Energy-aware strategies for reliability-oriented real-time task
allocation on heterogeneous platforms

Li Han
li.han@inria.fr
East China Normal University
Shanghai, China
Univ Lyon, ENS Lyon, UCBL, CNRS,
Inria, LIP, Lyon, France

Yves Robert
yves.robert@inria.fr
Univ Lyon, ENS Lyon, UCBL, CNRS,
Inria, LIP, Lyon, France
University of Tennessee Knoxville
Knoxville, USA

ABSTRACT

Low energy consumption and high reliability are widely identi-
fied as increasingly relevant issues in real-time systems on het-
erogeneous platforms. In this paper, we propose a multi-criteria
optimization strategy to minimize the expected energy consump-
tion while enforcing the reliability threshold and meeting all task
deadlines. The tasks are replicated to ensure a prescribed relia-
bility threshold. The platforms are composed of processors with
different (and possibly unrelated) characteristics, including speed
profile, energy cost and failure rate. We provide several mapping
and scheduling heuristics towards this challenging optimization
problem. Specifically, a novel approach is designed to control (i)
how many replicas to use for each task, (ii) on which processor
to map each replica and (iii) when to schedule each replica on its
assigned processor. Different mappings achieve different levels of
reliability and consume different amounts of energy. Scheduling
matters because once a task replica is successful, the other replicas
of that task are cancelled, which calls for minimizing the amount
of temporal overlap between any replica pair. The experiments are
conducted for a comprehensive set of execution scenarios, with
a wide range of processor speed profiles and failure rates. The
comparison results reveal that our strategies perform better than
the random baseline, with a gain of 40% in energy consumption,
for nearly all cases. The absolute performance of the heuristics is
assessed by a comparison with a lower bound; the best heuristics
achieve an excellent performance, with an average value only 4%
higher than the lower bound.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICPP’20, August 17-20, 2020, Edmonton, AB, Canada

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06...$15.00
https://doi.org/10.1145/1122445.1122456

Yiqin Gao
yigin.gao@inria.fr
Univ Lyon, ENS Lyon, UCBL, CNRS,
Inria, LIP, Lyon, France

Jing Liu
jliu@sei.ecnu.edu.cn
East China Normal University
Shanghai, China

Frédéric Vivien
frederic.vivien@inria.fr
Univ Lyon, ENS Lyon, UCBL, CNRS,
Inria, LIP, Lyon, France

CCS CONCEPTS

« Computer systems organization — Real-time systems; Re-
liability; » Theory of computation — Design and analysis of
algorithms; Parallel algorithms.

KEYWORDS

real-time systems, energy-aware systems, reliability, mapping, sched-
uling, heterogeneous platforms

ACM Reference Format:

Li Han, Yiqin Gao, Jing Liu, Yves Robert, and Frédéric Vivien. 2020. Energy-
aware strategies for reliability-oriented real-time task allocation on hetero-
geneous platforms. In ICPP’20: 49th Int. Conf. on Parallel Processing, August
17-20, 2020, Edmonton, AB, Canada. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION

Real-time systems are composed of periodic tasks that are regularly
input to a parallel computing platform and must complete execution
before their deadlines. In many applications, another requirement is
reliability: the execution of each task is prone to transient faults, so
that several replicas of the same task must be executed in order to
guarantee a prescribed level of reliability [2, 30]. Recently, several
strategies have been introduced with the objective to minimize the
expected energy consumption of the system while matching all
deadlines and reliability constraints [11, 12].

This work aims at extending these energy-aware strategies in the
context of heterogeneous platforms. Heterogeneous platforms have
been used for safety-critical real-time systems for many years [5].
With the advent of multiple hardware resources such as multi-cores,
GPUs, and FPGAs, modern computing platforms exhibit a high level
of heterogeneity, and the trend is increasing. The multiplicity of
hardware resources with very different characteristics in terms of
speed profile, reliability level and energy cost, raises an interest-
ing but challenging problem: given several device types, which
ones should we keep and which ones should we discard in order
to achieve the best possible tri-criteria trade-off (time, energy, re-
liability)? Needless to say, this optimization problem is NP-hard,

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

ICPP’20, August 17-20, 2020, Edmonton, AB, Canada

even with two identical error-free processors, simply because of
matching deadlines.

This work provides several mapping and scheduling heuristics
to solve the tri-criteria problem on heterogeneous platforms. The
design of these heuristics is much more technical than in the case
of identical processors. Intuitively, this is because the reliability of
areplica of task 7; depends upon the processor which executes it.
More precisely, the reliability R(z;, my) of a replica of 7; mapped on
processor my is R(z;, my) = e MkCik where ¢; k is the execution
time of 7; on my, and Ay the failure rate of my. The total reliability
of task 7; is a function of the reliability of all its replicas (which we
explicit in Equation 4 below); hence, it is not known until the end of
the mapping process, unless we pre-compute an exponential num-
ber of reliability values. Then there are many processors to choose
from, and those providing a high reliability, thereby minimizing the
number of replicas needed to match the reliability threshold, may
also require a high energy cost per replica: in the end, it might be
better to use less reliable but also less energy-intensive processors.
Furthermore, the reliability is not enough to decide for the mapping:
if two processors offer similar reliabilities for a task, it might be
better to select the one with smaller execution time, in order to
increase the possibility of mapping other tasks without exceeding
any deadline. Altogether, we face a complicated decision, and we
provide several criteria to guide the mapping process.

