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Double-precision floating-point arithmetic (FP64)
has been the de facto standard for engineering and
scientific simulations for several decades. Problem
complexity and the sheer volume of data coming
from various instruments and sensors motivate
researchers to mix and match various approaches
to optimize compute resources, including different
levels of floating-point precision. In recent years,
machine learning has motivated hardware support
for half-precision floating-point arithmetic. A primary
challenge in high-performance computing is to
leverage reduced-precision and mixed-precision
hardware. We show how the FP16/FP32 Tensor Cores
on NVIDIA GPUs can be exploited to accelerate
the solution of linear systems of equations Ax=0b
without sacrificing numerical stability. The techniques
we employ include multiprecision LU factorization,
the preconditioned generalized minimal residual
algorithm (GMRES), and scaling and auto-adaptive
rounding to avoid overflow. We also show how to
efficiently handle systems with multiple right-hand
sides. On the NVIDIA Quadro GV100 (Volta) GPU,
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we achieve a 4 x -5 x performance increase and 5x better energy efficiency versus the standard
FP64 implementation while maintaining an FP64 level of numerical stability.

1. Introduction

A fundamental requirement in scientific computing is the ability to solve a system of linear
equations
Ax=D, (1.1)

where A is a large, dense n x n non-singular matrix. This can be done at a speed that is close
to the peak performance on current computer architectures, for example, by using libraries
such as the NVIDIA CUSOLVER library [1], MAGMA [2,3] and MKL [4] that redesign and
highly optimize the standard LAPACK algorithms [5] for GPU and multi-core architectures. The
solvers use direct methods in a fixed /working precision arithmetic, namely, the IEEE standard
double-precision 64-bit floating-point arithmetic (FP64), or single precision 32-bit floating-point
arithmetic (FP32). Recently, various machine learning and artificial intelligence neural network
applications increased the need for half precision arithmetic, and vendors started to accelerate it
in hardware, in the form of either the IEEE FP16 format [6] or the bfloat16 format [7] (table 1).
Currently, the NVIDIA V100 Tensor Cores (TCs) can execute FP16- TCat up to 120 teraFLOP s71
versus 7.5 teraFLOP s~ for FP64 and 15 teraFLOP s~ ! for FP32. Thus, developing algorithms to
exploit the much higher performance that lower-precision arithmetic offers can have a significant
impact in scientific, high-performance computing (HPC).

This paper presents a class of mixed-precision algorithms and an accompanying set of
computational techniques that we have developed to accelerate (1.1) in FP64, which is the de
facto standard for scientific computing. We show that the new mixed-precision techniques can
accelerate the solution by a significant factor using the faster lower precisions, while still retaining
FP64 quality.

The mixed-precision iterative refinement algorithm computes an LU factorization of A in
low precision, uses the LU factors to compute a initial approximation xp and then carries out
an iterative refinement process in FP64 arithmetic. The refinement process repeatedly solves
the correction equation Ac; =0 — Ax; for ¢; then updates the solution through x;1 =x;+¢;,
continuing until x;;; has a backward error at the FP64 level, or some other user-specified
tolerance. These methods have been studied in the past, as discussed in §2. A persistent
challenge has been to redesign the techniques for new architectures and to develop highly tuned
implementations that resolve computational issues such as inefficient parallelization, scaling and
use of mixed-precision calculations. To address this problem on GPU TCs, we develop a number
of innovations for mixed-precision computations (outlined in §3) as well as leverage building
blocks from HPC numerical libraries such as CUSOLVER and MAGMA, which provide state-of-
the-art, high-performance algorithms such as LU factorization—including a set of highly tuned
mixed-precision iterative refinement algorithms using either the FP32 or the FP16 as lower
precision for the LU factorization (e.g. FP32 — FP64 and FP16 — FP64) [8,9].

2. Related work

Iterative refinement is a long-standing method that was programmed by Wilkinson in the 1940s
for the ACE digital computer. The idea is to improve the computed solution of a linear system
by iteratively solving a correction equation and adding the correction to the current solution;
see Wilkinson [10], Moler [11], Stewart [12], Demmel [13] and, for a comprehensive treatment,
Higham [14, Chap. 12]. The three tasks—original solve/factorization, residual computation and
correction equation solve—can be done in the same precision (fixed-precision) or in different
precisions (mixed-precision). Fixed-precision iterative refinement was analysed by Skeel [15]
for a solver based on LU factorization and by Higham [16,17] for a general solver. In the
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Table 1. Parameters for the IEEE FP16, FP32 and FP64 arithmetic precisions, and their respective peak performances
on an NVIDIA V100 GPU. ‘Range’ denotes the order of magnitude of the smallest subnormal (xmins), and largest and smallest
positive normalized floating-point numbers. In comparison, the FP16- TCinputs are FP16, while the outputs and the
computations are performed in full (FP32) precision, and the peak performance is 120 Tflop s

—1

range peak Tflop s~
arithmetic X i unit roundoff (V100 GPU)
BFl oat 16 16 92 x 10~ 12 x 10738 34 x 108 39 x 1073 na.
FP16 16 6.0 x 1078 61x107° 6.6 x 10* 49 x 1074 30
FP32 kY] 14 x107% 12 x 10738 34 x 10% 6.0 x 1078 15
FP64 64 49 x 1073 22x107%%8  18x10°%®  11x 107" 75

2000s, motivated by processors equipped with FP32 that had speed 2x that of FP64, mixed-
precision iterative refinement—with the LU factorization done in FP32 and everything else done
in FP64—was explored in [18,19].

Replacing the direct triangular solves of the correction equation with an iterative method, as
suggested in [20] in a mixed-precision context, leads to ‘nesting’ of two iterative methods, which
in general are called ‘inner—outer’ iterations, the latter having been studied both theoretically
and computationally [21-23], including in mixed-precision computation scenarios [24]. Recently,
Carson & Higham [20,25] analysed a three-precision iterative refinement scheme (factorization
precision, working precision, residual precision) and concluded that if the condition number of
A is not too large, namely koo(A) = [|Alloo A7 oo < 10*, then using FP16 for the O(1%) portion
(the LU factorization) and (FP32, FP64) or (FP64, FP128) as the (working, residual) precision
for the O(n?) portion (refinement loop), one can expect to achieve forward error and backward
error on the order of 1078 and 1071, respectively. We note that, if & is an approximate solution
of Ax =0 the forward error is defined by [|¥ — X[ls/lIX|lc and the backward error is defined by
minfe: (A + AA)xX=Db, |AA|, <€|lAl2} and can be evaluated as ||7||2/(]|All2]IX]l2), where r=b —
AXx. Carson and Higham also proposed the use of the GMRES method preconditioned by the
FP16 LU factorization as the refinement procedure and showed that in this case the constraint
on the condition number can be relaxed to xso(A) < 10% when the (working, residual) precision
is (FP32, FP64) and to 10!2 when the (working, residual) precision is (FP64, FP128). Analysis
covering this GMRES-based approach when two precisions are used with the residual precision
equal to the working precision is given in [26].

3. Contributions

The primary motivation of this paper is to develop an HPC framework for mixed-precision Tensor
Core Accelerated Iterative Refinement solvers (TCAIRS) that use FP16- TC. To this end, we make
the following contributions.

— We develop a framework for mixed-precision solvers as well as TCs-enabled dense linear
algebra building blocks that can be used to exploit the FP16-TC in HPC applications.

— We provide algorithmic advancement to increase the solvers’ applicability to matrices
not representable in FP16’s limited range. In our algorithm, the original data is never
represented in precision below FP32. This technique is the first step toward our
proposition for a new set of mixed-precision factorization algorithms. In addition, we
investigate scaling techniques that can also help fix issues related to the FP16 range.

— We introduce a new class of multiprecision factorization algorithms. Iterative refinement
solvers have always used only one precision for the factorization and a higher precision
for the refinement loop, e.g. factorization in FP16 and a refinement loop in FP64. In our
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work, the factorization itself is implemented in multiprecision to allow better accuracy
and to be able to solve a wider range of problems than previously possible.

— We develop a performance model to accurately predict performance gains, allowing users
to decide in advance if iterative refinement solvers can be beneficial/applicable for their
problems.

— We present a range of problems from different application areas, both dense and sparse,
that we show to be accelerated up to 5x when using the FP16- TC, or about 2x when
using the FP32 arithmetic.

— We show how the performance of the mixed-precision iterative refinement solver is not
sensitive to the FP64 compute throughput.

— We show how to adapt the solver to efficiently handle linear systems with multiple right-
hand sides.

— We develop highly optimized mixed-precision solvers supporting real as well as complex
data.

— We present a study of the energy efficiency of the iterative refinement solver exploiting
the Tensor Cores and show that it can reduce energy consumption by up to 5 times.

The developments are released in the CUDA toolkit CUSOLVER library [1] and MAGMA [2,8].

4. Iterative refinement solver: background

The standard method for solving a linear system Ax=2>b with an n x n matrix A is Gaussian
elimination with partial pivoting, or equivalently, the LU factorization method with partial
pivoting. An LU factorization represents A as the product of a lower triangular matrix L and an
upper triangular matrix U, so that A = LU. Thus, solving Ax = b reduces to solving two triangular
systems:

Ax=b=LUx=0b: solve Ly =D then solve Ux =1y.

