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ABSTRACT
Low energy consumption and high reliability are widely identi-

fied as increasingly relevant issues in real-time systems on het-

erogeneous platforms. In this paper, we propose a multi-criteria

optimization strategy to minimize the expected energy consump-

tion while enforcing the reliability threshold and meeting all task

deadlines. The tasks are replicated to ensure a prescribed relia-

bility threshold. The platforms are composed of processors with

different (and possibly unrelated) characteristics, including speed

profile, energy cost and failure rate. We provide several mapping

and scheduling heuristics towards this challenging optimization

problem. Specifically, a novel approach is designed to control (i)

how many replicas to use for each task, (ii) on which processor

to map each replica and (iii) when to schedule each replica on its

assigned processor. Different mappings achieve different levels of

reliability and consume different amounts of energy. Scheduling

matters because once a task replica is successful, the other replicas

of that task are cancelled, which calls for minimizing the amount

of temporal overlap between any replica pair. The experiments are

conducted for a comprehensive set of execution scenarios, with

a wide range of processor speed profiles and failure rates. The

comparison results reveal that our strategies perform better than

the random baseline, with a gain of 40% in energy consumption,

for nearly all cases. The absolute performance of the heuristics is

assessed by a comparison with a lower bound; the best heuristics

achieve an excellent performance, with an average value only 4%

higher than the lower bound.
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1 INTRODUCTION
Real-time systems are composed of periodic tasks that are regularly

input to a parallel computing platform andmust complete execution

before their deadlines. In many applications, another requirement is

reliability: the execution of each task is prone to transient faults, so

that several replicas of the same task must be executed in order to

guarantee a prescribed level of reliability [2, 30]. Recently, several

strategies have been introduced with the objective to minimize the

expected energy consumption of the system while matching all

deadlines and reliability constraints [11, 12].

This work aims at extending these energy-aware strategies in the

context of heterogeneous platforms. Heterogeneous platforms have

been used for safety-critical real-time systems for many years [5].

With the advent of multiple hardware resources such as multi-cores,

GPUs, and FPGAs, modern computing platforms exhibit a high level

of heterogeneity, and the trend is increasing. The multiplicity of

hardware resources with very different characteristics in terms of

speed profile, reliability level and energy cost, raises an interest-

ing but challenging problem: given several device types, which

ones should we keep and which ones should we discard in order

to achieve the best possible tri-criteria trade-off (time, energy, re-

liability)? Needless to say, this optimization problem is NP-hard,

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
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even with two identical error-free processors, simply because of

matching deadlines.

This work provides several mapping and scheduling heuristics

to solve the tri-criteria problem on heterogeneous platforms. The

design of these heuristics is much more technical than in the case

of identical processors. Intuitively, this is because the reliability of

a replica of task τi depends upon the processor which executes it.

More precisely, the reliability R(τi ,mk ) of a replica of τi mapped on

processormk is R(τi ,mk ) = e−λk ci,k , where ci,k is the execution

time of τi onmk , and λk the failure rate ofmk . The total reliability

of task τi is a function of the reliability of all its replicas (which we

explicit in Equation 4 below); hence, it is not known until the end of

the mapping process, unless we pre-compute an exponential num-

ber of reliability values. Then there are many processors to choose

from, and those providing a high reliability, thereby minimizing the

number of replicas needed to match the reliability threshold, may

also require a high energy cost per replica: in the end, it might be

better to use less reliable but also less energy-intensive processors.

Furthermore, the reliability is not enough to decide for the mapping:

if two processors offer similar reliabilities for a task, it might be

better to select the one with smaller execution time, in order to

increase the possibility of mapping other tasks without exceeding

any deadline. Altogether, we face a complicated decision, and we

provide several criteria to guide the mapping process.

Overall, the objective is to minimize the expected energy con-

sumption while matching all deadlines and reliability constraints.

The expected energy consumption is the average energy consumed

over all failure scenarios. Consider a sample execution: whenever

the execution of a task replica succeeds, all the other replicas are

instantaneously deleted; therefore, the actual amount of energy

consumed depends both upon the error scenario (which replica is

the first successful) and upon the overlap between replicas (some

replicas are partially executed and interrupted when the successful

one completes). Given a mapping, the scheduling aims at reducing

overlap between any two replicas of the same task. Note that having

an overlap-free scheduling is not always possible because of utiliza-

tion constraints. Also, deciding whether an overlap-free scheduling

exists for a given mapping is NP-hard [9], even for deterministic

tasks.

Finally, in actual real-time systems, tasks often complete before

their worst-case execution time, or WCET, so that execution times

are routinely modeled as stochastic. For instance, one typically as-

sumes that the execution time of τi onmk follows a uniform prob-

ability distribution in the range [β
b/w

ci,k , ci,k ] for some constant

β
b/w
< 1 (ratio of best case over worst case). In the end, the expected

energy consumption must also be averaged over all possible values

for execution times in addition to over all failure scenarios. Our

mapping heuristics aim at minimizing energy consumption based

upon a lower-bound formula that assumes no overlap between any

two replicas of the same task, while our scheduling heuristics aim

at minimizing such an overlap. To assess the performance of our

heuristics, we use a comprehensive set of execution scenarios, with

a wide range of processor speed profiles and failure rates. When

the failure rate is low, most heuristics are equivalent, but when the

failure rate is higher, only a few heuristics achieve good perfor-

mance. Because we have no guarantee on the performance of the

Table 1: Key Notations

Notation Explanation

N and M number of tasks and of processors

p period (deadline) for each task instance

ci,k WCET for task τi on processormk

ui,k =
ci,k
p utilization of task τi executing on processormk

uk utilization ofmk (sum of utilization of replicas

assigned tomk )
Ri target reliability threshold for task τi
λk failure rate of processormk
P (mk ) power consumed per time unit on processormk
Es total static energy consumption

Ed (τi ,mk ) dynamic energy cost of task τi on processormk
R(τi ,mk ) reliability of task τi on processormk

global mapping and scheduling process, we analytically derive a

lower bound for the expected energy consumption of any mapping.