Overall, the objective is to minimize the expected energy con-
sumption while matching all deadlines and reliability constraints.
The expected energy consumption is the average energy consumed
over all failure scenarios. Consider a sample execution: whenever
the execution of a task replica succeeds, all the other replicas are
instantaneously deleted; therefore, the actual amount of energy
consumed depends both upon the error scenario (which replica is
the first successful) and upon the overlap between replicas (some
replicas are partially executed and interrupted when the successful
one completes). Given a mapping, the scheduling aims at reducing
overlap between any two replicas of the same task. Note that having
an overlap-free scheduling is not always possible because of utiliza-
tion constraints. Also, deciding whether an overlap-free scheduling
exists for a given mapping is NP-hard [9], even for deterministic
tasks.

Finally, in actual real-time systems, tasks often complete before
their worst-case execution time, or WCET, so that execution times
are routinely modeled as stochastic. For instance, one typically as-
sumes that the execution time of 7; on my follows a uniform prob-
ability distribution in the range [fy/w¢; k-, ¢; k] for some constant
Bow < 1(ratio of best case over worst case). In the end, the expected
energy consumption must also be averaged over all possible values
for execution times in addition to over all failure scenarios. Our
mapping heuristics aim at minimizing energy consumption based
upon a lower-bound formula that assumes no overlap between any
two replicas of the same task, while our scheduling heuristics aim
at minimizing such an overlap. To assess the performance of our
heuristics, we use a comprehensive set of execution scenarios, with
a wide range of processor speed profiles and failure rates. When
the failure rate is low, most heuristics are equivalent, but when the
failure rate is higher, only a few heuristics achieve good perfor-
mance. Because we have no guarantee on the performance of the

Li Han, Yiqin Gao, Jing Liu, Yves Robert, and Frédéric Vivien

Table 1: Key Notations

Notation Explanation

N and M number of tasks and of processors

P period (deadline) for each task instance

Cik WCET for task 7; on processor my

Uj g = ci’)k utilization of task 7; executing on processor mjy

Uug utilization of my (sum of utilization of replicas
assigned to my)

Ri target reliability threshold for task 7;

Ak failure rate of processor my

P(my) power consumed per time unit on processor my

Eg total static energy consumption

Eg4(7i, mg) dynamic energy cost of task 7; on processor my

R(z;, my) reliability of task 7; on processor my

global mapping and scheduling process, we analytically derive a
lower bound for the expected energy consumption of any mapping.
This bound cannot always be met. Nevertheless, we show that the
performance of our best heuristics remains quite close to this bound
in the vast majority of simulation scenarios.

The main contributions of the paper are the following:

e The formulation of the tri-criteria optimization problem;

e The design of several mapping and scheduling heuristics;

o The characterization of a lower bound for energy consump-
tion;

e An experimental evaluation based on a comprehensive set
of simulations scenarios, showing that two of the heuristics
achieve the best performance, and are always very close to
the lower bound.

The rest of the paper is organized as follows. Section 2 provides
a detailed description of the optimization problem under study, in-
cluding a few notes on its complexity. The mapping and scheduling
heuristics are described in Section 3 and 4 respectively. The perfor-
mance lower bound is introduced in Section 5. Section 6 is devoted
to a comprehensive experimental comparison of the heuristics. Sec-
tion 7 presents related work. Finally, Section 8 gives concluding
remarks and hints for future work.

2 MODEL

The inputs to the optimization problem are a set of real-time in-
dependent tasks, a set of non-identical processors and a reliability
target. Key notations are summarized in Table 1.

2.1 Platform and tasks

The platform consists of M heterogeneous processors my, ma, . . .,
mys and a set of N periodic atomic tasks 7y, 72, . . ., 7n. Each task 7;
has WCET c; i on the processor m;.. The WCETs among different
processors are not necessarily related. In the experiments, we gener-
ate the c; j values with the method proposed in [1], where we have
two parameters to control the correlation among task execution
times and processors (see Section 6.1 for details). Each periodic task
7; generates a sequence of instances with period p, which is equal
to its deadline. In this work, we assume that all tasks have the same
period p, so that a single instance of each task must execute every
p seconds. Note that assuming that all tasks are atomic and with
same period is the standard assumption for real-time task graphs
(or DAGs) [23].

Energy-aware strategies for reliability-oriented real-time task allocation on heterogeneous platforms

As already mentioned, real-time tasks usually complete execu-
tion earlier than their estimated WCET: actual execution times are
assumed to be data-dependent and non-deterministic, randomly
sampled from some probability distribution whose support is upper
bounded by the WCET. See Section 6.1 for details on the generation
of actual execution times from WCET values. The utilization u; j
of task 7; executing on processor my is defined as u; . = CIT’C The
utilization of a processor is the sum of the utilizations of all tasks
that are assigned to it.

2.2 Power and energy
The power consumed per time unit on processor my is
P(my) = Pr,s + 9Pi,d 1)

where Py, is the static power; g represents the system state and
indicates whether dynamic power Py 4 is currently being consumed
by my: when mj executes a task, g = 1, otherwise g = 0. To
summarize, we have 2M input values, {Py s, P2 s . . . Py} for static
powers and {Py 4, P, 4 ... Py q} for dynamic powers.

The dynamic energy consumption E4(7;, my) of task 7; on pro-
cessor my is estimated using the WCET:

Eq(ti,my) = Pie.g X ¢i k @)
but we use the value derived from the actual execution time in the
experiments. The total static energy consumption is simply given
by

Es= > Prgxp 3
keUsed
where Used denotes the index set of the processors used by the
schedule.