The factorization costs O(13) operations while the triangular solve costs O(n?) operations, so for
large n almost all the time is spent in the factorization and the triangular solve time is negligible. In
practice, partial pivoting is used to ensure numerical stability, resulting in a factorization PA = LU,
where P is a permutation matrix. For simplicity of exposition, we suppress P in what follows (thus
A < PA). Throughout the paper A is assumed to be non-singular.

The basic way to solve such a system is to perform these operations in one precision, typically
the precision to which the user wishes to obtain the solution, or the precision in which the input
data is given. We call this the working precision and denote it by u™.

(a) Iterative refinement

Iterative refinement aims to improve the accuracy or backward error of a computed solution X to
Ax =Db. It consists of a series of iterations (the refinement loop) and is described in algorithm 4.1
in the general three-precision form proposed by Carson & Higham [25]. The three precisions of
arithmetic used are defined by their respective unit roundoffs:

— u": the precision at which the data A, b and the solution x are stored.
— uf: the precision at which the factorization of A and the correction on step 2 are computed.
— u": the precision at which residuals are computed on step 1.

The precisions satisfy u* < u" < uf. We write ‘in precision u*’ to mean ‘in floating-point arithmetic
of precision u*’.

As seen in algorithm 4.1, step 1 is carried out in precision u". Step 2 is performed
in the precision uf, which is the precision of the LU factorization: it uses the LU factors
to solve the correction equation Ac=r and then it casts the solution ¢; to the working
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Convert A — Af from precision u™ to uf.
Perform LU factorization of Af in precision uf .

Find the initial solution x( using the computed LU factorization of Afin precision uf, then cast X to precision u™.
/I Ref i nenent | oop, outer |oop

repeat
1. Residual: Compute residual 7; <— b — Ax; in precision u* and cast it to u™.

2. Correction: Solve Ac; = r;, using the LU factorization in precision uf then cast the result ¢; to the
working precision u™;
3. Update: Correct the current solution x; 1 = x; + c; in precision u™.

until x; 1 is accurate enough;

Algorithm 4.1 Classical iterative refinement (I R) algorithm.

stepl  —m> step2 —m> step3 ——> step 4

Figure 1. Schematic representation of the LU factorization process. (Online version in colour.)

precision if u™. Step 3 is carried out with precision u". If all three steps can be computed exactly
then the iterative refinement algorithm completes in one iteration. However, in floating-point
arithmetic the above steps usually need to be repeated.

If uf = u™ = u” the method is called fixed-precision iterative refinement; otherwise, it is mixed-
precision iterative refinement. Fixed-precision iterative refinement can be used to improve the
backward error of an LU factorization without a strong stabilizing pivoting strategy [15,27,28].
On the other hand, mixed-precision iterative refinement also improves the forward error to the
working precision if the condition number of A is not too large: ufkoo(A) < 1. We denote this
method by | R

In our analysis and experiments we take u* =u", so we do not use extra precision in forming
the residuals.

(b) The LU factorization

Algorithmically, as presented in algorithm 4.2 and illustrated in figure 1, LU factorization can be
viewed as a sequence of steps with two distinct phases per step: (1) a panel factorization that
affects the data depicted by the orange portion of figure 1, and (2) a triangular solve that updates
data represented by the magenta portion (denoted by T;) and (3) a trailing matrix update (Schur
update) denoted by A; and represented in green in figure 1. From a software point of view, we
know that Panel Fact ori ze is a memory-bound step performed through the Xget f 2 routine
and occupies a small portion of the total time, while Trai | i ngMat ri xUpdat e is compute-
bound and is performed using the Level-3 Basic Linear Algebra Subprograms (BLAS) routines
Xgermm The A; updates occupy the greatest portion of the time spent in the factorization. Thus
one might expect the performance of the LU factorization to be asymptotically similar to the
Level-3 BLAS Xgenmroutine.
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for Pi € {Pl,Pz,. .. ,Pn} do
Panel Fact ori ze (P;)
Tri angul ar sol ve (T))
TrailingMatri xUpdat e (4;))

Algorithm 4.2 The LU factorization process.

5. Multiprecision factorizations

In contrast to the standard factorization that works in one precision (algorithm 4.2), we have
developed a new class of multiprecision factorizations that use a higher precision uft for
numerically critical parts of the algorithm, and a lower precision uft for the other parts, the parts
that are numerically less sensitive and also the most time consuming.

In our previous work [29], we found that performing the factorization in fixed FP16 precision
(uf of algorithm 4.1 equal to FP16) suffers from some issues, notably that the entries of the matrix
A can be outside the representable range of FP16, potentially making the rounded matrix singular
in uf, as well as causing numerical troubles due to a relatively inaccurate panel computation. We
then proposed the multiprecision factorization method where we suggested to keep the fast low
precision (FP16) for only the ‘most time consuming’ and ‘numerically less sensitive” portion of
the factorization process (e.g. the Schur complement update) and to use a higher precision (FP32)
for the critical portion (e.g. the panel portion). In our study, ufi corresponds to FP16 and ufr
corresponds to FP32. This is shown in algorithm 5.1.

In algorithm 5.1, the panel factorizations, which cost a total of O(1?) flops, are done in FP32.
The Schur complement updates, which cost a total of O(1%) flops, are done as mixed-precision
Xgems, where Pf‘ and Tl.f‘ are of lower precision uft = FP16, while the inout Af“ is of higher
precision ufr = FP32. This type of operation is a feature of the NVIDIA Tensor Cores hardware,
and we are taking advantage of it to provide a fast factorization while maintaining the sensitive
portion of the computation in higher precision. For the sake of completeness, we briefly describe
how the NVIDIA Tensor Cores operate and allow us to keep A; in higher precision uft = FP32.
The Tensor Cores are programmable matrix-multiply-and-accumulate units that can deliver up
to 120 teraFLOP s~ on NVIDIA Volta GPU hardware. This number is higher on newer NVIDIA
hardware. On an NVIDIA Volta GPU, each Tensor Core performs the operation D=A x B+ C,
which is an ‘FP16 input using a full-precision product and FP32 accumulate” as shown in figure 2.
The matrix inputs A and B are in FP16, while the matrices C and D could be in FP16 or FP32. In
our case the matrix D is the same matrix as C and it is in FP32.

By using the multiprecision factorization, we can maintain the benefit of the high speed of the
FP16 precision while producing a better quality factors L and U than if we perform the whole
factorization in fixed FP16.

We emphasize that the two precisions used here in the multiprecision factorization are not to
be confused with the different precisions (u", u*,uf) used in the refinement process. From the
refinement point of view, the factorization is associated with one precision uf in algorithm 4.1
and how it is implemented (fixed or multiprecision) is considered a black box. This type of
multiprecision factorization was first developed and released within the MAGMA library [2,8]
and the CUDA toolkit CUSOLVER library [1].

The benefit of the multiprecision factorization is twofold. First, it helps solve many of the FP16
numerical issues, as the input matrix A is never converted to FP16, thus there are no issues related
to the conversion of A. Second, all the sensitive portions of the computation (panel factorization
and triangular solve) happen in FP32, thus there are no issues related to FP16 underflow or
overflow in these portions. It is only during the trailing matrix update of A; where FP16 is
involved,

Crp32 = Crp32 — ArP16BrP16- (5.1)
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+

FP16 or FP32 FP16 FP16 FP16 or FP32
sum with
FP16 full precision FP32 convert to
storage/input product accumulator FP32 result

more products
— A
= O —© —m

Figure 2. Tensor Core matrix multiply and accumulate, showing how products of scalars within a 4 x 4 matrix multiplication
are formed and accumulated. (Online version in colour.)

Input: A in precision uft = FP32

uft <uf

for P,’ € {Pl,Pz,. . .,P«,,} do

Panel Fact ori ze P;in precision ufn (e.g., FP32)

Triangul ar sol ve T; in precision ufn (e.g., FP32)

convert Pf“ — Pfl (e.g., from precision FP32 to FP16)

convert Tf“ — Tf‘ (e.g., from precision FP32 to FP16)
TrailingMatrixUpdate A™ =Af — PATH (e.g, AFP32 — AFP32 _ pFPIGTFPIG)
usi ng tensor cores

Algorithm 5.1 The multiprecision LU factorization approach based on precisions uft =

FP16 and ufh = FP32.

This means that issues related to the FP16 could only appear here if entries of Arp16 and Brpis
exceed the FP16 range. Thus, we propose an auto-adaptive rounding mode to overcome this
issue.

(a) Auto-adaptive rounding

We propose an adaptive rounding technique that rounds A and B to nearest FP16 values, except
for values larger than the FP16 range which are rounded to the nearer of the maximal or minimal
normalized FP16 values (namely 65 504). Thus, our proposed adaptive rounding method avoids
breakdown in the algorithm caused by overflows creating infinities.

As a result, our proposed multiprecision factorization ensures that during the factorization
process as soon as the values are within the FP32 range, there will be no overflow related
to the FP16. In practice, mixed-precision factorization gives accuracy between that of a fixed
FP32 precision factorization and a fixed FP16 factorization. When the fixed FP16 precision
factorization works, mixed precision can still produce a backward error between one and two
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orders of magnitude smaller than the pure FP16 factorization [30], while retaining the high
performance of the FP16 variant.