This bound cannot always be met. Nevertheless, we show that the

performance of our best heuristics remains quite close to this bound

in the vast majority of simulation scenarios.

The main contributions of the paper are the following:

• The formulation of the tri-criteria optimization problem;

• The design of several mapping and scheduling heuristics;

• The characterization of a lower bound for energy consump-

tion;

• An experimental evaluation based on a comprehensive set

of simulations scenarios, showing that two of the heuristics

achieve the best performance, and are always very close to

the lower bound.

The rest of the paper is organized as follows. Section 2 provides

a detailed description of the optimization problem under study, in-

cluding a few notes on its complexity. The mapping and scheduling

heuristics are described in Section 3 and 4 respectively. The perfor-

mance lower bound is introduced in Section 5. Section 6 is devoted

to a comprehensive experimental comparison of the heuristics. Sec-

tion 7 presents related work. Finally, Section 8 gives concluding

remarks and hints for future work.

2 MODEL
The inputs to the optimization problem are a set of real-time in-

dependent tasks, a set of non-identical processors and a reliability

target. Key notations are summarized in Table 1.

2.1 Platform and tasks
The platform consists ofM heterogeneous processorsm1,m2, . . . ,

mM and a set of N periodic atomic tasks τ1,τ2, . . . ,τN . Each task τi
has WCET ci,k on the processormk . The WCETs among different

processors are not necessarily related. In the experiments, we gener-

ate the ci,k values with the method proposed in [1], where we have

two parameters to control the correlation among task execution

times and processors (see Section 6.1 for details). Each periodic task

τi generates a sequence of instances with period p, which is equal

to its deadline. In this work, we assume that all tasks have the same

period p, so that a single instance of each task must execute every

p seconds. Note that assuming that all tasks are atomic and with

same period is the standard assumption for real-time task graphs

(or DAGs) [23].
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As already mentioned, real-time tasks usually complete execu-

tion earlier than their estimated WCET: actual execution times are

assumed to be data-dependent and non-deterministic, randomly

sampled from some probability distribution whose support is upper

bounded by the WCET. See Section 6.1 for details on the generation

of actual execution times from WCET values. The utilization ui,k
of task τi executing on processormk is defined as ui,k =

ci,k
p . The

utilization of a processor is the sum of the utilizations of all tasks

that are assigned to it.

2.2 Power and energy
The power consumed per time unit on processormk is

P(mk ) = Pk,s + дPk,d (1)

where Pk,s is the static power; д represents the system state and

indicates whether dynamic power Pk,d is currently being consumed

by mk : when mk executes a task, д = 1, otherwise д = 0. To

summarize, we have 2M input values, {P1,s , P2,s . . . PM,s } for static

powers and {P
1,d , P2,d . . . PM,d } for dynamic powers.

The dynamic energy consumption Ed (τi ,mk ) of task τi on pro-

cessormk is estimated using the WCET:

Ed (τi ,mk ) = Pk,d × ci,k (2)

but we use the value derived from the actual execution time in the

experiments. The total static energy consumption is simply given

by

Es =
∑

k ∈Used

Pk,s × p (3)

where Used denotes the index set of the processors used by the

schedule.

2.3 Reliability
We consider transient faults, modeled by an Exponential probability

distribution of rate λk on processormk . Thus, fault rates differ from

one processor to another. This is a very natural assumption for a

heterogeneous platform made of different-type processors. At the

end of the execution of each task, there is an acceptance test to

check the occurrence of soft errors induced by the transient faults.

It is assumed that acceptance tests are 100% accurate, and that the

duration of the test is included within the task WCET [12].

The reliability of a task instance is the probability of executing

it successfully, in the absence of software faults. The reliability of

task τi on processormk with WCET ci,k is R(τi ,mk ) = e−λk×ci,k .
During the mapping phase, task τi will have several replicas exe-
cuting on different processors, in order to match some reliability

threshold. Let alloc(i) denote the index set of the processors execut-
ing a replica of τi . The mapping achieves the following reliability

R(τi ) for task τi :

R(τi ) = 1 − Πk ∈alloc(i)(1 − R(τi ,mk )) (4)

Indeed, the task will succeed if at least one of its replicas does: the

success probability is thus equal to 1 minus the probability of all

replicas failing, which is the expression given in Equation (4).

Each task τi has a reliability threshold Ri which is an input

of the problem and that must be met by the mapping. In other

words, the constraint writes R(τi ) ≥ Ri for 1 ≤ i ≤ N . Because the

tasks are independent, it is natural to assume that they might have

different reliability thresholds: a higher threshold means that more

resources should be assigned for the task to complete successfully

with a higher probability. In the experiments we use Ri = R for

all tasks, but our heuristics are designed to accommodate different

thresholds per task.