2.3 Reliability

We consider transient faults, modeled by an Exponential probability
distribution of rate A on processor my. Thus, fault rates differ from
one processor to another. This is a very natural assumption for a
heterogeneous platform made of different-type processors. At the
end of the execution of each task, there is an acceptance test to
check the occurrence of soft errors induced by the transient faults.
It is assumed that acceptance tests are 100% accurate, and that the
duration of the test is included within the task WCET [12].

The reliability of a task instance is the probability of executing
it successfully, in the absence of software faults. The reliability of
task 7; on processor my with WCET c; i is R(z;, my) = e~ MeXCik
During the mapping phase, task 7; will have several replicas exe-
cuting on different processors, in order to match some reliability
threshold. Let alloc(i) denote the index set of the processors execut-
ing a replica of 7;. The mapping achieves the following reliability
R(z;) for task 7;:

R(7i) = 1 = Mg eattoo(i)(1 = R(zi, mg)) (4)
Indeed, the task will succeed if at least one of its replicas does: the
success probability is thus equal to 1 minus the probability of all
replicas failing, which is the expression given in Equation (4).
Each task 7; has a reliability threshold R; which is an input
of the problem and that must be met by the mapping. In other
words, the constraint writes R(7;) > R; for 1 < i < N. Because the
tasks are independent, it is natural to assume that they might have

ICPP’20, August 17-20, 2020, Edmonton, AB, Canada

different reliability thresholds: a higher threshold means that more
resources should be assigned for the task to complete successfully
with a higher probability. In the experiments we use R; = R for
all tasks, but our heuristics are designed to accommodate different
thresholds per task.

2.4 Optimization Objective

The objective is to determine a set of replicas for each task, a set
of processors to execute them, and to build a schedule of length at
most p, so that expected energy consumption is minimized, while
matching the deadline p and reliability threshold R; for each task z;.
As already mentioned in Section 1, the expected energy consump-
tion is an average made over all possible execution times randomly
drawn from their distributions, and over all failure scenarios (with
every component weighted by its probability to occur). An analyti-
cal formula is out of reach, and we use Monte-Carlo sampling in
the experiments. However, we stress the following two points:

e To guide the design of the heuristics, we use a simplified
objective function; more precisely, we use WCETs instead
of (yet unknown) actual execution times, and we conser-
vatively estimate the dynamic energy of a task as the sum
of the dynamic energy of all its replicas. Because mapping
decisions are based upon WCETs, the number of enrolled
processors does not depend upon actual execution times and
the static energy is always the same for all scenarios, namely
the length of the period times the sum of the static powers
of the enrolled processors (see Equation (3)).

e To assess the absolute performance of the heuristics, we
derive a lower bound for the dynamic energy. This bound is
based upon actual execution times but neglects scheduling
constraints and assumes no overlap between any two task
replicas, hence it is not reachable in general. However, we
show that our best heuristics achieve performance close to
this bound.

2.5 Complexity

The global optimization problem is obviously NP-hard, since it is
a generalization of the makespan minimization problem with a
fixed number of parallel processors [4]. The optimization of the
sole scheduling phase is also NP-hard: if the number of replicas has
already been decided for each task, and if the assigned processor of
each replica has also been decided, the scheduling phase aims at
minimizing the expected energy consumption by avoiding overlap
between the replicas of a same task [9]. Even if the task deadline
was not constraining (very large deadline with respect to the worst-
case execution time of tasks), the problem would remain NP-hard.
We formally state this latter problem and show that it is NP-hard.

Definition 1 (MINENERGYMAXRELIABILITY). Consider an hetero-
geneous platform composed of M heterogeneous processors, mj,
..., mpr, and N (non-periodic) tasks 7y, 72, ..., TN . Executing task z;
on processor my has an energy cost of E(z;, my) and has a proba-
bility of success of R(z;, my). Let & and R be two constants. The
MINENERGYMAXRELIABILITY decision problem is: is it possible to
schedule the tasks on the processors so that: (i) the total energy
consumed does not exceed &; and (ii) the probability that all tasks
succeed is at least R?

ICPP’20, August 17-20, 2020, Edmonton, AB, Canada

LEMMA 1. Problem MINENERGYMAXRELIABILITY is NP-complete.

ProOF. We prove this result by a reduction from the 2-PARTITION
problem [4]. Let I; be an instance of 2-PARTITION with N positive
integers, ai, ...,an. Let S = Zl{\il a;j. The question is: is it possible
to find a subset A of {1, ..., N} such that

Sai= Y a=s

1<i<N 1<i<N
i€A i¢A
From J; we build an instance 7 of MINENERGYMAXRELIABILITY

as follows. We have M = 2 processors. Then we have N tasks each
having the same execution times on both processors: ¢; 1 = ¢; 2 =
a;. The failure rates are defined by: A; = é and Ay = 1. The static
energy is null, P s = P2 s = 0, and the dynamic energy is defined
byP,g=1,P 4= % Therefore, we have:

ai a;

E(zj,m1) = a; and R(zj, m1) = e_%
E(ti,mp) = 3 and R(zj, ma) = e~
Finally, we let & = %(S +1)and R = e 35D = =&,

One can easily check that the size of 7, is polynomial in the size
of 17, that all the E(z;, my)’s are positive and that all the R(z;, my)’s
are strictly between 0 and 1.