6. Iterative refinement with preconditioned GMRES (I RGV)

GMRES [31] is a popular Krylov subspace iteration for solving a general linear system of
equations. Following Carson & Higham [20], we consider another variant of iterative refinement
by using preconditioned GMRES to approximately solve the correction equation Ac; =r; in step
2 of the classical | R in algorithm 4.1. GMRES will be preconditioned by the low-precision LU
factors. The idea is that the GMRES solver will provide a better and more stable approximate
solution to Ac; = r; than the basic triangular solve, which is directly affected by the quality of the
low-precision LU factors. Using GMRES, we can still guarantee that the solution of the correction
equation Ac; =r; has some correct digits and a residual at the level of the convergence tolerance
requested by the algorithm. The convergence tolerance is chosen to be of the order of the unit
roundoff of the low-precision arithmetic used during the factorization (e.g. we use 10~% or 108
when the LU factorization is in FP16 or FP32, respectively). We denote this variant by | RGM and
itis described in algorithm 6.1. Note that U~! and L~! are never explicitly formed; instead matrix—
vector products UL~ Ay needed by GMRES are computed by multiplication by A followed by
two triangular solves. Since this paper focuses on the practical usage and possible performance
gains rather than error analysis, we point the reader to [20,25,26] for detailed error analysis of the
I Rand | RGMtechniques.

Convert A — Af from precision u™ to uf;
Perform LU factorization of Af in precision uf;
Find the initial solution xq using the computed LU factorization of Af in precision uf then cast x to precision u™;
/I Refi nenent | oop, outer |oop
repeat
1. Residual: Compute residual 7; <— b — Ax; in precision u” and cast it tou™;
2. Correction in | RGM: Solve I 1L~1Ac¢; = U~1L~1r; by GMRES in precision u™ ;
3. Update: Correct the current solution x; 1 = x; + ¢; in precision u™;
until x; is accurate enough;

Algorithm 6.1 Iterative refinement using GMRES (I RGV) algorithm.

7. Preconditioned GMRES

The idea here is to use a preconditioned, full GMRES to solve the original linear system Ax =10,
instead of using preconditioned GMRES to solve the correction equation as in §6. This idea can
be viewed as setting the tolerance of the GMRES in §6 to the unit roundoff of FP64, thus the
correction will be solved down to FP64 accuracy, meaning the refinement loop of algorithm 6.1
will finish in one outer iteration. This proposition comes from the analysis of the Krylov subspace
on which the GMRES method is based. In §6, the refinement loop can be viewed as a restarted
GMRES, but instead of performing m iterations before each restart, it performs any number of
iterations until it reaches the tolerance set for the GMRES (e.g. 10~* in this study), while the
method proposed here uses a full GMRES until convergence. It is well known that a full GMRES
most likely converges faster than the restarted one because it uses all the previously constructed
Krylov subspace to find the new direction to minimize the residual, while the restarted one starts
constructing a new Krylov subspace after each restart. Our experiments show that for hard cases,
where the convergence requires more than 30 iterations, the proposed preconditioned full GMRES
has an advantage over the method proposed in §6, while for problems where the number of
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iterations is small, both methods behave the same within one to two iterations difference. This is
numerically illustrated in §14. On hard cases the classical | Rcannot converge, while the | RGMand
GMrefinement methods initially converge similarly (e.g. cf. figure 7). After that the GMrefinement
method continues to decrease the residual using the entire previously generated Krylov subspace
to find the new direction, while the | RGMimethod starts the construction of a new set of Krylov
subspace vectors, resulting in slower convergence. We mention that for all other cases depicted in
§14 both the GMand the | RGMrefinement methods behave similarly, while the | Rmethod can fail
sometimes. However, we caution that one does not normally run Krylov methods to convergence
to the working precision and the convergence rate of GMRES is not well understood for general
matrices A, so the behaviour we have observed may not always hold.

8. Scaling techniques

Numerical algorithms that deal with FP16 computations must deal with the limited range of
representable elements in FP16 (see table 1 for more details). For example, when converting a
matrix A to Arp16, the matrix entries may overflow or underflow. Our approach avoids overflow
(as long as the FP32 range is not exceeded) and reduces the chance of underflow. Thanks to
the proposed innovative multiprecision factorization A is never converted to FP16. Instead, it is
converted to FP32 which, together with the use of auto-adaptive rounding method (see §5a) in
the factorization, excludes such problems. Even though the proposed multiprecision factorization
alleviates many of the FP16 numerical issues (e.g. related to conversion or to computation), some
other issues still need attention. In particular, if the computation involves values close to or above
the range limit then the quality of the LU factors might be compromised and might require other
techniques to cope with the low bits that FP16 explores. One such technique is scaling. We note
that bfloat16 arithmetic provide a range similar to the FP32 but with short mantissa and thus it
could also be used for the factorization and avoids (as long as the FP32 range is not exceeded)
overflow related to the FP16 range. However, we expect the short mantissa to be a limitation.

Originally, scaling was introduced in the context of iterative methods to speed up their
convergence. Later, scaling was also used in direct methods (both dense and sparse) as a way
to reduce the condition number of a matrix. In our work, we introduce scaling in the context
of the iterative refinement solver. The goal of scaling is to adjust the range of the data so that
the risk of underflow and overflow in computations in lower precision is minimized, and it
can also reduce the condition number of the preconditioned matrix in GMand | RGM Different
approaches for scaling could be used. Research about scaling techniques for dense and sparse
system can be found in [32,33]. More recently, [34] studied different scaling techniques for the
iterative refinement solver using FP16 precision with tests on relatively small matrices. In this
paper we study three approaches for scaling proposed in [34] and we show the effect of each
method on the convergence of the iterative refinement solver. We first discuss a scalar scaling
technique and then we discuss a two-sided diagonal scaling method. We also study a technique
that uses a combination of the two scaling approaches.

(a) Scalarscaling

The idea here is to scale the matrix in such a way that its elements are mapped to be within a

constant of the FP16 interval range, i.e. aﬁsculm) € [—0xmax, 0Xmax], where 0 € (0, 1] is a parameter.

(Recall that xmax is given in table 1.) This technique is described in algorithm 8.1. The strategy
does two things: it ensures that the matrix fits into the FP16 range and it stretches the elements to
cover a fraction 6 of the range, so as to make the best possible use of the limited range. Since the
matrix is subsequently LU factorized, it is important that some headroom is allowed for growth
during the factorization: if the elements grow by a factor p, then 6 should be less than 1/,,. For
many problems, p, < 100 with partial pivoting, so 8 = 0.01 will be sufficient.

One of the effects of this algorithm is that it can result in many elements underflowing, which
is possible if many of the elements of A are sufficiently smaller in magnitude than amax.
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The effect of this scaling on the quality and the convergence of the iterative refinement solver
is analysed in §14.

Input: Matrix A, scale factor €, xmax

Output: Saling factor 14 = 0xmax/ max; j |a;;| and scaled matrix AC#/ed) = 1, A
1. Find Amax = max,-,]- |ﬂi]'|

2. Let it = 0Xmax/Amax

3. Let Abcaled) — A

Algorithm 8.1 Scaling a matrix by a scalar to constrain its range of values.

(b) Two-sided diagonal scaling

To address the issues of the scalar scaling, let us study another scaling strategy that applies a two-
sided diagonal scaling, giving AGcaled) — RAC, where R = diag(r;) and C =diag(c;) are diagonal
matrices. Note that r; and c;,i=1:n are the scaling factors for each row and column of A,
respectively. Such scaling algorithms have been developed in the context of linear systems,
and in particular we focus on the scaling algorithm provided by LAPACK through the routine
XGEEQU. We describe the two-sided diagonal scaling algorithm of XGEEQU in algorithm 8.2. This
technique computes row and column scaling intended to equilibrate a matrix A and reduce its
condition number. R holds the row scale factors and C the column scale factors, chosen to make
the largest element in each row and column of the matrix Abscaled) (vvith elements Alscaled)(; =
R(i) * A(i, ) % C(f)) have an absolute value of 1 (note that every row and column must be non-zero
since A is non-singular).

Input: Matrix A
Output: Matrix A(celed)
forie{l,2,...,n}do
| Ri=1/IAG, oo
A=RA
/I Ais rowequilibrated
forje{1,2,...,n} do
| G=1/IIAG, oo
Alscaled) ZA\C

Algorithm 8.2 Two-sided scaling of a matrix.

() Two-sided diagonal scaling followed by scalar scaling

The idea here is to use a combination of the scaling techniques described above. We represent the
implementation in algorithm 8.3. First, a two-sided scaling will be performed on A to smooth its
values and reduce its condition number by making all the values within the FP16 range. Then,
a scalar scaling will be applied (see lines 2—4 from algorithm 8.3) in order to move the elements
towards the largest representable number so as to make the best possible use of the limited FP16
range. More details about this technique can be found in [34]. We note that since the intent of the
two-sided diagonal scaling is to make the maximal absolute value of A less than or equal to 1, we
can say that g in line 2 of algorithm 8.3 will be equal to 1. Regarding the choice of 8, if § is close to 1
then we maximize the use of the FP16 range and thereby reduce the chance of underflow (which
in the worst case could make the matrix singular). On the other hand, 6 needs to be sufficiently
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less than 1 to allow headroom so subsequent computations do not overflow. We take 6 =0.1,
as in [34].