2.4 Optimization Objective
The objective is to determine a set of replicas for each task, a set

of processors to execute them, and to build a schedule of length at

most p, so that expected energy consumption is minimized, while

matching the deadline p and reliability threshold Ri for each task τi .
As already mentioned in Section 1, the expected energy consump-

tion is an average made over all possible execution times randomly

drawn from their distributions, and over all failure scenarios (with

every component weighted by its probability to occur). An analyti-

cal formula is out of reach, and we use Monte-Carlo sampling in

the experiments. However, we stress the following two points:

• To guide the design of the heuristics, we use a simplified

objective function; more precisely, we use WCETs instead

of (yet unknown) actual execution times, and we conser-

vatively estimate the dynamic energy of a task as the sum

of the dynamic energy of all its replicas. Because mapping

decisions are based upon WCETs, the number of enrolled

processors does not depend upon actual execution times and

the static energy is always the same for all scenarios, namely

the length of the period times the sum of the static powers

of the enrolled processors (see Equation (3)).

• To assess the absolute performance of the heuristics, we

derive a lower bound for the dynamic energy. This bound is

based upon actual execution times but neglects scheduling

constraints and assumes no overlap between any two task

replicas, hence it is not reachable in general. However, we

show that our best heuristics achieve performance close to

this bound.

2.5 Complexity
The global optimization problem is obviously NP-hard, since it is

a generalization of the makespan minimization problem with a

fixed number of parallel processors [4]. The optimization of the

sole scheduling phase is also NP-hard: if the number of replicas has

already been decided for each task, and if the assigned processor of

each replica has also been decided, the scheduling phase aims at

minimizing the expected energy consumption by avoiding overlap

between the replicas of a same task [9]. Even if the task deadline

was not constraining (very large deadline with respect to the worst-

case execution time of tasks), the problem would remain NP-hard.

We formally state this latter problem and show that it is NP-hard.

Definition 1 (MinEnergyMaxReliability). Consider an hetero-

geneous platform composed of M heterogeneous processors,m1,

...,mM , and N (non-periodic) tasks τ1,τ2, ...,τN . Executing task τi
on processormk has an energy cost of E(τi ,mk ) and has a proba-

bility of success of R(τi ,mk ). Let E and R be two constants. The

MinEnergyMaxReliability decision problem is: is it possible to

schedule the tasks on the processors so that: (i) the total energy

consumed does not exceed E; and (ii) the probability that all tasks

succeed is at least R?
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Lemma 1. Problem MinEnergyMaxReliability is NP-complete.

Proof. We prove this result by a reduction from the 2-partition

problem [4]. Let I1 be an instance of 2-partition with N positive

integers, a1, ...,aN . Let S =
∑N
i=1

ai . The question is: is it possible

to find a subset A of {1, ...,N } such that∑
1≤i≤N
i ∈A

ai =
∑

1≤i≤N
i<A

ai =
S

2

.

From I1 we build an instance I2 of MinEnergyMaxReliability

as follows. We haveM = 2 processors. Then we have N tasks each

having the same execution times on both processors: ci,1 = ci,2 =

ai . The failure rates are defined by: λ1 =
1

S and λ2 = 1. The static

energy is null, P1,s = P2,s = 0, and the dynamic energy is defined

by P
1,d = 1, P

2,d =
1

S . Therefore, we have:{
E(τi ,m1) = ai and R(τi ,m1) = e−

ai
S

E(τi ,m2) =
ai
S and R(τi ,m2) = e−ai

Finally, we let E = 1

2
(S + 1) and R = e−

1

2
(S+1) = e−E .

One can easily check that the size of I2 is polynomial in the size

of I1, that all the E(τi ,mk )’s are positive and that all the R(τi ,mk )’s

are strictly between 0 and 1.

Let us consider any mapping of theM tasks on the two proces-

sors. Let A be the index set of tasks mapped on processor 1 in this

mapping, and letA =
∑
i ∈A ai . Let E be the total energy consumed

by this mapping and let R be the reliability of the whole set of tasks.

We have: E = A S−1

S + 1 and ln(R) = −S + A S−1

S . One can then

easily show that I2 has a solution if and only if I1 has a solution.

□

3 MAPPING
In the mapping phase, we need to define the number of replicas

for each task, as well as the execution processor for every replica,

aiming at meeting the reliability target while minimizing the en-

ergy cost. One difficulty introduced by platform heterogeneity is

that we do not know the number of replicas needed for each task

to reach its reliability threshold, before completing the mapping

process, because different processors have different failure rates

and speeds and, hence, they provide different reliabilities for each

replica. Therefore, the simpler three-step method of [9, 12] cannot

be applied.

As shown in Algorithm 1, given a set of tasks with their reliability

targets and a set of heterogeneous processors, we first order the

tasks according to TaskMapCriteria, which includes:

• deW (inW ): decreasing (increasing) average work size c̄i =
ci,1+ci,2+· · ·+ci,M

M ;

• deMinW (inMinW ): decreasing (increasing) minimum work

size c̄i = min
1≤k≤M ci,k ;

• deMaxW (inMaxW ): decreasing (increasing) maximum work

size c̄i = max
1≤k≤M ci,k :

• random: random ordering.