Let us consider any mapping of the M tasks on the two proces-
sors. Let A be the index set of tasks mapped on processor 1 in this
mapping, and let A = }};c 4 a;. Let E be the total energy consumed
by this mapping and let R be the reliability of the whole set of tasks.
We have: E = ﬂ% +1landIn(R) = -S + ?I%. One can then
easily show that 7 has a solution if and only if 77 has a solution.

]

3 MAPPING

In the mapping phase, we need to define the number of replicas
for each task, as well as the execution processor for every replica,
aiming at meeting the reliability target while minimizing the en-
ergy cost. One difficulty introduced by platform heterogeneity is
that we do not know the number of replicas needed for each task
to reach its reliability threshold, before completing the mapping
process, because different processors have different failure rates
and speeds and, hence, they provide different reliabilities for each
replica. Therefore, the simpler three-step method of [9, 12] cannot
be applied.

As shown in Algorithm 1, given a set of tasks with their reliability
targets and a set of heterogeneous processors, we first order the
tasks according to TASKMAPCRITERIA, which includes:

o deW (inW): decreasing (increasing) average work size ¢; =
CijitCigt+cCim |
e ¥

. deMinM]}/I(inMinW): decreasing (increasing) minimum work
size ¢; = miny < <pm € ks
o deMaxW (inMaxW): decreasing (increasing) maximum work
size ¢; = maxq <k <M Cj k'
e random: random ordering.
Then, for each task in the ordered list, we order the processors
for mapping its replicas according to PROCMAPCRITERIA, which
includes:

e inE: increasing energy cost;

Li Han, Yiqin Gao, Jing Liu, Yves Robert, and Frédéric Vivien

Table 2: Example

R(t;, It 1-R(7i, my))
my E(zi,mg) R(zi, mg) EE;Z:; - Ogm,(g(fi,,,:k)mk)
1 1 0.9 0.9 1
2 2 0.99 0.495 1
3 1 0.99 0.99 2
4 2 0.9 0.45 0.5

o deR: decreasing reliability;
log,,(1=R(z;, my))

E(rme) (explained below);

o deP: decreasing ratio of —
e random: random ordering.

We use the example shown in Table 2 to explain how to de-
sign a better criteria in PROCMAPCRITERIA. Assume there are four
processor sets with different energy and reliability configurations.
Considering only the reliability, we cannot distinguish between
the second and third sets. Apparently, the third set is better since
its processors consume less energy and provide the same level of
reliability. The problem is the same when ordering processors only
according to energy cost. This gives us a hint that we need to con-
sider energy and reliability interactively. A first idea would be to
R(zi, my)
E(zi,mg)’
unit of task 7; executing on processor my. But consider a task in-
stance with a reliability target R; = 0.98: it requires either one
processor from the second set or two processors from the first set.
Both solutions match the reliability goal with the same energy cost
4. We aim at a formula that would give the same weight to both
w is a good candidate, because
the total energy cost is the sum of all processors while the reliability
is a product. This discussion explains how we have derived the third
criteria deP in PROCMAPCRITERIA, namely to order processors by
log,o(1-R(7i, mg))

E(ti,my) -

For the mapping phase, we add replicas for task 7; in the or-
der of the processor list until the reliability target R; is reached.
The algorithm uses the probability of failure PoF = 1 — R(z;) =
Mg cattodi)(1 — R(zi, my)) (Equation (4)). The mapping process al-
ways ensures that: (i) no two replicas of the same task are assigned
to the same processor; (ii) the utilization uj of each processor does
not exceed 1.

use the ratio which expresses the reliability per energy

solutions. The ratio —

decreasing ratio of —

4 SCHEDULING

In the scheduling phase, we aim at ordering the tasks mapped on
each processor, with the objective to minimize the energy consump-
tion during execution. Recall that the success of any replica leads to
the immediate cancellation of all the remaining replicas, a crucial
source of energy saving. Our approach is to identify a primary
replica for each task, then all its other replicas become secondaries.
The goal of the proposed scheduling is to avoid overlap between
the execution of the primary and secondary replicas for each task:
the primary must be terminated as soon as possible, while the sec-
ondaries must be delayed as much as possible. Whenever a primary
replica of a task succeeds, the energy consumption will be minimal
for that task if no secondary replica has started executing yet. Our
scheduling algorithm uses a layered approach: first we map the first

Energy-aware strategies for reliability-oriented real-time task allocation on heterogeneous platforms

ICPP’20, August 17-20, 2020, Edmonton, AB, Canada

Algorithm 1: Replication setting and mapping

Algorithm 2: Scheduling

Input: A set of tasks 7; with reliability targets R;;
a set of heterogeneous processors mj
Output: An allocation o, of all replicas on the processors

1 begin
2 order all the tasks with TASKkMAPCRITERIA and renumber them
Ty - - -» TN

/* initialize the utilization of all processors to zero */
3 u«—1Jo0,...,0]

/* iterate through the ordered list of tasks */
4 fori €[1,...,N]do

/* order processors for each task */
5 order all processors for task 7; with PROCMAPCRITERIA and
renumber them proc;, . . ., procy
/* this ordered list may differ from task to task */

6 k=1
7 PoF =1
8 while 1 — PoF < R; do
9 temp = up + u; i
10 if temp < 1then
11 ug = temp
12 PoF = PoF x (1 - R(z;, mg))
13 add one replica of 7; on procy
14 k++
15 if k > m then
16 L return not feasible
17| return o,

replica of each task, which we call the primary replica; and then,
in a round-robin fashion, we map the remaining replicas (if they
exist), which we call the secondaries. Here is a detailed description
of Algorithm 2:

(1) First we order tasks by criterion TASKSCHEDCRITERIA, for
which we propose:

o deNR (inNR): decreasing (increasing) number of replicas;

e deU (inU): decreasing (increasing) total utilization (sum
up the utilization of all replicas);

o random: random ordering.

