
CONTACT NAME

Alan Ayala: aayala@icl.utk.edu
POSTER

P22061

CATEGORY: SUPERCOMPUTING - 06

A. Ayala, S. Tomov, J. Dongarra
Innovative Computing Laboratory
University of Tennessee at Knoxville
A. Haidar*
NVIDIA Corporation
* Contribution done while author was at UTK.

HEFFTE: Highly Efficient FFT for Exascale

SPONSORED BY:

1. Introduction

Fig 1. heFFTe in the ECP software stack.

[1] https://bitbucket.org/icl/heffte/
[2] Tomov, S., Haidar, A., Ayala, A., Shaiek, H., Dongarra, J.: FFT-ECP Implementation
Optimizations and Features Phase. Tech. Rep. ICL-UT-19-12 (2019-10 2019).
[3] S. Plimpton et. al, FFTMPI, a library for performing 2d and 3d FFTs in parallel, Tech.
rep., Sandia National Lab.(SNL-NM), Albuquerque, NM, USA (2018).
[4] D. Richards et al., Quantitative performance assessment of proxy apps and parents,
Tech. rep., Lawrence Livermore National Lab.(LLNL), Livermore, CA, USA (2018).

6. References

2. Methodology and Algorithmic Design

4. Scalability

0
1
2
3
4
5
6
7
8
9

10

1 2 4 8 16 32 64 128 256 512 1024

te
ra

Fl
op

s/
s

Number of Summit nodes

heFFTe (GPU)

heFFTe (CPU)

0

5

10

15

20

25

30

8 16 32 64 128 256 512 1024

te
ra

Fl
op

s/
s

Number of Summit nodes

heFFTe (GPU)

heFFTe (CPU)

1 2 3 4

5 6 7 8

9 10 11 12

20 21 23 24
33 34 35 36

31 32 33 34 35 36

1 2 3 4 5 6

1

– – – – – –
– – – – – –

– – – – – –
– – – – – –
– – – – – –

1 2 3 4

5 6 7 8

9 10 11 12

20 21 23 24
33 34 35 36

1

Reshape

1D FFT

!"#$% = 1×6×6
!"#$% = 3×4×3 !"#$% = 6×1×6 !"#$% = 6×6×1 !"#$% = 3×4×3

N=643 1283 2563 5123
10243

20483

40963

81923

Considered one of the top 10 algorithms of the 20th century, the
Fast Fourier Transform (FFT) is widely used by applications in
science and engineering. Large scale parallel applications
targeting exascale, such as those part of the Exascale
Computing Project (ECP) in the USA, are designed for
heterogeneous architectures and, currently, most of them rely
on efficient state-of-the-art FFT libraries built as CPU kernels.

In this context, we have just released heFFTe [1,2] (pronounced
hefty) library for FFT computations on heterogeneous platforms.
We based our algorithm design on well-know libraries, FFTMPI
[3] (used by EXAALT ECP-project) and SWFFT [4] (used by
HACC project).

Using GPUs on multiple nodes, we achieve over 40x speedup
on local kernels for 3D FFTs, and over 2x speedup for the
whole computation. Fig. 1 shows heFFTe within the ECP
software stack, and its dependences (e.g. cuBLAS, MAGMA).

In Fig. 2, we present the methodology called pencil-to-pencil, to compute
a 3D FFT, this can be easily generalized for a general number of
dimensions. It can be seen as a sequence 2 main tasks:
1. Computation of 1D FFTs: this can be done with standard 1DFFT

libraries such as FFTW3, MKL, CUFFT, CLFFT, etc.
2. Tensor transposition or Reshape: (shown as the arrows) it involves 3

kernels, the first one for packing data in contiguous memory, a
second one for inter-process communication, and the last one is
the unpacking, performed at the receiving process.

The bottleneck for this algorithm is well-known to be the communication.

Fig 4. HEFFTE strong scalability Fig 5. HEFFTE weak scalability

The GPU version of heFFTe has very good weak and strong scalability, and achieves around 20 gigaFlops/s, which

3. GPU speedup 5. Communication Bottleneck
Fig. 3 clearly shows how heFFTe’s GPU version is greatly impacted
by the communication cost (>95% of runtime). This issue is well-
known for parallel FFTs. Typically, MPI all-to-all communication
yields better performance than the point-to-point MPI, and this is
supported by most libraries. However, there is a lack of hardware
aware optimized versions of MPI all-to-all routine, and it is still not
available on NVIDIA’s NCLL library. On the other hand, most
libraries, such as FFTMPI and SWFFT, do not use non-blocking
collective MPI routines.

Given these issues, we have developed a routine called
heffte_alltoall which provides several options (that can be tuned)
to perform an all-to-all communication, taking advantage of non-
blocking MPI routines, as well as of IPC CUDA memory handlers.

Fig3. 10243 FFT on 4 nodes, 32 MPIs per nodes (FFTMPI, Left) vs. 24
MPI processes, 6 MPIs (6 Volta100 GPUS) per node (heFFTe, Right).

Fig 2. Schematic representation of tasks to perform a 3D FFT.

Fig 6. Percentage of time spent in communication for classical MPI
routines and heFFTe collective approach.

86

88

90

92

94

96

98

1 2 4 8 16 32

%
 o

f i
m

e
sp

en
t o

n
co

m
m

.

Number of Summit nodes

MPI point-to-point
MPI all-to-all
heFFTe all-to-all

Local CPU kernels presented on Section 2 are typical on state-of-the-
art parallel FFT libraries, heFFTe provide new GPU kernels for these
tasks achieving over 40x speedup.

is over 2x the performance reported by state-of-the-art libraries FFTMPI [3] and SWFFT [4] for these sizes. We use 24 MPIs/node on each
case, 1MPI/core for heFFTe CPU and 4MPI/GPU-Volta100 for heFFTe GPU.