Then, for each task in the ordered list, we order the processors

for mapping its replicas according to ProcMapCriteria, which

includes:

• inE: increasing energy cost;

Table 2: Example

mk E(τi ,mk ) R(τi ,mk )
R(τi ,mk )
E(τi ,mk )

−
log

10
(1−R(τi ,mk ))

E(τi ,mk )

1 1 0.9 0.9 1

2 2 0.99 0.495 1

3 1 0.99 0.99 2

4 2 0.9 0.45 0.5

• deR: decreasing reliability;

• deP : decreasing ratio of −
log

10
(1−R(τi ,mk ))

E(τi ,mk )
(explained below);

• random: random ordering.

We use the example shown in Table 2 to explain how to de-

sign a better criteria in ProcMapCriteria. Assume there are four

processor sets with different energy and reliability configurations.

Considering only the reliability, we cannot distinguish between

the second and third sets. Apparently, the third set is better since

its processors consume less energy and provide the same level of

reliability. The problem is the same when ordering processors only

according to energy cost. This gives us a hint that we need to con-

sider energy and reliability interactively. A first idea would be to

use the ratio
R(τi ,mk )
E(τi ,mk )

, which expresses the reliability per energy

unit of task τi executing on processormk . But consider a task in-

stance with a reliability target Ri = 0.98: it requires either one

processor from the second set or two processors from the first set.

Both solutions match the reliability goal with the same energy cost

4. We aim at a formula that would give the same weight to both

solutions. The ratio −
log

10
(1−R(τi ,mk ))

E(τi ,mk )
is a good candidate, because

the total energy cost is the sum of all processors while the reliability

is a product. This discussion explains howwe have derived the third

criteria deP in ProcMapCriteria, namely to order processors by

decreasing ratio of −
log

10
(1−R(τi ,mk ))

E(τi ,mk )
.

For the mapping phase, we add replicas for task τi in the or-

der of the processor list until the reliability target Ri is reached.

The algorithm uses the probability of failure PoF = 1 − R(τi ) =
Πk ∈alloc(i)(1 − R(τi ,mk )) (Equation (4)). The mapping process al-

ways ensures that: (i) no two replicas of the same task are assigned

to the same processor; (ii) the utilization uk of each processor does

not exceed 1.

4 SCHEDULING
In the scheduling phase, we aim at ordering the tasks mapped on

each processor, with the objective to minimize the energy consump-

tion during execution. Recall that the success of any replica leads to

the immediate cancellation of all the remaining replicas, a crucial

source of energy saving. Our approach is to identify a primary

replica for each task, then all its other replicas become secondaries.

The goal of the proposed scheduling is to avoid overlap between

the execution of the primary and secondary replicas for each task:

the primary must be terminated as soon as possible, while the sec-

ondaries must be delayed as much as possible. Whenever a primary

replica of a task succeeds, the energy consumption will be minimal

for that task if no secondary replica has started executing yet. Our

scheduling algorithm uses a layered approach: first we map the first
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Algorithm 1: Replication setting and mapping

Input: A set of tasks τi with reliability targets Ri ;
a set of heterogeneous processorsmk
Output: An allocation σm of all replicas on the processors

1 begin
2 order all the tasks with TaskMapCriteria and renumber them

τ1, . . . , τN
/* initialize the utilization of all processors to zero */

3 u ← [0, . . . , 0]

/* iterate through the ordered list of tasks */

4 for i ∈ [1, . . . , N ] do
/* order processors for each task */

5 order all processors for task τi with ProcMapCriteria and

renumber them proc1, . . . , procM
/* this ordered list may differ from task to task */

6 k = 1

7 PoF = 1

8 while 1 − PoF < Ri do
9 temp = uk + ui,k

10 if temp ≤ 1 then
11 uk = temp
12 PoF = PoF × (1 − R(τi ,mk ))

13 add one replica of τi on prock
14 k + +
15 if k > m then
16 return not feasible

17 return σm

replica of each task, which we call the primary replica; and then,

in a round-robin fashion, we map the remaining replicas (if they

exist), which we call the secondaries. Here is a detailed description

of Algorithm 2:

(1) First we order tasks by criterion TaskSchedCriteria, for

which we propose:

• deNR (inNR): decreasing (increasing) number of replicas;

• deU (inU ): decreasing (increasing) total utilization (sum

up the utilization of all replicas);

• random: random ordering.

(2) Then we process the list of tasks in that order, and select a

primary replica for each task, which we execute as soon as

possible on its assigned processor, right after already sched-

uled primary replicas (if any). We use two different criteria

PrimarySchedCriteria for selecting primary replicas:

• time: choose the processor that can complete the execution

of the replica the earliest (given already made scheduling

decisions);

• energy: choose the processor that can execute the replica

with smallest dynamic energy.