Input: Matrix A, scale factor 6, xmax

Output: Matrix A(sceled)

1. Perform A = RAC using algorithm 8.2

2. Let B be the maximum magnitude of any entry of A.
3. Let = 0xmax/B

4. scale A such that AGealed) — A

Algorithm 8.3 A combined two-sided scaling and scalar scaling of a matrix.

We discuss the three scaling techniques described in §14 and show the benefits of each.

9. Multiple right-hand side optimizations

Many engineering applications require Ax =b to be solved for multiple right-hand sides (RHSs).
For that, and in order to accommodate such applications, we designed and developed our
TCAIRS in such a way that it allows for the efficient solution of multiple RHSs. The TCAIRS
consists of two main phases, the factorization phase and the refinement phase. The factorization
phase performs an LU decomposition on the matrix A and is thus independent of the number
of RHSs for which the linear system needs to be solved. As a result, this phase remains the
same. The refinement phase is where the solution is refined to achieve the precision of the
input data. In this work, we optimized and used the | R method described in algorithm 4.1 for
the solution of multiple RHSs. When multiple RHSs have to be solved, we need to adapt the
computation of the residual to guarantee that all the solution vectors are accurate. This can be
achieved if the error norm used for convergence checking is taken to be the maximal norm of all
residuals (e.g. the maximal norm of each residual corresponding to each vector). This way, once
the convergence is achieved, we guarantee that all solution vectors are accurate to the tolerance
requested. However, since the refinement phase is memory bound, performing the refinement
vector-by-vector is too expensive and will lead to a quick drop in the performance. Instead, we
replace the matrix-vector operation Xgenmv when computing the residual of b — Ax; at iteration
i with a matrix-matrix product Xgenmto compute all the residuals at once. We also replace the
computation of an approximate solution using the LU factorization with the computation of all
approximate solutions at once (e.g. replacing the two triangular solves over one vector using
Xt rsv routines with two triangular solves for many vectors at once using the t r smroutine).
Moreover, to avoid computing the maximal norm of each residual, and then take the maximum of
all of them, we only compute the norm of the first vector, and check if it satisfies the convergence
error tolerance; if not, then we do not compute the remaining residual norm, but rather we step to
the next iteration of the refinement loop, and keep doing the same process until that norm (norm
of the first residual vector) satisfies the convergence error tolerance. It is at this point that we
move to computing the next residual norm and follow the same process until all norms satisfy the
convergence tolerance. To summarize, as soon as a residual norm does not satisfy the tolerance,
we skip the norm computation of the remaining residuals and perform a new refinement iteration.
This technique reduces the amount of memory-bound operations to be performed when multiple
RHSs are requested.

10. Sensitivity of performance to FP64 compute throughput

Because of the way the mixed-precision IR solver solves a problem—first using reduced and
mixed-precision, and then by refining the solution to attain the FP64 accuracy with a memory
bandwidth bound algorithm—it highlights the fact that it could be a good candidate to solve
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an FP64 problem with good performance on a GPU with Tensor Core capabilities, high memory
bandwidth and not necessarily high FP64 throughput. This is theoretically demonstrated in detail
in §12 through the development of a model of the solver. We also then conducted experiments
using the NVIDIA Turing GPU, which is almost identical to Volta GPU except for FP64 compute
throughput. This was chosen as a surrogate method to throttling only the FP64 compute
throughput on Volta GPUs. We will show in §15 (figure 13) that our TCAIRS exhibits on a Quadro
RTX8000 (Turing TU102 GPU) the same performance as on a high FP64 compute throughput card
such as the Quadro GV100 (Volta GV100 GPU).

However, we should mention that applications in scientific computing typically do not only
rely on solving a dense linear system Ax=>5, and even when they need it this is typically one
component of the whole application. Generally, domain-specific algorithms, and other linear
algebra functionality such as fast Fourier transforms (FFTs), eigenvalues, singular values, least
squares, symmetric LDLT decomposition and matrix-matrix products are commonly used in
applications. Thus to use GPU cards with low FP64 compute throughput for HPC scientific
applications we will need many other mixed-precision numerical algorithm improvements.

11. Energy efficient implementation

Power efficiency in HPC is increasingly becoming a concern. Over the last few decades, the
improving performance of HPC systems has come at the cost of increased electrical power
consumption. The main concerns are increased power bills, e.g. going beyond affordable budgets,
and increased impact on the environment. To help mitigate the power constraints in modern and
future HPC systems, different approaches have been investigated. Exploiting both the hardware
features and algorithms is an effective solution to achieve power efficiency and to address those
energy constraints. In this work we redesigned the solvers, which are typically the most time-
consuming kernels in HPC applications, to provide energy-efficient alternatives. While most of
the energy efficiency approaches aim to reduce the consumption with a minimal performance
penalty, our TCAIRS improves both the performance and the energy efficiency. Indeed, we show
below that by efficiently using the Tensor Core hardware and mixed precision, compared with
highly optimized linear system solvers, our solver delivers the same accuracy solution and with
more than an 80% reduction in the energy consumption.

Also, our TCAIRS is a GPU-only implementation, which means it does not use the CPU for
any computation. Thus, the CPU is idle, which also adds an advantage to the efficiency that such
a solver can provide, in particular because CPUs require significant power consumption while
providing significantly less performance. In other words, if CPUs contribute to the computation,
their rate of FLOPs/Watt is very low, and thus we are going to observe a decrease in the energy
efficiency of the solver. We will show in §16 that our solver can effectively reach 94 gigaFLOP s7!
per Watt for FP64 real data and 126 gigaFLOP s~! per Watt for FP64 complex data problems. These
results significantly improve and extend previous work based on hybrid algorithms that use both
CPUs and GPUs [35].

12. Performance analysis

Mixed-precision methods derive their performance from the higher performance of lower-
precision arithmetic. The theoretical peaks for the main precisions are shown in the last
column of table 1. In practice, the achievable Xgenm performance is less, but maintains a
similar trend. Figure 3 quantifies the currently achievable performance for the NVIDIA GV100
GPU. In particular, we see that the PCle GV100 has a practical peak of 6.8 teraFLOPs™! in
FP64, 14 teraFLOPs™! in FP32, 28 teraFLOPs~ ! in FP16, and a remarkable 85 teraFLOPs™! in
FP16- TC (Tensor Cores). However, the performance of the LU factorization relies mostly on
the performance of the rank-k Xgemmupdates, where the blocking size k is typically 256. These
updates occur during each step of the LU algorithm, as given in algorithm 4.2. Their performances
are shown in figure 3a (the dashed lines) for the four available precisions (FP64, FP32, FP16
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Figure 3. Performance of the LU factorization (the Xget r f routine) and its main building block (the Xge mmroutine) in

FP64, FP32 and FP16- TCprecisions on an NVIDIA V100 GPU. (a) Performance of Xge nmfor square matrices and

for the rank-k update used in the LU factorization (Xget r f ). (b) Performance of Xget r f for different precisions. (Online
version in colour.)

and FP16- TC). Note that the rank-k hgenm TC achieves about 35 teraFLOP s~ !, compared to
about 25 teraFLOP s ! for the rank-k hgenmm) 13 teraFLOP s~ for the rank-k sgenm and around
6 teraFLOPs~! for the rank-k dgenm We note that in our work we always use the FP16- TC
(hgenm TC) and not the standard fused multiply-add (FMA) FP16 hgemrm

The multiprecision LU factorization from algorithm 5.1, with uf* equal to FP32 and ufi equal
to FP16- TC, was implemented and tuned for current hardware. Figure 3b shows the performance
for the FP64, FP32 and FP16- TC precisions on GV100 GPUs using the cuSolver library [1]. As
expected, the LU implementation follows roughly the same trend as the hgemm TC kernel for
large 1, showing that the implementation is well optimized and able to attain its theoretical upper
bound. The hget r f - TCsolver achieves a speedup of up to 4.5x over dget r f and a 2.4x speedup
over sget r f . The speedups further increase for matrix orders larger than 40 000.

Having the achievable performance P of the LU factorization, we can derive a theoretical
performance analysis of the mixed-precision (MP) algorithms. This analysis is needed in order
to understand and predict the cases where iterative refinement can be used. In particular, the
interest is in cases where the solution can be reached faster than the reference (e.g. the FP64
dgesv routine). We recall that the iterative refinement solver performs an LU factorization in
low precision, followed by a refinement loop based on either the classical | R, the | RGMor the
GMrefinement method to improve the solution to erpgs. Thus we can model performance for a
system of order # in the real case by

213 212
time for FP64 = + 12.1
3Pdgetrf Pdtrsv ( )
and
213 212 212
time for MP = +k + +&1, (12.2
3Phgetrf—TC (Pdgem/ Pstrsvy )

where P is the performance of the corresponding routine, k is the number of iterations to achieve
the FP64 accuracy (including the inner GMRES iterations in the case of the | RGMsolver) and & is
other work required by the iterative refinement such as norm computation, residual calculation,
pivoting and synchronizations. Experiments show that & is negligible compared to the dgenv and
strsv cost.

