

SOFTWARE FOR LINEAR ALGEBRA TARGETING EXASCALE

SLATE will offer a modern replacement for ScaLAPACK.

SLATE will facilitate the development and advancement of multi-core and accelerator capabilities by leveraging recent progress and ongoing efforts in mainstream programming models (e.g., MPI 3+, OpenMP 4+, OpenACC). SLATE provides basic dense matrix operations (e.g., matrix multiplication, rank-k update, triangular solve), linear systems solvers, least square solvers, singular value and eigenvalue solvers.

SLATE ARCHITECTURE

SLATE STATUS

PBLAS GEMM, SYRK, SYR2K, HERK, HER2K,

SYMM, HEMM, TRMM, TRSM

NORMS Max, Frobenius, infinity, one norms

for GE, TR, SY matrices

LINEAR Cholesky (LL^T), LU, Aasen's LTL^T

SYSTEMS

QR, LQ factorizations,

SQUARES least squares solvers

MATRIX INVERSIONS Cholesky based inversion (POTRI),

LU based inversion (GETRI) Singular values (SVD),

SINGULAR VALUE, Singular values (SVD), symmetric eigenvalues (SYEV)

PERFORMANCE

Performance of DGEMM

time replacement). Environment variables are used to access SLATE specific functionality.

COMPATIBILITY API

SLATE OBJECTIVES

Exascale

(Batch)BLAS

COVERAGE

HARDWARE

PORTABILITY

PERFORMANCE

SCALABILITY

PRODUCTIVITY

ScaLAPACK

ScaLAPACK and beyond

Full Exascale machines

scheduling, overlapping

~4 full-time developers

Uses ScaLAPACK function names and signatures,

i.e., no changes to the source code required (link

communications

MAINTAINABILITY Part-time developers + community

DOE CORAL (pre-exascale) → DOE

ARM; Standards: MPI + OpenMP +

NVIDIA, AMD, Intel Xeon, IBM POWER,

Up to 80%–90% of peak (asymptotic)

Flexible data distributions, dynamic

LAPACK COMPATIBILITY API

BATCH BLAS++

http://icl.utk.edu/bblas

modern C++ features.

Uses LAPACK function signatures with a "slate_" prefix, e.g., slate__dgetrf(M, N, A, LDA, IPIV, INFO). There are additional settings through environment variables, e.g., "export LAPACK_NB=256."

Many scientific and engineering computing applications

algebra problems. Such workloads can be executed much

more efficiently on modern hardware if they are issued in

large batches rather than one by one. To standardize the

API, the HPC community is developing an extension to the

is to provide a convenient, performance-oriented API for

development in the C++ language that preserves

established conventions while taking advantage of

BLAS standard called Batch BLAS. The objective of BBLAS++

solve large numbers of small and independent linear

BLAS++

https://bitbucket.org/icl/blaspp

Basic Linear Algebra Subprograms (BLAS) serve as the de facto standard for a performance-portable and numerically robust implementation of essential linear algebra functionality. BLAS++ provides a convenient, performance-oriented API for development in the C++ language and preserves established conventions while taking advantage of modern C++ features.

HIGHLIGHTS

• Covers the entire BLAS (~120 routines)

Mark Gates et al.

SLATE Working Note #2

- Error handling with C++ exceptions
- Covered with a testing suite
- Documented with Doxygen

C++ API for BLAS and LAPACK Wer later LT And second 155 And shower 156 Carlot Carl

Mark Gates et al.

C++ API for BLAS and LAPACK

SLATE Working Note #2

http://www.icl.utk.edu/publications/swan-002

LAPACK++

https://bitbucket.org/icl/lapackpp

The Linear Algebra PACKage (LAPACK) is a standard software library for numerical linear algebra that provides routines for solving systems of linear equations and linear least squares problems, eigenvalue problems, and singular value decomposition problems. LAPACK++ provides a convenient, performance-oriented API for development in the C++ language and preserves established conventions while taking advantage of modern C++ features.

HIGHLIGHTS

- Covers majority of LAPACK (~1,200 routines)
- Error handling with C++ exceptions
- Covered with a testing suite
- Documented with Doxygen

Ahmad Abdelfattah et al.

C++ API for Batch BLAS

SLATE Working Note #4

http://www.icl.utk.edu/publications/swan-004

KNOXVILLE

C++ API for BLAS and LAPACK

http://www.icl.utk.edu/publications/swan-002

