
The Performance API (PAPI) provides tool designers and application engineers with a
consistent interface and methodology for the use of low-level performance counter
hardware found across the entire system (i.e., CPUs, GPUs, on/off-chip memory,
interconnects, I/O system, energy/power, etc.). PAPI enables users to see, in near real
time, the relationship between software performance and hardware events across the
entire system.

Software-Defined Events in PAPI

PAPI’s Basic SDE API
● API for reading SDEs remains the same as the API for reading hardware events, i.e., PAPI_start(), etc.
● SDE API calls are only meant to be used inside libraries to export SDEs from within those libraries.
● All API functions are available in C and FORTRAN.

papi_handle_t papi_sde_init(const char *lib_name);

Initializes internal data structures and returns an opaque handle that must be passed to all subsequent
calls to PAPI SDE functions.
 lib_name is a string containing the name of the library.

int papi_sde_register_counter(papi_handle_t handle, const char *event_name,
 int mode, int type, void *counter);

Must be called for every program variable/metric that the library wishes to register as an event.
handle is the opaque handle returned by papi_sde_init().
event_name is a string containing the name of the event being registered.
mode is an integer declaring whether a counter is read-only or read-write.
type is an enumeration of the type of the event.
counter is a pointer to the actual variable that serves as the counter for this event.

typedef long long int (*func_ptr_t)(void *);
void papi_sde_register_fp_counter(void *handle, const char *event_name,
 int mode, int type, func_ptr_t fp_counter, void *param);

Registers a function pointer to an accessor function provided by the library. Allows the user to export an
event whose value does not map to the value of a single program variable/metric of the library.

fp_counter is a pointer to the accessor function.
param is an opaque object that the library passes to PAPI, and PAPI passes it as a parameter to the accessor function.

void papi_sde_describe_counter(papi_handle_t handle, const char *event_name,
 const char *event_description);

Associates a longer description with an event. This description will be shown by the utility papi_native_avail
so that users can be informed about an event’s meaning.

CASE STUDY: Integration of PAPI SDE in PaRSEC
● As our application case study, we chose the task scheduling runtime PaRSEC.

● We created several Software Defined Events, some to expose the internal state of the runtime (such as the
length of the task queues) and some to expose events that occur during scheduling and can affect
performance (such as task stealing between different cores, or work starvation)

Overflowing Example: Integration of PAPI SDE & 3rd party tools

PULSE SCOPE
PULSE builds on the latest PAPI project and
extends it with software-defined events (SDE)
that originate from the HPC software stack and
are currently treated as black boxes (i.e., com
-munication libraries, math libraries, task-based
runtime systems, applications).

The objective is to enable monitoring of both
types of performance events---hardware- and
software-related events---in a uniform way,
through one consistent PAPI interface. Therefore,
third-party tools and application developers have
to handle only a single hook to PAPI to access all
hardware performance counters in a system,
including the new software-defined events.

Performance overhead studies
Synthetic Benchmarks

Real applications and runtimes

SI2-SSE: PULSE
PAPI Unifying Layer for Software-Defined Events

Anthony Danalis
Heike Jagode
UNIVERSITY OF TENNESSEE

Figure 1 shows the number of tasks that were stolen between
threads residing in different cores (red curve), or different sockets
(blue curve) for different queue sizes. Studying such curves reveals
the quality of design decisions inside the runtime.

Figure 2 shows the number of times a thread tried to steal
work and failed to do so. This value reveals starvation
problems, which lead to performance degradation.

GOAL
Offer support for software-defined
events (SDE) to extend PAPI's role
as a standardizing layer for perfor
-mance counter monitoring.

VISION
Enable NSF software layers to expose
SDEs that performance analysts can
use to form a complete picture of the
entire application performance.

BENEFIT
Scientists will be better able to under
-stand the interaction of the different
applications layers, and interactions
with external libraries and runtimes.

Pa
RS

EC
HP

CG

Figure 3 shows an unmodified version of the 3rd party tool HPCToolkit being able to
read a PAPI Software Defined Event, and show where in the test code it occurs.