Based on the LU performance results provided in figure 3b and on the benchmark of the dgemnv
and st rsv routine, we illustrate in figure 4 the expected speedup of the iterative refinement
solver using either the FP32 or the FP16- TC precision (dsgesv and dhgesv- TCrespectively) as
a function of the number of iterations (see also [8] for more details). In the latter case the expected
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Figure 4. Expected speedup of the iterative refinement solver over dgesv as function of the number of iterations and the
matrix size. (Online version in colour.)

Table 2. Description of the test matrices, where cond is k5 (A).

type description

0 — random numbers with diagonal modified to be dominant
s P randomam[m‘m1]suchthatthe|rIoganthmsareun|form|yd|stnbuted .....................
R S randomom[(;—nd1]suchthatthe|rIoganthmsareun|form|yd|str|buted .....................
L AE0 dusteredo: o=l
R T dusteredo: o=l
5 A>0 arithmetically distributed o o=1—()--L),i=1...,n
o S . r|thmet|ca||yd|str|buteda ..............................................................................................
s P g eometr|ca||yd|str|butedo ..............................................................................................
G S g eometr|ca||yd|str|buteda ..............................................................................................

speedup is up to a factor 4. We also note that the study for complex arithmetic is similar and the
expected performance follows the same ratio, and for that we omit to redo the same model.

13. Experimental set-up

Our experiments were performed on a system with one 10-core Intel(R) Xeon(R) E5-2650 v3
CPU running at 2.30 GHz equipped with an NVIDIA Quadro GV100 PCle GPU and an NVIDIA
Quadro RTX 8000 PCle GPU.

To study the proposed methods and to highlight their practical use, we performed a large set of
experiments on 21 types of matrices, with each type featuring different properties that represent
a wide range of real life problems. We found that we could classify the 21 types of matrices using
6 representative cases that we present in table 2. The matrices of singular vectors are random
orthogonal matrices from the Haar distribution [36]. In the table, 2 > 0 denotes that the matrices
are symmetric positive definite, that is, they have real, positive eigenvalues.

We also performed an extensive study on sparse matrices from the SuiteSparse Matrix
Collection! [37].

Formerly known as the University of Florida Sparse Matrix Collection.
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14. Numerical behaviour

We first study the numerical behaviour of our TCAIRS using the three proposed refinement
techniques, and show the convergence history of each technique for the different types of
matrices. Then we discuss the benefit of using the Krylov GMRES solver. We also show the
difference between using the | RGMand the GMtechnique. We then study the effect of scaling on the
convergence of the solver for matrices from table 2 as well as for the matrices from SuiteSparse.

(a) Convergence behaviour

This study aims to provide an analysis of each method’s sensitivity relative to a wide range of
matrices representable for different scientific applications. In addition, our goal is to provide
insight into the performance expected from the iterative refinement methods. For example, if
an iterative refinement method requires a large number of iterations to achieve FP64 solution
accuracy for a certain matrix type, then we can expect that its performance will degrade relative
to the standard dgesv, and it may be even slower (see §12 for the expected performance as a
function of the number of iterations). We note that the number of iterations that we report is
the number of GMRES iterations, which is totalled across all GMRES calls in the case of the
| RGM solver. This means that the number of iterations reported is a precise indicator of the
time spent in the refinement loop. The convergence criterion used in our experiments is the
same as the one used in the state-of-the-art LAPACK iterative refinement solver dsgesv, namely
[ Ax — bll/(I1ANx]l) < €”+/n, where ¥ is the working precision (e.g. eFPo4 in our experiments) and
n is the size of the matrix.
In the figures below, we plot the relative residual [|Ax — b|| /(|| Allllx]l)

— ateach iteration for the FP16- TCvariant of the iterative refinement solver using the three
proposed iterative refinement algorithms GV} (green) | R (yellow) and | RGM(blue),

— at each iteration for the FP32 variant using the GMalgorithm (purple),

— of the final solution at the user level for the standard FP64 solver (horizontal orange line),

— of the final solution at the user level for the iterative refinement solver with the FP16- TC
as lower precision (horizontal green, yellow and blues lines for the GM | R and | RGV
refinement methods, respectively).

— of the final solution at the user level for the iterative refinement solver with the FP32 as
lower precision (horizontal purple line),

The no_cvg text in the figures mean that the corresponding refinement solver did not converge
after 200 iterations.

Figures 5 and 6 show the convergence history given by the relative residual at each step
of the refinement loop for the six proposed iterative refinement solvers (the two precision
implementations— FP16- TCand FP32—each using one of the three refinement methods GV} | R
or | RGW). We note that when we use the FP32 as lower precision, the three refinement methods
(i.e. GM I R and | RGW) behave exactly the same. Thus, to make graphs clear, we only show
the GMimplementations and denote them by FP32—FP64. The graphs are labelled as FPXX—
FP64 YY, where ‘XX corresponds to the lowest precision used during the LU factorization
(FP16- TC or FP32), and ‘YY" represents the iterative refinement technique (GM I R or | RGV)
used to attain the FP64 solution accuracy. In addition, in order to also compare the quality of
the solution, we draw three horizontal lines that correspond to the residual of the solution at the
output of our iterative refinement solver as well as the one at the output of the standard FP64
precision (dgesv and zgesvV for real and complex cases, respectively).

In figure 5, we display the convergence history of a matrix of type 5, but as mentioned in the
caption, we observed the same behaviour for the matrices of types 0, 1, 3 and 7 within + 1 iteration
difference. Here we can see that the TCAIRS using the FP32 as lowest precision converges within
3 iterations. Furthermore, we observe that the TCAIRS using the FP16- TC as lowest precision
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(a) matrix of type 5 : n = 22000, K(A) = 3.8 x 104 (b) matrix of type 5 : n=22000, Kx(A) = 4.5 x 10*
no scaling no scaling
© FP16-TCFP64 GM © FP16-TC—FP64 GM
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Figure 5. Convergence history of the proposed iterative refinement solver having either the FP32 as lower precision (using
the GMrefinement method) or the FP16- TCas lower precision (using the GV | Rand | RGMrefinement methods).
The matrix size is n = 22 000. Matrix of type 5: positive eigenvalues and arithmetic distribution of its singular values o; =1 —
(i —1)/(n — 1)1 — (1/cond)). Similar behaviour has been observed for matrices of types 0, 1,3 and 7 within =4 Titeration.
(a) Real case. (b) Complex case. (Online version in colour.)

(a) matrix of type 6 : n = 22 000, K(A) = 8.2 x 10* (b) matrix of type 6 : n =22 000, K(A) = 1.1 x 10°
no scaling no scaling
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Figure 6. Convergence history of the proposed iterative refinement solver having either the FP32 as lower precision (using
the GMrefinement method) or the FP16- TCas lower precision (using the GV | Rand | RGMrefinement methods).
The matrix size is n = 22 000. Matrix of type 6: arithmetic distribution of its singular values o; =1 — ((i — 1)/(n — 1))(1 —
(1/cond)). Similar behaviour has been observed for matrices of types 2, 4 and 8 within = 2 iterations. (a) Real case. (b) Complex
case. (Online version in colour.)

converges within four iterations for all refinement method variants (GM | Rand | RGW). For these
type of matrices, since the number of iterations is small, we can expect a large speedup over the
FP64 routine. We expect that the FP32 solver will achieve a 2x speedup and the FP16- TC one
will achieve about 4 x speedup while delivering a solution at FP64 accuracy. More details about
the performance are provided in the next section.

Figure 6 represents a matrix of type 6, which is very similar to type 5 in the sense that they
have the same singular values. However, their eigenvalues differ. We also mention that the
same convergence trend has been observed for other matrices of types 2, 4 and 8. The matrices
generated with types 2, 4, 6 and 8 characteristics are more difficult than the ones with types 0,
1, 3, 5 and 7. The convergence of FP16- TC requires more iterations, namely ~17 iterations.
Interestingly, the FP16- TC solver is doing well for this type of harder problem and is able to
bring the solution down to the FP64 accuracy within an acceptable number of iterations. As a
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(a) matrix of type 6 : n.= 22000, K, (A) = 2.4 x 107 (b) matrix of type 6 : n = 22000, K, (4) = 2.0 x 107
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Figure 7. Convergence history of the proposed iterative refinement solver having either the FP32 as lower precision (using
the GMrefinement method) or the FP16- TCas lower precision (using the GV | Rand | RGMrefinement methods).
The matrix size is n = 22 000. Matrix of type 6: arithmetic distribution of its singular values o; =1 — ((i — 1)/(n — 1))(1 —
(1/cond)). The matrix is generated with a large condition number to show the difference between the three proposed iterative
refinement algorithms as well as to display the effect of the condition number on the convergence rate. (a) Real case. (b) Complex
case. (Online version in colour.)

result, we expect from figure 4 that the FP16- TCwill provide about 34 x speedup over the FP64
counterpart solver while delivering a solution at FP64 accuracy.