(2) Then we process the list of tasks in that order, and select a
primary replica for each task, which we execute as soon as
possible on its assigned processor, right after already sched-
uled primary replicas (if any). We use two different criteria
PRIMARYSCHEDCRITERIA for selecting primary replicas:

o time: choose the processor that can complete the execution
of the replica the earliest (given already made scheduling
decisions);

o energy: choose the processor that can execute the replica
with smallest dynamic energy.

(3) Once primary replicas have all been scheduled, we reverse
the order of the list of tasks, and we schedule the remaining
replicas (considered in a round-robin fashion in the reversed
list) as late as possible on their assigned processor. The idea
is to mimimize potential overlap between primary and sec-
ondaries for each task, hence to delay secondary replicas
until the end of the period. The rationale for reverting the
task list is that the primary replica of some task 7 at the
end of the list may have been scheduled after some other
primary replica 7/, hence the idea to process the secondary

Input: An allocation o, of all replicas on the processors
Output: An order of execution on each processor

1 begin
2 & order all the tasks with TASKSCHEDCRITERIA and renumber them
T1, .« s TN
/* insert the primary replica for each task at the

beginning of each processor schedule */
3 fori€[l,...,N]do
4 if PRIMARYSCHEDCRITERIA is “time” then
5 schedule the primary replica of 7; that could finish at the

L earliest
6 else if PRIMARYSCHEDCRITERIA is“energy” then
7 schedule the primary replica of 7; that consumes the
L minimum energy
/* insert the secondaries backwards from the end of each

processor schedule */
8 reverse the task ordering
9 while there is still at least one replica to be scheduled do
10 fori€[l,...,N]do
11 if there is still a replica of T; to be scheduled then
12 if SECONDARYSCHEDCRITERIA is “time” then
13 schedule the secondary replica of task 7; that could

L start the latest
14 else if SECONDARYSCHEDCRITERIA is “energy” then
15 schedule the secondary replica of task z; that
L consumes the maximum energy

replica of 7/ before that of 7 and push it further away at the

end of the period.

Finally, there only remains to detail which secondary replica

of a task is scheduled first (whenever the task has three repli-

cas or more). We also have two criteria SECONDARYSCHED-

CrrITERIA for choosing secondary replicas:

o time: choose the replica whose start-up time can be the
latest (given already made scheduling decisions); the idea
is to minimize overlap by maximizing slack;

e energy: choose the replica whose energy is the highest;
the idea is again to minimize overlap, thereby increasing
the probability of this costly replica to be cancelled.

As we have two different criteria for both selecting primaries and
secondaries, in total, we have four possible combinations, namely
time-time, time-energy, energy-time and energy-energy. For the base-
line scheduling (randomShuffling), we randomly order tasks on each
processor and execute them in sequence and as early as possible
(no idle time until the end of the period).

—
N
=

5 LOWER BOUND

In this section, we explain how to derive a lower bound for the
expected energy consumption of a solution to the optimization
problem, namely a mapping/scheduling heuristic that uses some of
the selection criteria outlined in Sections 3 and 4.

For each problem input, namely N tasks z; with reliability thresh-
olds R;, M processors mj. with failure rates A, and with all WCET
¢ k> we compute a solution, i.e., a mapping and ordering of all
replicas. We first use Monte-Carlo simulations (see Section 6) and
generate several sets of values for the actual execution time w; j of

ICPP’20, August 17-20, 2020, Edmonton, AB, Canada

7; on my. The values w; . are drawn uniformly across processors as
some fraction of their WCET c; j. (refer to Section 6.1 for details).

Now, for each set of values w; i, we generate a set of failure
scenarios, compute the actual energy consumed for each scenario,
and report the average of all these values as the expected energy
consumption. A failure scenario operates as follows. We call an
event the end of the execution of a task replica on some processor.
At each event, we flip a biased coin (weighted with the probability
of success of the replica on that processor) to decide whether the
replica is successful or not. If it is, we delete all other replicas of the
same task. At the end of the execution, we record all the dynamic
energy that has been actually spent, accounting for all complete
and partial executions of replicas, and we add the static energy
given by Equation (3). This leads to the energy consumption of the
failure scenario. We average the values over all failure scenarios
and obtain the expectation, denoted as E({w; i }).

In addition, we also compute a lower bound LB({w; i }) as fol-
lows. Our goal is to accurately estimate the energy consumption of
an optimal solution. Because the static energy depends upon the
subset of processors that are used in the solution (see Equation (3)),
we need to try all possible subsets. Given a processor subset S, we
consider each task 7; independently, and try all possible mappings
of replicas of 7; using only processors in S. Thus we explore all
subsets 7~ of S. A subset 7 is safe if mapping a replica of 7; on
each processor of 7~ meets the reliability criteria R;, and if no strict
subset of 7~ is safe. Note that safe sets are determined using the
WCETSs c; ., and not using the w; ., because this is part of the prob-
lem specification. Now for each safe subset 7-, we try all possible
orderings (there are k! of them if |77| = k); for each ordering, we
compute the expected value of the dynamic energy consumption as
follows: if, say, 7 = {mj, m3, msa} and the ordering is ms, mq, my,
then we compute