(3) Once primary replicas have all been scheduled, we reverse

the order of the list of tasks, and we schedule the remaining

replicas (considered in a round-robin fashion in the reversed

list) as late as possible on their assigned processor. The idea

is to mimimize potential overlap between primary and sec-

ondaries for each task, hence to delay secondary replicas

until the end of the period. The rationale for reverting the

task list is that the primary replica of some task τ at the

end of the list may have been scheduled after some other

primary replica τ ′, hence the idea to process the secondary

Algorithm 2: Scheduling
Input: An allocation σm of all replicas on the processors

Output: An order of execution on each processor

1 begin
2 order all the tasks with TaskSchedCriteria and renumber them

τ1, . . . , τN
/* insert the primary replica for each task at the

beginning of each processor schedule */

3 for i ∈ [1, . . . , N ] do
4 if PrimarySchedCriteria is “time” then
5 schedule the primary replica of τi that could finish at the

earliest

6 else if PrimarySchedCriteria is“energy” then
7 schedule the primary replica of τi that consumes the

minimum energy

/* insert the secondaries backwards from the end of each

processor schedule */

8 reverse the task ordering

9 while there is still at least one replica to be scheduled do
10 for i ∈ [1, . . . , N ] do
11 if there is still a replica of τi to be scheduled then
12 if SecondarySchedCriteria is “time” then
13 schedule the secondary replica of task τi that could

start the latest

14 else if SecondarySchedCriteria is “energy” then
15 schedule the secondary replica of task τi that

consumes the maximum energy

replica of τ ′ before that of τ and push it further away at the

end of the period.

(4) Finally, there only remains to detail which secondary replica

of a task is scheduled first (whenever the task has three repli-

cas or more). We also have two criteria SecondarySched-

Criteria for choosing secondary replicas:

• time: choose the replica whose start-up time can be the

latest (given already made scheduling decisions); the idea

is to minimize overlap by maximizing slack;

• energy: choose the replica whose energy is the highest;

the idea is again to minimize overlap, thereby increasing

the probability of this costly replica to be cancelled.

As we have two different criteria for both selecting primaries and

secondaries, in total, we have four possible combinations, namely

time-time, time-energy, energy-time and energy-energy. For the base-

line scheduling (randomShuffling), we randomly order tasks on each

processor and execute them in sequence and as early as possible

(no idle time until the end of the period).

5 LOWER BOUND
In this section, we explain how to derive a lower bound for the

expected energy consumption of a solution to the optimization

problem, namely a mapping/scheduling heuristic that uses some of

the selection criteria outlined in Sections 3 and 4.

For each problem input, namelyN tasks τi with reliability thresh-
olds Ri ,M processorsmk with failure rates λk , and with all WCET

ci,k , we compute a solution, i.e., a mapping and ordering of all

replicas. We first use Monte-Carlo simulations (see Section 6) and

generate several sets of values for the actual execution timewi,k of
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τi onmk . The valueswi,k are drawn uniformly across processors as

some fraction of their WCET ci,k (refer to Section 6.1 for details).

Now, for each set of values wi,k , we generate a set of failure

scenarios, compute the actual energy consumed for each scenario,

and report the average of all these values as the expected energy

consumption. A failure scenario operates as follows. We call an

event the end of the execution of a task replica on some processor.

At each event, we flip a biased coin (weighted with the probability

of success of the replica on that processor) to decide whether the

replica is successful or not. If it is, we delete all other replicas of the

same task. At the end of the execution, we record all the dynamic

energy that has been actually spent, accounting for all complete

and partial executions of replicas, and we add the static energy

given by Equation (3). This leads to the energy consumption of the

failure scenario. We average the values over all failure scenarios

and obtain the expectation, denoted as E({wi,k }).

In addition, we also compute a lower bound LB({wi,k }) as fol-

lows. Our goal is to accurately estimate the energy consumption of

an optimal solution. Because the static energy depends upon the

subset of processors that are used in the solution (see Equation (3)),

we need to try all possible subsets. Given a processor subset S, we

consider each task τi independently, and try all possible mappings

of replicas of τi using only processors in S. Thus we explore all

subsets T of S. A subset T is safe if mapping a replica of τi on
each processor of T meets the reliability criteria Ri , and if no strict

subset of T is safe. Note that safe sets are determined using the

WCETs ci,k , and not using thewi,k , because this is part of the prob-

lem specification. Now for each safe subset T , we try all possible

orderings (there are k! of them if |T | = k); for each ordering, we

compute the expected value of the dynamic energy consumption as

follows: if, say, T = {m1,m3,m4} and the ordering ism3,m4,m1,

then we compute

P
3,dwi,3 + (1 − e

−λ3wi,3 )P
4,dwi,4

+ (1 − e−λ3wi,3 )(1 − e−λ4wi,4 )P
1,dwi,1.

We see that we optimistically assume no overlap between the three

replicas, and compute the dynamic energy cost as the energy of the

first replica (always spent) plus the energy of the second replica

(paid only if the first replica has failed) plus the energy of the

third replica (paid only if both the first and second replicas have

failed). Note that here we use execution times and failure probabili-

ties based upon the actual execution timeswi,k and not upon the

WCETs ci,k . The value of the sum depends upon the ordering of

the processors in T , hence we check the 6 orderings and retain the

minimal value. We do this for all safe subsets and retain the minimal

value. Finally we sum the results obtained for each task and get the

lower bound for the original processor subset S. We stress that this

bound is not necessarily tight, because our computation assumes

no overlap for any replica pair, and does not check the utilization

of each processor (which may exceed 1). The final lower bound

LB({wi,k }) is the minimum over all processor subsets. Although

the computation has exponential cost, due to the exploration of all

processor subsets S, the computation of the expected energy for a

given ordering in a subset T of S obeys a closed-form formula.

6 PERFORMANCE EVALUATION
This section assesses the performance of our different strategies to

map and schedule real-time tasks onto heterogeneous platforms. In

Section 6.1, we describe the parameters and settings used during the

experimental campaign. We present the results in Section 6.2. The

algorithms are implemented in C++ and in R. The related code, data

and analysis are publicly available in [8]. A companion research

report with the comprehensive set of results is available in [10].

