is explosive. Therefore the assumption to

have spare nodes has a significant impact on hardware and

software design.

The research on this failed node substitution with spare

nodes has just begun. We will continue investigating on

this research topic.

A part of the results in this article is obtained by using

the K computer at the RIKEN Advanced Institute for Com-

putational Science (HPCI Project ID hp150240).

Acknowledgements

The authors thank Dr Norbert Attig at Jülich Supercomput-

ing Center for allowing them access to the JUQUEEN plat-

form. They also thank Dr Franck Cappello at Argonne

National Laboratory for his useful comments.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest

with respect to the research, authorship, and/or publication

of this article.

Funding

The author(s) disclosed receipt of the following financial

support for the research, authorship, and/or publication of

this article: This research was partially supported by the

CREST project of the Japan Science and Technology

Agency (JST).

References

Ajima Y, Sumimoto S and Shimizu T (2009) Tofu: a 6D mesh/

torus interconnect for exascale computers. Computer 42(11):

36–40.

Bland W, Bouteiller A, Herault T, et al. (2013) Post-failure recov-

ery of MPI communication capability: design and rationale.

International Journal of High Performance Computing Appli-

cations 27(3): 244–254.

Brown K, Domke J and Matsuoka S (2015) Hardware-centric

analysis of network performance for MPI applications. In:

2015 IEEE 21st international conference on parallel and dis-

tributed systems (ICPADS), Melbourne, Victoria, Australia,

14–17 December 2015, pp. 692–699. IEEE. DOI: 10.1109/

ICPADS.2015.92.

Cappello F, Geist A, Gropp W, et al. (2014) Toward exascale

resilience: 2014 update. Supercomputing Frontiers and Inno-

vations 1(1): 5–28.

Chen D, Eisley NA, Heidelberger P, et al. (2011) The IBM Blue

Gene/Q interconnection network and message unit. In: Pro-

ceedings of 2011 international conference for high perfor-

mance computing, networking, storage and analysis, SC ‘11,

Seattle, WA, USA, 12–18 November 2011, pp. 1–10. IEEE.

DOI: 10.1145/2063384.2063419.

Chen Y, Plank JS and Li K (1997) CLIP: a checkpointing tool for

message-passing parallel programs. In: Proceedings of the

1997 ACM/IEEE conference on supercomputing (SC ‘97),

pp. 1–11. ACM.

Chen Z and Dongarra J (2008) Algorithm-based fault tolerance

for fail-stop failures. IEEE Transactions on Parallel and Dis-

tributed Systems 19(12): 1628–1641.

224 The International Journal of High Performance Computing Applications 34(2)

Chien A, Balaji P, Beckman P, et al. (2015) Versioned distributed

arrays for resilience in scientific applications: global view

resilience. Procedia Computer Science 51: 29–38.

Davies T, Karlsson C, Liu H, et al. (2011) High performance

linpack benchmark: a fault tolerant implementation without

checkpointing. In: Proceedings of the international conference

on supercomputing, ICS ‘11, Tucson, AZ, USA, May 2011, pp.

162–171. New York, NY: ACM.

Demmel J, Grigori L, Hoemmen M, et al. (2012) Communication-

optimal parallel and sequential QR and LU factorizations.

SIAM Journal on Scientific Computing 34(1): 206–239.

Di Martino C, Kalbarczyk Z, Iyer R, et al. (2014) Lessons learned

from the analysis of system failures at petascale: the case of

blue waters. In: 2014 44th Annual IEEE/IFIP international

conference on dependable systems and networks (DSN),

Atlanta, GA, USA, 23–26 June 2014, pp. 610–621. IEEE.

DOI: 10.1109/DSN.2014.62.

Domke J, Hoefler T and Matsuoka S (2014) Fail-in-place network

design: interaction between topology, routing algorithm and

failures. In: Proceedings of the international conference for

high performance computing, networking, storage and analy-

sis, SC ‘14, New Orleans, LA, USA, November 2014, pp.

597–608. Piscataway, NJ: IEEE.

Endo T, Nukada A and Matsuoka S (2014) TSUBAME-KFC: a

modern liquid submersion cooling prototype towards exascale

becoming the greenest supercomputer in the world. In: 2014

20th IEEE international conference on parallel and distribu-

ted systems (ICPADS), Hsinchu, Taiwan, 16–19 December

2014, pp. 360–367. IEEE. DOI: 10.1109/PADSW.2014.

7097829.