Py gwi3 + (1= e MYid)Py qwiy

+(1— e MWin)(1 — e MWid)Py gy g

We see that we optimistically assume no overlap between the three
replicas, and compute the dynamic energy cost as the energy of the
first replica (always spent) plus the energy of the second replica
(paid only if the first replica has failed) plus the energy of the
third replica (paid only if both the first and second replicas have
failed). Note that here we use execution times and failure probabili-
ties based upon the actual execution times w; ;. and not upon the
WCETs c; . The value of the sum depends upon the ordering of
the processors in 7, hence we check the 6 orderings and retain the
minimal value. We do this for all safe subsets and retain the minimal
value. Finally we sum the results obtained for each task and get the
lower bound for the original processor subset S. We stress that this
bound is not necessarily tight, because our computation assumes
no overlap for any replica pair, and does not check the utilization
of each processor (which may exceed 1). The final lower bound
LB({w; x}) is the minimum over all processor subsets. Although
the computation has exponential cost, due to the exploration of all
processor subsets S, the computation of the expected energy for a
given ordering in a subset 7~ of S obeys a closed-form formula.

Li Han, Yiqin Gao, Jing Liu, Yves Robert, and Frédéric Vivien

6 PERFORMANCE EVALUATION

This section assesses the performance of our different strategies to
map and schedule real-time tasks onto heterogeneous platforms. In
Section 6.1, we describe the parameters and settings used during the
experimental campaign. We present the results in Section 6.2. The
algorithms are implemented in C++ and in R. The related code, data
and analysis are publicly available in [8]. A companion research
report with the comprehensive set of results is available in [10].

6.1 Experimental methodology

In the experiments, we have M = 10 processors and N = 20 tasks
which have all the same period p = 100.! The set of WCETs is gen-
erated by the method proposed in [1], as mentioned in Section 2.1.
The WCET values are controlled by the correlation factor between
the different tasks (coriask) and between the different processors
(corproc)- These two parameters vary between 0 and 1.2 For example,
COragk = 0 (resp. corproc = 0) means that the WCET values between
different tasks on one processor (resp. between different proces-
sors for one task) are completely randomly generated. Inversely,
COTask = 1 (resp. corproc = 1) means that the WCET values between
different tasks on one processor (resp. between different processors
for one task) are all the same. We also define a parameter basicWork
as the estimated total utilization of the system with a single replica
per task, in order to study the impact of system pressure:

ZikCik _ ik Uik
M2p M?

In Equation (5), we use the average WCETs on the M processors

basicWork =

®)

(%) to estimate the execution time of task 7;. We have M
processors available during period p, hence basicWork represents
an estimate of the fraction of time processors are used if each task
has a single replica. In the experiments, we vary basicWork from
0.1 to 0.3.

To generate the actual execution times of tasks from their WCETs,
we use two parameters. The first one, fy, is global to all tasks: Sy
is the ratio between the best-case execution time and the worst-case
execution time. It is the smallest possible ratio between the actual
execution time of a task and its WCET. Therefore, the actual exe-
cution time of task 7; on processor my belongs to [Bp/wCi k- Ci k|-
We consider five possible values of Sy 0.2, 0.4, 0.6, 0.8, and 1.
The second parameter, f3;, is task dependent: f; describes whether
the instance of a task is a small one or a large one. f; is randomly
drawn in [0, 1]. A value of f; = 0 means that task 7; has the short-
est execution time possible, and f; = 1 means that the actual
execution is equal to its worst case execution time. Overall, the
actual execution time of task 7; on processor my is thus defined as:
Wik = (Borw + (1= Porw)Bi)ci k-

For a processor my in the platform, we fix the static power Py ¢
at 0.001 as in previous papers [22, 23, 26]. But for the dynamic
power and the failure rate, we have two sets of parameters. The
first set also follows values similar to those of the previous papers
[22, 23, 26]. For this set, we have a relatively large power and a

1One execution is around 0.150 milliseconds with these parameters on a basic laptop.
2We ignored the case when corask = 0 and corproc = 1 for the parameter set with big
failure rate, because when tasks are completely unrelated, there (very likely) is a task
with very long execution time on all processors (corproc = 1). The number of replicas
needed to meet its reliability goal will exceed the number of available processors.

Energy-aware strategies for reliability-oriented real-time task allocation on heterogeneous platforms

very small failure rate. Therefore, the replicas using this first set
of parameters succeed in almost all cases. Thus, to evaluate our
heuristics in the context when failures occur more frequently, we
introduce a second set of parameters where the replicas have a
smaller power and a larger failure rate. For the first set, we choose
randomly the dynamic power Py 4 between 0.8 and 1.2, and the
failure rate Ay between 0.0001 and 0.00023. And for the second
set, we have Py 4 10 times smaller (between 0.08 and 0.12), and A
100 times larger (between 0.01 and 0.023). With the second set of
parameters, the actual reliability of one replica ranges from 0.1 to
0.99. To be more realistic, in our experiments, processors with a
larger dynamic power Py 4 have a smaller failure rate Ax. It means
that, a more reliable processor costs always more energy than a
less reliable one. We guarantee this by ordering inversely the Py_g’s
and the A;’s after generating the random values.

Due to space limitations, we only include here figures about the
large failure rate set; figures for the small failure rate set can be
found in the companion research report [10]. The general trends
about the relative performance of heuristics is the same in both
sets, and we make specific comments when it not the case.