We mention that we performed some experiments with a basic FP16 implementation that does
not use the Tensor Cores and we found that this implementation requires many more iterations
to converge for this type of matrices. It also fails for other problems like the one in figure 7 and
many of the sparse problems shown below. This is because the accumulation in the FP16- TC
compared with the basic FP16 is done in FP32 arithmetic and thus produces a better result than
the pure FP16 [30]. In addition we should not forget the fact that a basic FP16 (e.g. using the
standard fused multiply-add (FMA)) will not exhibit the same high speed as the one with Tensor
Cores. Such an algorithm and implementation will therefore be substantially slower, so we do not
discuss it in this paper.

Figure 7 shows a substantially more difficult matrix. It is a matrix of type 5 where we increased
the condition number to be within the FP32 range rather than the FP16- TC range. With such
a configuration, even the FP32 will have trouble converging within three iterations, and will
require about 10 iterations. For this type of matrix, and such a high condition number, the
FP16- TC—FP64 | Rvariantis notable to converge. The basic | Rmethod solving Ac; = r; directly
using the computed LU factors and the solution is not accurate enough to allow the | R method
to converge. However, both the | RGM and the GM refinement techniques (FP16- TC— FP64
| RGM and FP16- TC— FP64 G\) are able to achieve the FP64 solution accuracy. This reveals
the sensitivity of the | R variant and highlights the importance of using the preconditioned
GMRES method. We also note that the triangle marker in the blue line—the curve that represents
FP16- TC— FP64 | RGMi—shows the number of outer iterations (outer refinement loop) in the
| RGMsolver. In our experiment, the GMRES tolerance of the | RGVimethod is set to 10~%. Thus,
at each outer iteration of the refinement loop of the | RGMmethod the solution of Ac =7 is correct
to 1074 accuracy. We can see that the number of outer iterations is about 4, which is consistent
with the theory of [20,25]. More details about using GMRES inside the refinement process can be
found in [20,25].

Now, when comparing the two successful refinement methods in figure 7 (i.e. GM and
| RGV), we note that the GMmethod converges faster than the | RGMone. The GMmethod uses
preconditioned GMRES to solve the whole linear system Ax =), using the L and U factors as
a preconditioner instead of using the preconditioned GMRES to solve the correction equation
Ac =7, as in §6. In the | RGMmethod GMRES will stop at 104, then the outer refinement loop will
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compute a new residual, and then another GMRES is called to solve the new correction equation.
Thus, the | RGM method can be viewed as a restarted GMRES—but instead of performing m
iterations before each restart, it performs any number of iterations until it reaches the tolerance
set for the GMRES (i.e. 10~# in this study), and only then restarts. This is confirmed by the shape
of the | RGMconvergence history, and we can see that after each outer iteration (triangle in the
blue line) the GMRES starts constructing a new Krylov basis to solve the new correction equation
Ac; =r;. This hard case example highlights the benefit of using a full GMRES to solve the system
(e.g. the GMmethod) where the GMRES benefits from the entire previously constructed basis to
compute the new direction for each new solution.

To make this study more general and cover many real life cases, we conducted the same
experiments for sparse matrices arising from different engineering areas from the SuiteSparse
Matrix Collection. The names, size and condition numbers of these matrices are given in table 5.
We illustrate the convergence history results in tables 3 and 4 (the 'no scaling’ column). These
matrices have condition numbers varying from 10! to 10'°. The iterative refinement solver using
the FP32 as lower precision (table 3) converges for all of these cases, except for the problem
‘ramage02’, where we also found that the scaling technique can be the remedy. Interestingly, we
notice that the TCAIRS using the FP16- TC precision as the lowest precision (table 4) is able to
converge for most of these problems and provide a solution similar to the one provided by the
FP64 routine within a small number of iterations. These results highlight the benefit that the
TCAIRS can bring to such applications, and one can expect a large speedup for these problems.
We were surprised by the wide range of problems that the FP16- TC iterative refinement solver
(TCAIRS) can solve. These results motivated us to look into further details and analyse why for
some of these problems the FP16- TC variant had issues converging. We found that if we apply
scaling to the matrix we can make the FP16- TC variant cope and solve these problems as well.
This will be discussed below. We also see that the GVland the | RGMmethods mostly required a
similar number of iterations and both converged better than the standard | R method.

Lesson: For the matrices considered, the TCAIRS using the FP16- TC precision is the most
powerful method in terms of performance, and it is able to cope with and solve many problems
representing many engineering areas within an acceptable number of iterations. The FP32
refinement variants show a more consistent behaviour of small numbers of iterations regardless
of the matrix types, except for minor cases. However, as shown in the analysis and in the
performance sections, the maximum speedup that the FP32 variant can provide is less than
2x while the variant using FP16- TC can achieve 4x. These results suggest the surprising
effectiveness and robustness of the FP16- TC arithmetic, showing it might be robust enough for
use in HPC linear system solvers.

(b) Scaling techniques

In §8 we described three scaling techniques for use in | R, which we denoted by scalar scaling,
diagonal scaling and diagonal+scalar scaling. In this section we present experiments with these
techniques. We first study these scaling approaches for the synthetic matrices described in table 2
and then we study their benefit for the sparse problems from the SuiteSparse Matrix Collection.
Synthetic matrices. For the synthetic matrices of table 2, we mention that only the scalar scaling
need be used. The diagonal scaling technique proposed above computes a row and a column
scaling intended to equilibrate the matrix A such that the largest element in each row and
column of A has absolute value 1. Since the entries of the synthetic matrices are generated with a
distribution on the interval [—1, 1], there is no need for row or column scaling. Hence we illustrate
only the effect of the scalar scaling for the synthetic matrices of table 2. We choose the same
matrices shown in figure 5 and figure 6 and perform the scalar scaling to the matrix A before we
solve it using our iterative refinement solver. We illustrate the convergence history in figure 8.
The graph in figure 8a is the convergence history of a matrix of type 5 without scaling, while
the one on the right in figure 8b corresponds to the convergence history of the same matrix but
with the scalar scaling performed. As we can see, the scalar scaling does not provide any benefit
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(a) matrix of type 5 : n.=22000, & (A)=3.8 x 10* (b) matrix of type 5 : n= 22000, K. (A) =3.8 x 10*
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Figure 8. Effect of the different scaling techniques on the convergence of the iterative refinement solver. The example here, is
foramatrix of type 5 (top) and type 6 (bottom) for real case of size n = 22 000. We mention that complex cases behave similarly.
Also, matrices of types 0,1, 3 and 7 and type 2, 4 and 8 behave similarly to type 5 and type 6, respectively. (a) Matrix of type 5:
no scaling. (b) Matrix of type 5: scalar scaling. (c) Matrix of type 6: no scaling. (d) Matrix of type 6: scalar scaling. (Online version
in colour.)

here. Already for such matrices the iterative refinement solver converged very quickly and did
not suffer from any perturbation. On the graph in figure 8¢, we represent the convergence history
for a matrix of type 6 without any scaling and we depict the convergence history of the scaled
matrix in figure 8d. Here we can see that the scalar scaling cannot improve the convergence of the
three refinement methods (GM | R and | RGV) of the FP16- TC variant, and, rather, it affects the
numerics in a negative manner leading to non-convergence. The explanation for this behaviour is
rather surprising: this is a rare class of matrices giving large growth factors for LU factorization
with partial pivoting. Since the growth factors exceed 6~! =10 they cause elements of U to lie
outside the FP16 range and then get rounded back onto the range, which reduces the quality of
the LU factors, leading to non-convergence. The reasons for the large growth factors are explained
in [38].

Sparse matrices. For the matrices from the SuiteSparse Matrix Collection we performed the three
scaling techniques and illustrated the benefit of each in tables 3 and 4. The second block-column
of the tables (from the left) corresponds to the scalar scaling, the third block-column corresponds
to the diagonal scaling and the fourth block-column (the right-most one) corresponds to applying
the diagonal+scalar technique. As can be seen, the scalar scaling behaves similarly to the no-
scaling for easy problems and it helped the convergence for harder cases. The diagonal scaling
technique is more robust and showed benefit for most of the cases. We can see that for problems
that were already easy to solve by the iterative refinement solver without any pre-treatment, it did
not slow down or affect the convergence. We also noticed how beneficial the diagonal scaling was
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for problems where the TCAIRS using the FP16- TC precision (e.g. table 4) encountered trouble
converging. The diagonal scaling helped the iterative refinement solver using the FP16- TC
to converge on problems that the method was not able to solve without scaling. The scaling
also helped decrease the number of iterations for problems where the TCAIRS without scaling
converged but with a large number of iterations (‘mixtank’). We also notice the decrease in the
condition number of the matrices where diagonal scaling was applied. We show for each matrix,
the condition number before and after scaling. It can be seen that when the iterative refinement
solver using the FP16- TC precision did not converge (e.g. dashes in table 4), the condition
number of the matrices solved was very large >108, and diagonal scaling helped decrease it,
thereby enhancing the convergence of the FP16- TC iterative refinement solver. Similarly, for
the problem ‘mixtank’ for example, the FP16- TC iterative refinement solver converged within
a medium number of iterations, but scaling accelerates convergence. The third strategy of scaling
was to combine the two scaling techniques together. Our experiments showed that this strategy
showed an unpredictable behaviour. It helped some problems but also was worse than no scaling
from some others.