6.1 Experimental methodology
In the experiments, we haveM = 10 processors and N = 20 tasks

which have all the same period p = 100.
1
The set of WCETs is gen-

erated by the method proposed in [1], as mentioned in Section 2.1.

The WCET values are controlled by the correlation factor between

the different tasks (cor
task

) and between the different processors

(corproc). These two parameters vary between 0 and 1.
2
For example,

cor
task
= 0 (resp. corproc = 0) means that the WCET values between

different tasks on one processor (resp. between different proces-

sors for one task) are completely randomly generated. Inversely,

cor
task
= 1 (resp. corproc = 1) means that the WCET values between

different tasks on one processor (resp. between different processors

for one task) are all the same. We also define a parameter basicWork

as the estimated total utilization of the system with a single replica

per task, in order to study the impact of system pressure:

basicWork =

∑
i,k ci,k

M2p
=

∑
i,k ui,k

M2
(5)

In Equation (5), we use the average WCETs on the M processors

(

∑
k ci,k
M ) to estimate the execution time of task τi . We have M

processors available during period p, hence basicWork represents

an estimate of the fraction of time processors are used if each task

has a single replica. In the experiments, we vary basicWork from

0.1 to 0.3.

To generate the actual execution times of tasks from theirWCETs,

we use two parameters. The first one, β
b/w

, is global to all tasks: β
b/w

is the ratio between the best-case execution time and the worst-case

execution time. It is the smallest possible ratio between the actual

execution time of a task and its WCET. Therefore, the actual exe-

cution time of task τi on processormk belongs to [β
b/w

ci,k , ci,k ].
We consider five possible values of β

b/w
: 0.2, 0.4, 0.6, 0.8, and 1.

The second parameter, βi , is task dependent: βi describes whether
the instance of a task is a small one or a large one. βi is randomly

drawn in [0, 1]. A value of βi = 0 means that task τi has the short-
est execution time possible, and βi = 1 means that the actual

execution is equal to its worst case execution time. Overall, the

actual execution time of task τi on processormk is thus defined as:

wi,k = (βb/w + (1 − βb/w)βi )ci,k .
For a processormk in the platform, we fix the static power Pk,s

at 0.001 as in previous papers [22, 23, 26]. But for the dynamic

power and the failure rate, we have two sets of parameters. The

first set also follows values similar to those of the previous papers

[22, 23, 26]. For this set, we have a relatively large power and a

1
One execution is around 0.150 milliseconds with these parameters on a basic laptop.

2
We ignored the case when cortask = 0 and corproc = 1 for the parameter set with big

failure rate, because when tasks are completely unrelated, there (very likely) is a task

with very long execution time on all processors (corproc = 1). The number of replicas

needed to meet its reliability goal will exceed the number of available processors.
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very small failure rate. Therefore, the replicas using this first set

of parameters succeed in almost all cases. Thus, to evaluate our

heuristics in the context when failures occur more frequently, we

introduce a second set of parameters where the replicas have a

smaller power and a larger failure rate. For the first set, we choose

randomly the dynamic power Pk,d between 0.8 and 1.2, and the

failure rate λk between 0.0001 and 0.00023. And for the second

set, we have Pk,d 10 times smaller (between 0.08 and 0.12), and λk
100 times larger (between 0.01 and 0.023). With the second set of

parameters, the actual reliability of one replica ranges from 0.1 to

0.99. To be more realistic, in our experiments, processors with a

larger dynamic power Pk,d have a smaller failure rate λk . It means

that, a more reliable processor costs always more energy than a

less reliable one. We guarantee this by ordering inversely the Pk,d ’s
and the λk ’s after generating the random values.

Due to space limitations, we only include here figures about the

large failure rate set; figures for the small failure rate set can be

found in the companion research report [10]. The general trends

about the relative performance of heuristics is the same in both

sets, and we make specific comments when it not the case.

We vary the local reliability target Ri between 0.9 and 0.98

for the first set and between 0.8 and 0.95 for the second set. This

is to give the system a reasonable freedom while mapping and

scheduling. The reliability target is relatively high, implying that

tasks need plural replicas to reach it. Therefore, we give more

tolerance (smaller relialbility threshold) to the second set with a

larger failure rate, because otherwise we may not be able to find

feasible mappings.

Table 3: Ratio of energy consumption to the baseline of dif-
ferent mapping and scheduling ordering tasks criteria

map

sch

deNR inNR deU inU random

deW 0.5655 0.5662 0.5655 0.5660 0.5663

inW 0.5631 0.5635 0.5630 0.5635 0.5635

deMinW 0.5658 0.5662 0.5657 0.5661 0.5665

inMinW 0.5637 0.5642 0.5637 0.5642 0.5641

deMaxW 0.5658 0.5664 0.5657 0.5663 0.5665

inMaxW 0.5629 0.5633 0.5629 0.5633 0.5633

random 0.5633 0.5639 0.5633 0.5638 0.5639

6.2 Results
In this section, we analyze the impact of the different parameters

on the performance of the heuristics. Due to lack of space, the com-

prehensive set of all results is available in the extended version [10].