We vary the local reliability target R; between 0.9 and 0.98
for the first set and between 0.8 and 0.95 for the second set. This
is to give the system a reasonable freedom while mapping and
scheduling. The reliability target is relatively high, implying that
tasks need plural replicas to reach it. Therefore, we give more
tolerance (smaller relialbility threshold) to the second set with a
larger failure rate, because otherwise we may not be able to find
feasible mappings.

Table 3: Ratio of energy consumption to the baseline of dif-
ferent mapping and scheduling ordering tasks criteria

sch deNR inNR deU inU random
map
deW 0.5655 0.5662 0.5655 0.5660 0.5663
inWw 0.5631 0.5635 0.5630 0.5635 0.5635
deMinW 0.5658 0.5662 0.5657 0.5661 0.5665
inMinW 0.5637 0.5642 0.5637 0.5642 0.5641
deMaxW 0.5658 0.5664 0.5657 0.5663 0.5665
inMaxW 0.5629 0.5633 0.5629 0.5633 0.5633
random 0.5633 0.5639 0.5633 0.5638 0.5639

6.2 Results

In this section, we analyze the impact of the different parameters
on the performance of the heuristics. Due to lack of space, the com-
prehensive set of all results is available in the extended version [10].
We choose as default values fy,y, = 1, basicWork = 0.3, R; = 0.95
for the set with big failure rate, and R; = 0.98 for the set with
small failure rate. This set of parameters is chosen to constrain
the solution so that we can observe the most interesting results.
For coriagk and corproc, we fix them at 0.5 as default value. Each
experiment is the average of 10 sets of WCET values. For each set,
we generate 10 sets of random Py_g and A values. For each Py 4
and Ay generated, the final result is the average of 10 executions.
Overall, we run 1, 000 randomly generated experiments for each set
of Bi/w, basicWork, Ri, corag and corproc values. The total number
of experiments ran is 3,075,000 for each heuristic. Each result is rep-
resented as a ratio to the random baseline method which is defined

ICPP’20, August 17-20, 2020, Edmonton, AB, Canada

as follows: for each task, we add replicas randomly on available
processors until reaching its reliability target during the mapping
phase; for scheduling, we randomly order replicas mapped on each
processor and execute them in sequence and as soon as possible. We
also compare different strategies with the lower bound proposed
in Section 5. We report on these figures the average number of
replicas needed in total for 20 tasks (on the left side) and of failures
that occur for the 1,000 random trials for each setting (on the right
side). These numbers are reported in black above the horizontal
axis in each figure.

6.2.1 Ordering tasks for mapping and scheduling. In Table 3, we
calculated the ratio of combinations of different mapping and sched-
uling methods to the baseline method, when considering different
criteria for ordering tasks. We can see that, in the whole set of
experiments, all criteria for ordering tasks perform equally well
(around 56%). The difference between the best and the worst perfor-
mance is only around 0.36%. Hence these criteria do not critically
influence energy consumption. In the following results, for the task
ordering, we only consider the decreasing average WCET (deW)
for the mapping, and the decreasing utilization (deU) for the sched-
uling, which give priority to the tasks that putting more pressure
to the system. We then focus on selecting processors during the
mapping phase, and on choosing primary and secondary replicas
during the scheduling phase.

6.2.2 Processor correlation. Figure 1 shows results when processor
correlation varies. We found that our strategies consume less than
25% of the energy needed by the baseline strategy when corproc = 0,
and the result is close to the lower bound. But we can observe that
this percentage increases with corproc.

For the mapping phase, we can see from Figure 1a that, when
COrproc is not equal to 1, inE performs better than deR. But when
Corproc increases to 1, the performance of deR catches up. And in
all cases, deP performs better than, or similarly to the best strategy
between deR and inE.

For the scheduling strategies, Figure 1b shows that there is little
difference between our different criteria, the random one excepted.
But we can still observe that, with corproc # 1, we have energy
criteria for primary replica choosing slightly better than time, and
when corproc = 1, the energy becomes worse than the time.

This is because, for most of the cases, the reliability of our replica
is high, so that we can simply choose the replica which costs the
least energy as primary, and delete all secondary when it finishes
successfully. But in the case of corproc = 1, the WCETs of each task
on different processors are the same, so the order of the processors
for any task is the same, and is relative to the power and reliability
parameters (P 4 and Ax). This can result in a few fully used proces-
sors, with the other processors being empty. Also, for time criteria,
primary replicas will be randomly balanced on different fully used
processors, because every replica of a task has the same WCET. But
for energy, the processors which cost less energy are the same for
all tasks. Then these processors will execute all mapped replicas as
primary, and others will execute all mapped replicas as secondary,
which increases the overlap. This is why, when corproc = 1, we
cannot save as much energy as in other cases, and this is why the
energy criteria performs worse than the time criteria.

ICPP’20, August 17-20, 2020, Edmonton, AB, Canada

Corpask = 0.5
1.25

1.00

) .
5
5 075
2 =3
S 2
P %
£ P £
o ~ i
S ok ~ ®
g 050 _—
& =
0.25 _—
S S s s s
S< s 2o = R<
S8 P g gs S8
000 N2 82 8d 83 E
0.00 0.25 0.50 0.75 1.00

Processor correlation

mapping LowerBound deP = deR ~ inE random

(a) Comparing mapping strategies when using time-time as scheduling
strategy

Li Han, Yiqin Gao, Jing Liu, Yves Robert, and Frédéric Vivien

Corgsk = 0.5

1.00

0.50 =

Ratio to the baseline
dop

0.25 1
o I S I s
58 Ro So Ro &
S e o S x9N
0.00- S &= S o od @
0.00 0.25 0.50 0.75 1.00
Processor correlation
: LowerBound ~ energy-time time-time
scheduling energy-energy ~ time-energy randomShuffling

(b) Comparing scheduling strategies when using deP as mapping strategy

Figure 1: Ratio of energy consumption using different mapping and scheduling strategies under big failure rate, when varying

corproc, with basicWork = 0.3, fyy = 1, R; = 0.95 and cory,i = 0.5.

