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MATEDOR SCOPE Standard APIs (for Batched BLAS and LAPACK):

Proposed APl is very similar to the standard BLAS/LAPACK API
The MAtrix, TEnsor, and Deep-learning Optimized Routines (MATEDOR) project provides software

technologies and standard APIs, along with a sustainable and portable library for large-scale computations vold
whose individual components rely on very small matrix or tensor computations. The main target is the blas dgemm batched (
acceleration of applications from important fields that fit this profile, including deep learning, data -  Bles trere ©oCranal . blas trans t transB,

mining, astrophysics, image and signal processing, hydrodynamics, and more. blas int t m. blas int t n. blas int t k
L . 4 L L 4 L L ’

double alpha,

Standard Interface for Batched Routines double const * const * dA array, blas int t ldda,
Working closely with interested application developers, we defined modular, language agnostic interfaces that can be double const * const * dB_array, blas_int_t 1ddb,
implemented so as to work seamlessly with the compiler and be optimizable using techniques such as code replacement double beta B - -

4

and inlining. This provides the application developers, compilers, and runtime systems with the option of launching

* * '
batched workloads using a single call according to the standard interface. This would allow the entire linear algebra (LA) double dC_array, blas int t ldde,

community to collectively address a wide range of small matrix or tensor problems. Success in such an effort was blas_1int_t batchCount, blas_int_t *info );

possible through innovations in the interface design, computational and numerical optimizations, as well as packaging

and deployment at the user end to trigger final stages of tuning at the moment of execution. Community EffOrt and ACtiVities Towards Standardization

Sustainable and Performance-Portable Software Library Batched BLAS BoF 2017 @ SC17 Batched BLAS Workshop 2017 @ Georgia Tech
https://sc17.supercomputing.org/presentation/?id=bof147&sess=sess370 http://bit.ly/Batch-BLAS-2017

We demonstrated the power of the MATEDOR interface by delivering a high-performance numerical library for batched LA
subroutines autotuned for the modern processor architecture and system designs. The MATEDOR library includes

LAPACK routine equivalents for many small dense problems, tensor, and application-specific operations (e.g, for &5 i % P
deep-learning). These routines are constructed as much as possible out of calls to batched BLAS routines and their : | = B4
look-alikes required in sparse computation context. . 5
Batched BLAS Symposium @ SIAM PP 2018 Batched BLAS Symposium @ SIAM CSE 2019
https://www.siam.org/meetings/pp18/ https://www.siam.org/conferences/cm/conference/cse19
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Broader Impact

MATEDOR is application-motivated and designed to impact application areas from deep-learning, to data mining, metabolic

Algorithmic networks, CFD, solvers, image and signal processing, and others that need small matrix/tensor computations.
Variants

Inlining &
Code Generation

Autotuning Kernel Design
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Enabling Technologies

MATEDOR develops enabling technologies for very small matrix and tensor computations, including (1) autotuning, (2) http://www.sciencedirect.com/science/article/pii/S1877750317311456
inligning, (3) code generation, and (4) algorithmic variants. We define the success of the research conducted and the 6. |. Yamazaki, A. Abdelfattah, A. Ida, S. Ohshima. S. Tomov, R. Yokota, J. Dongarra, " Performance of Hierarchical-matrix
software developed under the MATEDOR project as being able to automate these four aspects to allow for both flexibility BiCGStab Solver on GPU clusters," 2018 IEEE International Parallel & Distributed Processing Symposium.

and close-to-optimal performance of the final code that gets used by the domain scientist.
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