We choose as default values β
b/w
= 1, basicWork = 0.3, Ri = 0.95

for the set with big failure rate, and Ri = 0.98 for the set with

small failure rate. This set of parameters is chosen to constrain

the solution so that we can observe the most interesting results.

For cor
task

and corproc, we fix them at 0.5 as default value. Each

experiment is the average of 10 sets of WCET values. For each set,

we generate 10 sets of random Pk,d and λk values. For each Pk,d
and λk generated, the final result is the average of 10 executions.

Overall, we run 1, 000 randomly generated experiments for each set

of β
b/w

, basicWork, Ri , cortask and corproc values. The total number

of experiments ran is 3,075,000 for each heuristic. Each result is rep-

resented as a ratio to the random baseline method which is defined

as follows: for each task, we add replicas randomly on available

processors until reaching its reliability target during the mapping

phase; for scheduling, we randomly order replicas mapped on each

processor and execute them in sequence and as soon as possible. We

also compare different strategies with the lower bound proposed

in Section 5. We report on these figures the average number of

replicas needed in total for 20 tasks (on the left side) and of failures

that occur for the 1, 000 random trials for each setting (on the right

side). These numbers are reported in black above the horizontal

axis in each figure.

6.2.1 Ordering tasks for mapping and scheduling. In Table 3, we

calculated the ratio of combinations of different mapping and sched-

uling methods to the baseline method, when considering different

criteria for ordering tasks. We can see that, in the whole set of

experiments, all criteria for ordering tasks perform equally well

(around 56%). The difference between the best and the worst perfor-

mance is only around 0.36%. Hence these criteria do not critically

influence energy consumption. In the following results, for the task

ordering, we only consider the decreasing average WCET (deW )

for the mapping, and the decreasing utilization (deU ) for the sched-

uling, which give priority to the tasks that putting more pressure

to the system. We then focus on selecting processors during the

mapping phase, and on choosing primary and secondary replicas

during the scheduling phase.

6.2.2 Processor correlation. Figure 1 shows results when processor

correlation varies. We found that our strategies consume less than

25% of the energy needed by the baseline strategy when corproc = 0,

and the result is close to the lower bound. But we can observe that

this percentage increases with corproc.

For the mapping phase, we can see from Figure 1a that, when

corproc is not equal to 1, inE performs better than deR. But when

corproc increases to 1, the performance of deR catches up. And in

all cases, deP performs better than, or similarly to the best strategy

between deR and inE.

For the scheduling strategies, Figure 1b shows that there is little

difference between our different criteria, the random one excepted.

But we can still observe that, with corproc , 1, we have energy

criteria for primary replica choosing slightly better than time, and

when corproc = 1, the energy becomes worse than the time.

This is because, for most of the cases, the reliability of our replica

is high, so that we can simply choose the replica which costs the

least energy as primary, and delete all secondary when it finishes

successfully. But in the case of corproc = 1, the WCETs of each task

on different processors are the same, so the order of the processors

for any task is the same, and is relative to the power and reliability

parameters (Pk,d and λk ). This can result in a few fully used proces-

sors, with the other processors being empty. Also, for time criteria,

primary replicas will be randomly balanced on different fully used

processors, because every replica of a task has the same WCET. But

for energy, the processors which cost less energy are the same for

all tasks. Then these processors will execute all mapped replicas as

primary, and others will execute all mapped replicas as secondary,

which increases the overlap. This is why, when corproc = 1, we

cannot save as much energy as in other cases, and this is why the

energy criteria performs worse than the time criteria.
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(b) Comparing scheduling strategies when using deP as mapping strategy

Figure 1: Ratio of energy consumption using different mapping and scheduling strategies under big failure rate, when varying
corproc, with basicWork = 0.3, βb/w = 1, Ri = 0.95 and cortask = 0.5.
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(b) Comparing scheduling strategies when using deP as mapping strategy

Figure 2: Ratio of energy consumption using different mapping and scheduling strategies under big failure rate when varying
βb/w, with basicWork = 0.3, Ri = 0.95 and cortask = 0.5.

6.2.3 Task variability. Figure 2 presents the results when β
b/w

varies. We observe that, for almost all the mapping and scheduling

criteria, the results are similar whatever the value of β
b/w

. This is

because we map and schedule tasks based on their WCETs, so the

mapping and scheduling results are independent of the value of

β
b/w

. Furthermore, each task i has the same βi on the different pro-

cessors. Therefore the energy consumption ratios tend to be similar.

But in the case of corproc ≈ 1, we can see that the ratio of enerдy
scheduling criteria increases with β

b/w
. In fact, when we have a

larger value of β
b/w

, the actual execution time is closer to theWCET.

So that, although the mappings and schedulings are the same for

different β
b/w

, replicas will take longer time during the actual exe-

cution. At the same time, as explained in the previous paragraph,

we have a more serious overlap in the case of corproc = 1 and for

enerдy criteria. This is why corproc = 1 performs differently when

varying β
b/w

. However this phenomenon is not obvious (≈ 5%),

so we can always conclude that the result is independent of β
b/w

.

When β
b/w

is small, actual execution times can greatly differ from

the WCETs used for mapping and scheduling. However, in this

case, our heuristics have a performance similar to that of the lower

bound, which shows that they are very robust.

6.2.4 Utilization and reliability threshold. From Figure 3, we ob-

serve the performance of different mapping and scheduling criteria

when varying basicWork and Ri .