COrproc = 0.5 Corproc =1

v
5
3 e
2075 g
P £
= 2
2 050 5
&
9 —
& 025
e o 2o 2o 2 Rg 2o B2 Rs Ro
0.00- 87 22 23 %3 83 23 EX $3 E Sa
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
Bow
mapping LowerBound deP + deR - inE random

(a) Comparing mapping strategies when using time-time as scheduling
strategy

COrproc = 0.5 COrproc =1
1.25
.g 1.00
¢ —_ e
£075
g &
2 0.50
g — 1 7 T T
Z 025
gz gs g3 g2 8s 82 g2 g2 g3 g5
$2 < < S S22 2 28 X 28
0.00- 87 82 83 82 IS as a3 B S
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
Bojw
schedulin, LowerBound = energy-time time-time
g energy-energy * time-énergy randomShuffling

(b) Comparing scheduling strategies when using deP as mapping strategy

Figure 2: Ratio of energy consumption using different mapping and scheduling strategies under big failure rate when varying

Pojws With basicWork = 0.3, R; = 0.95 and cory,z, = 0.5.

6.2.3 Task variability. Figure 2 presents the results when Sy,
varies. We observe that, for almost all the mapping and scheduling
criteria, the results are similar whatever the value of S}y This is
because we map and schedule tasks based on their WCETs, so the
mapping and scheduling results are independent of the value of
Pb/w- Furthermore, each task i has the same f; on the different pro-
cessors. Therefore the energy consumption ratios tend to be similar.
But in the case of corproc & 1, we can see that the ratio of energy
scheduling criteria increases with fy,. In fact, when we have a
larger value of fp/y, the actual execution time is closer to the WCET.
So that, although the mappings and schedulings are the same for
different f},, replicas will take longer time during the actual exe-
cution. At the same time, as explained in the previous paragraph,
we have a more serious overlap in the case of corproc = 1 and for
energy criteria. This is why corproc = 1 performs differently when
varying fp. However this phenomenon is not obvious (= 5%),
so we can always conclude that the result is independent of S

When fyy is small, actual execution times can greatly differ from
the WCETs used for mapping and scheduling. However, in this
case, our heuristics have a performance similar to that of the lower
bound, which shows that they are very robust.

6.2.4 Utilization and reliability threshold. From Figure 3, we ob-
serve the performance of different mapping and scheduling criteria
when varying basicWork and R;.

We can see the case corproc = 0.5 in the first row of Figures 3.
During the mapping phase, deR has a slightly worse performance
than inE and deP, which perform similarly to the lower bound.
During the scheduling phase, all criteria have similar performance,
including the random strategy and the lower bound.

With corproc = 1, during the mapping phase, the second row
of Figure 3a shows that the difference between different criteria
becomes smaller when basicWork and R; increase. Inversely, the
difference with the lower bound becomes larger, but it is still less

Energy-aware strategies for reliability-oriented real-time task allocation on heterogeneous platforms

R=0.38 R =0.95
1.25
1.00
o
3
0.75 <
B
g
0.50 0
) =
s ee——— —_ - &
° =
£ 0.25
F3 = 2 s 2 s 2
= S= 22 S8 38 Z8 <2
-3 0.00- 8- K& S me &= &
S 1.25
8
]
£ 1.00 p———
& L - 2
_ =— —+
0.75 _5
E
g
0.50 I
0.25
3 32 2z |38 Sg g
0.00- 8% 83 83 3= g Sa
0.10 0.15 0.20 0.25 0.300.10 0.15 0.20 0.25 0.30
Basic Work
mapping LowerBound deP + deR - inE random

(a) Comparing mapping strategies when using time-time as scheduling
strategy

Figure 3: Ratio of energy consumption using different mapping

under big failure rate, with f,/,, = 1 and cory,g), = 0.5.

than 10% (except random), even in the worst case. For small values
of basicWork and R;, deR performs worse, but when basicWork and
R; increase, deR becomes similar to inE, or even better. deP has
always better or similar performance than deR and inE. For the
scheduling phase, from the second row of Figure 3b, we can still
find similar performance on all our criteria, but their difference
with the lower bound increases to 10% as in the mapping phase. The
reason is that with the increase of system load, it becomes harder
to map all replicas to their best processors, while the lower bound
is calculated without considering utilization constraints.

6.2.5 Number of failures. We counted the number of replicas that
failed during the execution in each experiment. In the set with small
failure rate, we have on average 0.44% failed replicas. Thus, in most
of the cases, it is enough to have a single replica mapped on the
processor that costs the least energy, because failures are scarce.
On the contrary, in the set with big failure rate, the average rate
of failed replicas increases to 7.57%. We can observe that the deP
mapping method used in conjunction with either the time or energy
scheduling criteria achieves the best performance, or a performance
similar to the best observed one, in both cases. This confirms that
the performance of our best heuristics is not affected by the failure
rate.

6.2.6 Success rate. All the tested heuristics were able to find a