Fang A, Fujita H and Chien AA (2015) Towards understanding

post- recovery efficiency for shrinking and non-shrinking

recovery. In: Euro-Par 2015: Parallel Processing Workshops

(eds S. Hunold, A. Costan, D. Giménez, A. Iosup, L. Ricci,

M. E. Goémez Requena, V. Scarano, A. L. Varbanescu, S. L.

Scott, S. Lankes, J. Weidendorfer, and M. Alexander), Cham,

2015, pp. 656–668. Springer International Publishing.

Ferreira J, Stearley JH, Laros III, et al. (2011) Evaluating the

viability of process replication reliability for exascale

systems. In: Proceedings of 2011 International Conference for

High Performance Computing, Networking, Storage and

Analysis, New York, NY, USA, 2011, 1–12. ACM. Doi: 10.

1145/2063384.2063443.

Fujita H, Dun N, Fang A, et al. (2014) Using global view resilience

(GVR) to add resilience to exascale applications. In: Proceed-

ings of the international conference for high performance com-

puting, networking, storage and analysis, SC ‘14, New Orleans,

LA, USA, November 2014. Piscataway, NJ: IEEE.

Gamell M, Katz DS, Kolla H, et al. (2014) Exploring automatic,

online failure recovery for scientific applications at extreme

scales. In: Proceedings of the international conference for

high performance computing, networking, storage and analy-

sis, SC ‘14, New Orleans, LA, USA, November 2014, pp.

895–906. Piscataway, NJ: IEEE.

Hori A, Yoshinaga K, Herault T, et al. (2015) Sliding substitution

of failed nodes. In: Proceedings of the 22nd European MPI

users’ group meeting, EuroMPI ‘15, Bordeaux, France, Sep-

tember 2015, pp. 1–10. New York, NY: ACM.

IBM (2013a) IBM System Blue Gene Solution: Blue Gene/Q

Application Development, 2nd ed. IBM.

IBM (2013b) IBM System Blue Gene Solution: Blue Gene/Q Sys-

tem Administration, 2nd ed. IBM.

Infiniband Trade Association. InfiniBand (n.d.). Available at:

http://www.infinibandta.org/ (accessed 2 January 2020).

Laguna I, Gamblin T, Mohror K, et al. (2014) A global exception

fault tolerance model for MPI. Technical Report LLNL-

CONF-659977. Livermore, CA: Lawrence Livermore

National Lab.

Liu J, Vishnu A and Panda DK (2004) Building multirail Infini-

Band clusters: MPI-level design and performance evaluation.

In: Proceedings of the 2004 ACM/IEEE conference on super-

computing (SC 04), Pittsburgh, PA, USA, 6–12 November

2004, p. 33. IEEE. DOI: 10.1109/SC.2004.15.

Message Passing Interface Forum (2012) MPI: A Message-

Passing Interface Standard Version 3.0. Available at: http://

www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf

(accessed 2 January 2020).

Mills B, Znati T and Melhem R (2014) Shadow computing: an

energy-aware fault tolerant computing model. In: 2014 Inter-

national conference on computing, networking and communi-

cations (ICNC), Honolulu, HI, USA, 3–6 February 2014, pp.

73–77. IEEE. DOI: 10.1109/ICCNC.2014.6785308.

Muranushi T and Makino J (2015) Optimal temporal blocking for

stencil computation. Procedia Computer Science 51:

1303–1312.

Peña AJ, Carvalho RGC, Dinan J, et al. (2013) Analysis of

topology-dependent MPI performance on Gemini networks.

In: Proceedings of the 20th European MPI users’ group meet-

ing, EuroMPI ‘13, Madrid, Spain, September 2013, pp. 61–66.

New York, NY: ACM. DOI: 10.1145/2488551.2488564.

Sato K, Maruyama N, Mohror K, et al. (2012) Design and model-

ing of a non-blocking checkpointing system. In: Proceedings

of the international conference on high performance comput-

ing, networking, storage and analysis, SC ‘12, Salt Lake City,

UT, USA, November 2012, pp. 1–10. Washington, DC: IEEE

Computer Society Press. Available at: http://dl.acm.org/cita

tion.cfm?id¼2388996.2389022.

Stephan M (2012) JUQUEEN: Blue Gene/Q—system architec-

ture. Available at: http://www.training.prace-ri.eu/uploads/

tx_pracetmo/JUQUEENSystemArchitecture.pdf (accessed 8

March 2016).

Strohmaier E, Dongarra J, Simon H, et al. (2015) TOP500 Super-

computer Sites. Available at: http://www.top500.org/

(accessed 8 March 2016).

Sumimoto S (2012) The MPI communication library for K com-

puter: its design and implementation. Invited talk at EuroMPI

2012, Vienna. Available at: http://www.par.univie.ac.at/confer

ence/eurompi2012/docs/s9t1.pdf (accessed 8 March 2016).