Lesson: Scaling techniques can enhance the convergence of the iterative refinement solver, in
particular for problems with large a condition number. The best scaling technique is diagonal
scaling, which equilibrates the matrix. The scalar scaling might help the convergence for many of
these cases, as long as the value of 6 is taken less than the reciprocal of the growth factor, thus
u requires to be carefully chosen. The diagonal+scalar scaling showed that it behaves like scalar
scaling for most of the cases, except for some cases it was worse than both scaling strategies.

15. Performance

This section presents the performance results of our two proposed iterative refinement solvers
with the FP32 or the FP16- TC as lower precision—dhgesv-TC, dsgesv and zkgesv- TC,
zcgesyv for real and complex cases, respectively—using the GV (GMRES) refinement method,
and comparing it to the full precision reference dgesv and zgesv solvers, respectively. In all the
performance figures below, we illustrate the performance in teraFLOP s~ of three linear solvers
for both real and complex cases:

(1) the FP64 standard solver (dgesv and zgesv for real and complex, respectively),
displayed in orange colour with “x’,

(2) the iterative refinement solver having the FP32 precision as lower precision (i.e. 1=
FP32) and using the GMrefinement method (dsgesv and zcgesv for real and complex
matrices, respectively) displayed in purple colour with ‘A\’,

(3) the TCAIRS using having the FP16- TC precision as lower precision (i.e. W = FP16- TC)
and using the GMrefinement method (dhgesv- TCand zkgesv- TC for real and complex
matrices, respectively) displayed in cyan colour with “o’.

We mention that the teraFLOPs~! are computed using the same formula for all solvers and all
plots, P = (2n3/3t) + (212 /t), where t is the total elapsed time of the computation, which means
performance reflects the time to solution. Thus, a performance that is two times higher means the
computation is twice as fast. We also note that the time of the iterative refinement solver includes
all the conversion required and the iterations, meaning the solver takes a full precision 4, x, b (e.g.
FP64 A, b), and returns the solution x in full precision (FP64 in our experiments). The study was
done for both real and complex matrices and for different matrix sizes and for different matrix
types. For the two iterative refinement solvers, we also depict the required number of iterations
to achieve the FP64 arithmetic solution. To make the figures fully informative of all the possible
information that the reader might find interesting, we show in the right ‘y’ axis of the graph the
condition number k. (A), corresponding to the grey dotted line.
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((,l) performance of solving Ax = b to the FP64 accuracy (b ) performance of solving Ax = b to the FP64 accuracy
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Figure 9. Performance in teraFLOP s ' of the GMrefinement algorithm for the FP32 and FP16- TCprecisions studied

for different matrix sizes on an NVIDIA GPU Volta GV100. Matrix of type 5: positive eigenvalues and arithmetic distribution of its

singular values o; =1 — ((i — 1)/(n — 1))(1 — (1/cond)). Similar behaviour has been observed for matrices of types 0,1, 3
and?7. (a) Real case. (b) Complex case. (Online version in colour.)

(a) Single right-hand side

The performance results for the synthetic matrices of table 2 are summarized in figures 9-11.
In figure 9, the matrix is of type 5, and—as shown in §14—the two precisions variants (FP32
and FP16- TC) of the iterative refinement solver require two to four iterations to converge. Thus,
one can expect that the iterative refinement solver will bring a large speedup compared to its full-
precision counterpart solver. Since the number of iterations is small, we presume that the speedup
ratio will be similar to the one observed in figure 3b for the LU factorization. Our expectation
is confirmed by the experimental results presented in figure 9. The TCAIRS using FP16- TC
as the low precision (dhgesv- TC and zkgesv- TC) delivers a solution 4x and 5x faster than
its FP64 counterparts dgesv and zgesyv, respectively. Similarly, the iterative refinement solver
variant using FP32 as the lower precision (e.g. dsgesv and zcgesv for real and complex data,
respectively) shows a ~#1.8x speedup over its dgesv and zgesv FP64 precision counterparts.
This example illustrates the importance of using the low FP16- TC precision in HPC. We note
that our experiments showed that matrices of types 0, 1, 3 and 7 exhibited the same performance
behaviour as the one illustrated in figure 9. For the real case (figure 10a), the iterative refinement
solvers dhgesv- TC and dsgesv outperform dgesv by around 3.5x and 1.7x, respectively.
For the complex case (figure 10b), the iterative refinement solvers zkgesv- TC and zcgesv
outperform dgesv by around 4.5x, and 1.8, respectively.

In contrast to the matrices of type 5 shown in figure 9, figure 11 shows the performance and the
number of iterations for matrices that have the same arithmetic distribution of the singular value,
but their eigenvalues are not necessarily positive and can even be complex. This is considered a
harder problem than the one shown in figure 9. For the TCAIRS using the FP16- TC precision as
lower precision (dhgesv- TCand zkgesv- TC), the number of iterations increases compared with
figure 9 (15-24 iterations vs. 3-5 iterations). We also see that the iteration count increases slightly
with the matrix size. This accounts for the slightly lower speedups than in figure 9 (albeit still over
3x). The dsgesv and the zcgesv behaviour stays the same as the one shown in the previous
graphs and requires about 2-3 iterations, resulting in a 1.7x speedup over the dgesv and the
zgesyv, respectively. The observations made here are correlated with the numerical behaviour
shown in §14, figure 6. It highlights the attractive effectiveness of the FP16- TC precision and
reveals the interest of using it for HPC computing. Matrices of type 2 and type 8 have shown
same performance behaviour and thus we omit their graphs.

The goal of this paper is to show that the proposed iterative refinement solver can be of great
benefit for a wide range of matrices with different characteristics. In practice, the real world
matrices tend to be easier to deal with than our specially constructed synthetic ones. To illustrate
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Figure 10. Performance in teraFLOP s~ of the GMrrefinement algorithm for the FP32 and FP16- TCprecisions studied
for different matrix sizes on an NVIDIA GPU Volta GV100. Matrix of type 4: clustered singular values,o; = (1, . . ., 1 L), Similar

Y] m
behaviour has been observed for matrices of type 4. (a) Real case. (b) Complex case. (Online version in colour.)

((1) performance of solving Ax = b to the FP64 accuracy (b) performance of solving Ax = b to the FP64 accuracy
(R — —————— 1 T . . . T —
16 FP16-TC->64 dhgesv 10 22 FP16-TC->64 zkgesv 5 10
15 FP32->64 dsgesv 2 20 FP32->64 zcgesv 26
14 H=#= FP6ddgesv [ e e 1.5 == FP64 zgesv . I o TLRTLLL -
.............. 10 18 F 1 10°
B e 0 O e
12F e ) 16F e 4
1F 10 [ 310
To10r | -
o 9 N o 12r W=
é 8 F 10° 2 é 10° 2
E 7t g 1or b
g [ 102 8T 102
4t or
3t 4t
10 10
% 1074 2t
0 N L . . L . . Ly 0 M . L . . . |
2k 4k 6k 8k10k 14k 18k 22k 26k 30k 34k 40k 2k 4k 6k 8k 10k 14k 18k 22k 26k 30k
matrix size matrix size

Figure T1. Performance in teraFLOP s ' of the GMIrefinement algorithm for the FP32 and FP16- TCprecisions studied
for different matrix sizes on an NVIDIA GPU Volta GV100. Matrix of type 6: arithmetic distribution of its singular values
o;=1—((i —1)/(n — 1))(1 — (1/cond)). Similar behaviour has been observed for matrices of types 2 and 8. (a) Real case.
(b) Complex case. (Online version in colour.)

this, we show results for real world matrices arising from different problems. We show in table 5
the results from experiments obtained when running three linear solvers (the standard solver
dgesv and our two iterative refinement solvers using the FP32 and the FP16- TC precision,
respectively) for different real world matrices from the SuiteSparse Matrix Collection. We note
that the input matrices were scaled by two-sided diagonal scaling when used with the FP16- TC
precision (e.g. for the dhgesv- TC function).

As can be seen, the behaviour of the proposed iterative refinement solver is similar to that
of the synthetic matrices described above. For most of these problems, the iterative refinement
solver using the FP16- TC as lower precision converges within fewer than 12 iterations, except
for only 2 hard problems. For these hard problems, the iterative refinement solver using the
FP32 as lower precision also had trouble converging within 2-3 iterations as usual. Overall, our
proposed iterative refinement solver showed attractive speedup for these problems. By studying
the results in the table we found that the proposed TCAIRS using the FP16- TC precision (e.g.
the dhgesv- TCroutine) can provide on average a speedup of about 2.5x-3.5x for a wide range
of real world matrices and it shows about 1.7x speedup when using the FP32 as lower precision
(e.g. the dsgesv routine). These results match the analysis performed in the numerical §14 and
in the performance model §12.
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(a) performance of solving Ax = b to the FP64 accuracy (b) performance of solving Ax = b to the FP64 accuracy
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Figure 12. Performance of solving multiple RHSs using the three linear solvers for a matrix of type 3, for different matrix sizes
on an NVIDIA GPU Volta GV100. Results are shown for 1and 32 RHSs. (a) Real case. (b) Complex case. (Online version in colour.)