Takefusa A, Ikegami T, Nakada H, et al. (2014) Scalable and

highly available fault resilient programming middleware for

exascale computing. In: Proceedings of the international con-

ference for high performance computing, networking, storage

Hori et al. 225

http://www.infinibandta.org/
http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
http://dl.acm.org/citation.cfm?id=2388996.2389022
http://dl.acm.org/citation.cfm?id=2388996.2389022
http://dl.acm.org/citation.cfm?id=2388996.2389022
http://www.training.prace-ri.eu/uploads/tx_pracetmo/JUQUEENSystemArchitecture.pdf
http://www.training.prace-ri.eu/uploads/tx_pracetmo/JUQUEENSystemArchitecture.pdf
http://www.top500.org/
http://www.par.univie.ac.at/conference/eurompi2012/docs/s9t1.pdf
http://www.par.univie.ac.at/conference/eurompi2012/docs/s9t1.pdf

and analysis, SC ‘14, New Orleans, LA, USA, November

2014.

Teranishi K and Heroux MA (2014) Toward local failure local

recovery resilience model using MPI-ULFM. In: Proceedings

of the 21st European MPI users’ group meeting, EuroMPI/

ASIA ‘14, Kyoto, Japan, September 2014, pp. 51–56. New

York, NY: ACM. DOI: 10.1145/2642769.2642774.

Zhang W, Hou L, Wang J, et al. (2009) Comparison research

between XY and odd-even routing algorithm of a

2-dimension 3�3 mesh topology network-on-chip. In: Pro-

ceedings of the 2009 WRI global congress on intelligent sys-

tems, GCIS ‘09, Xiamen, China, 19–21 May 2009, Vol. 03,

pp. 329–333. Washington, DC: IEEE Computer Society.

Author biographies

Atsushi Hori received Ph.D. from University of Tokyo in

1999. He is a senior scientist of Riken Center for Computa-

tional Science, Japan. His research interests include parallel

processing, parallel hardware, and runtime system.

Kazumi Yoshinaga is a systems engineer working for eF-4

Co., Ltd., Japan. He worked as a Postdoctoral Researcher at

RIKEN AICS from 2013 to 2016. He received his B.E.,

M.E. and Ph.D. degrees in Computer Science and Systems

Engineering from Kyushu Institute of Technology.

Thomas Herault is a research director at the Innovative

Computing Laboratory at the University of Tennessee,

Knoxville. His research interests include fault tolerance,

distributed algorithms, parallel programming paradigms,

and performance modelling and optimizations. He

focuses on bridging the gap between theoretical distrib-

uted systems and high-performance computing as it is

practiced.

Aurélien Bouteiller received his Ph.D. from the University

of Paris in 2006. He is currently a Research Director at the

Innovative Computing Laboratory, the University of Ten-

nessee, Knoxville. He focuses on improving performance

and reliability of distributed systems with research in com-

munication and scheduling for many-core, accelerated

clusters, and in containing the influence of failures on sci-

entific computation.

George Bosilca is a research assistant professor and

Adjunct Assistant Professor at the Innovative Computing

Laboratory at The University of Tennessee, Knoxville. His

research interests evolve around programming paradigms

for distributed non-reliable platforms, message passing and

other approaches to deal with the scalability, heterogeneity

and resiliency at any scale and in any settings.

Yutaka Ishikawa is the leader of Fugaku supercomputer

development project that deploys the next Japanese flag-

ship supercomputer at Riken Center for Computational Sci-

ence, Japan. From 2002 to 2014, he was a professor at the

University Tokyo. From 1993 to 2001, he was the chief of

Parallel and Distributed System Software Laboratory at

Real World Computing Partnership, Japan.

226 The International Journal of High Performance Computing Applications 34(2)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 266
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 175
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50286
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 266
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 175
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50286
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 900
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 175
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50286
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU <FEFF005500730065002000740068006500730065002000530061006700650020007300740061006e0064006100720064002000730065007400740069006e0067007300200066006f00720020006300720065006100740069006e006700200077006500620020005000440046002000660069006c00650073002e002000540068006500730065002000730065007400740069006e0067007300200063006f006e006600690067007500720065006400200066006f00720020004100630072006f006200610074002000760037002e0030002e00200043007200650061007400650064002000620079002000540072006f00790020004f00740073002000610074002000530061006700650020005500530020006f006e002000310031002f00310030002f0032003000300036002e000d000d003200300030005000500049002f003600300030005000500049002f004a0050004500470020004d0065006400690075006d002f00430043004900540054002000470072006f0075007000200034>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [288 288]
 /PageSize [612.000 792.000]
>> setpagedevice