Lesson: The speedups presented in figures 9-11 and in table 5 show that the dhgesv-TC
(FP16- TC — FP64) routine can be used for most of the matrices types to provide speedups of
about 3x—4x, and the dsgesv (FP32 — FP64) routine can be used for most of the matrix types
to provide speedups of about 1.7 x. The complex routines (zkgesv- TCand zcgesv) also showed
similar behaviour as the real ones (dhgesv- TCand dsgesv) but with a slightly higher speedup
over the FP64 complex routine zgesv. This is due to the higher compute intensity of the complex
data computations.

(b) Multiple right-hand sides

In this section we show the benefit of the TCAIRS when solving multiple RHSs. As discussed
above, the iterative refinement solver consists of two phases: the factorization phase, which uses
lower precision to achieve a high performance, and a second phase to refine the obtained solution
down to the accuracy of the FP64 precision. The refinement phase is memory bound and thus
it is better to converge fast (see figure 4 for the expected performance as function of the number
of iterations). When multiple RHSs are needed, we cannot solve each right-hand side by itself
because then we multiply the number of iterations by the number of RHSs. Thus, our strategy is
to solve for all the RHSs together at once and to use Level 3 BLAS (t r smand Xgenm) during the
refinement in such a way that solving for one or more RHSs will take roughly similar time (with
~10% difference). In figure 12 we illustrate the performance obtained when solving 1 or 32 RHSs
for a matrix of type 5. We see in figure 12 that solving 32 RHSs does not significantly delay the
refinement process, and thus the performance obtained is only less than 10% slower than the one
obtained when solving 1 RHS, for both real and complex cases. This is thanks to our proposed
technique that uses Level 3 BLAS operations and optimizes the residual checking process in such
a way that minimizes the amount of memory-bound operations. Interestingly, we can see that the
number of iterations required to converge the 32 RHSs is similar to the one required to converge
1 RHS. These results give the TCAIRS an advantage even when multiple RHSs are to be solved.

(c) Sensitivity to FP64 compute throughput

Based on the discussion in §10, we used our iterative refinement solver to solve the same problems
studied in this paper on an NVIDIA Quadro RTX8000 (Turing TU102 GPU). Since the FP64
computations within the TCAIRS are used only in the memory bound refinement iterations that
account for O(n?) of the total O(n%) flops, we found that the performance of the TCAIRS is not
sensitive to the FP64 compute throughput and maintains the same high performance behaviour.
Figure 13 depicts the performance obtained for a matrix of type 5 using the three solvers—the
FP64 solver (dgesv or zgesyv for real and complex cases, respectively), the iterative refinement

OLLOOZOZ 9Lt ¥ 905y 20igedsy/jeunol/BioBuysiiqndiraposiefos



((1) performance of solving Ax =b to the FP64 accuracy (b) performance of solving Ax = b to the FP64 accuracy

24 FP16-TC->64 on GV 100/RTX8000 (solid/dashed) 'b 30 FP16-TC->64 on GV100/RTX8000 (solid/dashed) M
2 FP32->64 on GV 100/RTX8000 (solid/dashed) . 27 FP32->64 on GV 100/RTX8000 (solid/dashed) R
%= FP64 on GV100/RTX8000 (solid/dashed) ... b jlo %= FP64 on GV100/RTX8000 (solid/dashed Pl 10
20 LAl UL e a
. e e R e o B ! [PV [N N VPR P
7 10* 21 et 1 10*
T B
b b — b 18F ~
s Ll DU {100
z < = <
N 10 2T 110°
8 9|
6
4 110 or 110
s | 3
0 P T N TTTT ITIT ITT SITIITY | 1 0 T AL T T TIT ST I YO TIT TRTTTY ey Ly
2k 4k 6k 8k10k 14k 18k 22k 26k 30k 34k 40k 2k 4k 6k 8k 10k 14k 18k 22k 26k 30k
matrix size matrix size

Figure 13. Performance comparison of the TC ATRS on two different GPUs: NVIDIA Quadro GV100 and RTX8000 shows lack
of sensitivity to FP64 compute throughput. We illustrate the iterative refinement algorithms using either the FP32 and
FP16- TC precisions as lower precision. Matrix of type 5: positive eigenvalues and arithmetic distribution of its singular
values o; =1— ((i — 1)/(n — 1))(1 — (1/cond)). Similar behaviour has been observed for all other synthetic and real life
matrices. (a) Real case. (b) Complex case. (Online version in colour.)

solver solver with FP32 as lower precision (dsgesv or zcgesv for real and complex cases,
respectively), and the iterative refinement solver using the FP16- TC precision as lower precision
(dhgesv- TC or zkgesv- TC for real and complex cases, respectively)—on the GV100 and the
RTX8000. We can easily see that the solver maintains the same effective FP64 performance on
both GPU architectures despite their vastly different FP64 compute throughput (7 TFLOPs™! on
GV100 and 500 GFLOPs~! on RTX8000). Here we show only one graph of performance, but all
the other graphs show a similar performance trend.

16. Enerqy efficiency

Figure 14 shows the energy efficiency results in real (left) and complex (right) precision,
respectively. We report the sum of the CPU, DRAM and GPU power measurement. The power
of the CPU (package + DRAM) is measured using the Performance Application Programming
Interface (PAPI) [39], and the power of the GPU is measured using the NVIDIA Management
Library (NVML) [40]. We note that the solver is GPU-only (i.e. does not use the CPU), but we still
add the CPU’s idle power consumption, which is about 20-30 Watts. The standard dgesv solver
provides an energy efficiency of 21 gigaFLOP s~! per Watt. The FP32 iterative refinement solver
(dsgesv) doubles the energy efficiency, increasing it to 40 gigaFLOPs~! per Watt. This follows
our performance analysis described above, since dsgesyv is about twice as fast and thus we can
observe twice the energy efficiency using the dsgesv routine. The most pronounced result is
achieved by the FP16- TCiterative refinement solver (dhgesv- TC). It achieves an unprecedented
energy efficiency of 94 gigaFLOPs~! per Watt, which is about a 4.5x improvement over the
standard dgesv solver. The complex case achieves 126 gigaFLOP s~! per Watt, which is more than
a 5x improvement over the standard zgesv solver. These results demonstrate that the iterative
refinement methods and half-precision arithmetic will be decisive in helping mitigate the power
constraints in large-scale HPC systems.

The different phases of the computation can be identified on the power graph, as we
now explain. The portion that consumes very high power (e.g. 260 Watts) corresponds to the
factorization phase. 90% of the factorization phase consists of compute intensive operations and
thus the power will be at the peak. We can also see here that this portion that corresponds to
the factorization in FP16 (cyan curve) is about 4 times faster than its corresponding one in FP64
(orange curve). Once the factorization is done, the code synchronizes all streams, and performs
some checking. This corresponds to the lowest quick spike down. Then, for the standard FP64
solver (e.g. dgesv), it performs the solve phase (one solve of LUx=">) to compute the final
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Figure 14. Power usage of the CPU and an NVIDIA GPU Volta GV100 for the Tensor Cores Accelerated Iterative Refinement Solver
for the FP32 and FP16- TCprecisions for a real and complex matrices of size n = 40 000 and n = 30 000, respectively.
(a) Real case. (b) Complex case. (Online versio2n in colour.)

solution x while for the iterative refinement solver, it performs the refinement phase (which
correspond to as many solve and mat-vec as the number of iterations). The solve or refinement
phase consists of memory bound operations and we know that such operations do not consume
the peak power but rather they consume lower power which corresponds to the curves around
180 Watts. Thus we can easily illustrate the refinement phase in these graph by the portion that
consumes around 180 Watts. We can see that the refinement portion for FP32 dsgesv is slightly
shorter than the one for FP16 dhgesv- TC. This is normal since the dsgesv required about 3
iterations while the dhgesv- TCrequired about seven iterations.

17. Conclusions and future directions

Designing and implementing numerical algorithms that efficiently exploit current highly parallel
computer architectures is a challenge, especially if close to peak performance is to be achieved.
Nevertheless, we have developed a new class of iterative refinement solvers and a number of
computational techniques that allow us to solve fundamental Ax =0 problems not just close
to peak FP64 performance, but to get multiple times over the peak, by using the fast mixed-
precision arithmetic Tensor Cores available in new GPU architectures—all while retaining the
numerical stability of an FP64 solution. In particular, we showed that the new iterative refinement
solver can accelerate the solution 4- to -5x and have 5x better energy efficiency on NVIDIA Volta
GV100 GPUs. The complex case achieves an unprecedented energy efficiency of 126 gigaFLOP s ™!
per Watt, which is more than a 5x improvement over the standard FP64 solver. The new
developments further improves previous efforts in this direction, including performance, energy
efficiency and applicability to real problems. The solvers are now released in the vendor-
optimized numerical library CUSOLVER [1] from NVIDIA and the MAGMA [2] open-source
numerical library.

The developments open up directions for future work, including further optimizations,
development of a full set of mixed-precision factorizations, linear system solvers as well as
eigensolvers and singular value decomposition (SVD), and release as open-source software
through MAGMA [2]. See [41] for a mixed-precision algorithm for symmetric positive definite
systems and [42], [41] for mixed-precision algorithms for the least squares problem. Furthermore,
the developments illustrate that mixed-precision techniques can be of great interest for linear
solvers in many engineering areas. Such methods can also be easily ported to large-scale
distributed or multi-GPU environments and supercomputers, where the speedups are expected
to remain the same as for a single GPU.
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