We can see the case corproc = 0.5 in the first row of Figures 3.

During the mapping phase, deR has a slightly worse performance

than inE and deP , which perform similarly to the lower bound.

During the scheduling phase, all criteria have similar performance,

including the random strategy and the lower bound.

With corproc ≈ 1, during the mapping phase, the second row

of Figure 3a shows that the difference between different criteria

becomes smaller when basicWork and Ri increase. Inversely, the

difference with the lower bound becomes larger, but it is still less
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(b) Comparing scheduling strategies when using deP as mapping strategy

Figure 3: Ratio of energy consumption using different mapping and scheduling strategies when varying basicWork and Ri ,
under big failure rate, with βb/w = 1 and cortask = 0.5.

than 10% (except random), even in the worst case. For small values

of basicWork and Ri , deR performs worse, but when basicWork and

Ri increase, deR becomes similar to inE, or even better. deP has

always better or similar performance than deR and inE. For the

scheduling phase, from the second row of Figure 3b, we can still

find similar performance on all our criteria, but their difference

with the lower bound increases to 10% as in the mapping phase. The

reason is that with the increase of system load, it becomes harder

to map all replicas to their best processors, while the lower bound

is calculated without considering utilization constraints.

6.2.5 Number of failures. We counted the number of replicas that

failed during the execution in each experiment. In the set with small

failure rate, we have on average 0.44% failed replicas. Thus, in most

of the cases, it is enough to have a single replica mapped on the

processor that costs the least energy, because failures are scarce.

On the contrary, in the set with big failure rate, the average rate

of failed replicas increases to 7.57%. We can observe that the deP

mappingmethod used in conjunction with either the time or enerдy
scheduling criteria achieves the best performance, or a performance

similar to the best observed one, in both cases. This confirms that

the performance of our best heuristics is not affected by the failure

rate.

6.2.6 Success rate. All the tested heuristics were able to find a valid
solution in all tested configurations with small failure rate. And in

the big failure rate cases, heuristics were able to build valid solutions

for more than 99.94% of the instances. The very high success rate

of our experiments shows the robustness of our approach.

6.2.7 Summary. In conclusion, our strategies can save more than

40% of the energy consumed by the baseline, except in the high

processor correlation case. The ratio to the baseline can be as low

as 20% in the best case. As for the different criteria used in the

heuristics, we find that the deP method is the best processor order-

ing during the mapping phase. For scheduling, we can find from

the result that, all our primary-secondary choosing criteria have a

similar result as the lower bound, except a difference of 10% in the

case of corproc ≈ 1. This means that our primary-secondary choos-

ing heuristic performs well. On the other hand, we point out that

strategies with the same method for choosing the primary replica

but different methods for choosing secondary replicas, perform

similarly. Hence the strategy for choosing the primary replica has

much more impact than the one for choosing secondary replicas.

We can find that, time-time and time-energy criteria performs better

when corproc ≈ 1, and energy-energy and energy-time have better

performance in other cases.

The performance of these best heuristics is only 17.0% higher

than the lower bound in the worst case. Furthermore, we report a

median value only 3.5% higher than that of the lower bound; and

the average value is only 4.3% higher. We can confidently conclude

that our best strategies perform remarkably well over the whole

experimental setting.

7 RELATEDWORK
7.1 Scheduling for heterogeneous platforms
There is a huge literature on scheduling for heterogeneous plat-

forms, and even dedicated workshops. Here, we only refer some

very recent work closely related to our problem but dealing with

non-periodic tasks. [22] maximizes the reliability of an energy-

constrained DAG executed on a heterogeneous platform while

using DVFS. Conversely, [26] minimizes the energy consumption

of a reliability-constrained DAG executed on a heterogeneous plat-

form while using or not DVFS. A group of authors published a

book [24] and several articles on the problem of DAG scheduling

on heterogeneous platforms. In Chapter 2 of book [24] and in [25]
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these authors consider the energy minimization when scheduling

a DAG with or without DVFS. In [23] they considered the same

problem while satisfying some reliability goal. However, these two

results do not consider reliability.

Overall, these studies do not consider real-time applications.

The deadlines constraining real-time tasks and applications make

problems significantly harder to tackle.

7.2 Scheduling of real-time applications on
homogeneous platforms

There is a very significant literature on real-time scheduling for

multiprocessor systems. However, most work is devoted to homo-

geneous processor systems, as exemplified by the survey [3] which

ignores altogether heterogeneous systems, and by the more recent

survey [18] where only 9 of the 78 references deal with hetero-

geneous platforms. [12] minimizes the energy when scheduling

independent tasks with different deadlines on a homogeneous plat-

form while satisfying some threshold on reliability. The study [9]

improved the solution from [12] in particular by carefully avoiding

overlaps between primary and secondary replicas. [11] considers

the same problem; however, it uses checkpointing to cope with

failures when all other work consider replication.

We refer the interested reader to [3, 9, 12, 18] for a compre-

hensive overview of the related work for homogeneous platforms.

Heterogeneous platforms make the problem even harder because

processors can have different speeds, energy costs, and failure rates.

Therefore, the processor preferred for one task by one of the objec-

tives and constraints —deadline satisfaction, energy minimization,

reliability threshold satisfaction— may be the worst processor for

another objective or constraint. Heuristics have thus to perform

complicated trade-offs in our three-criteria settings.

7.3 Scheduling of real-time applications on
heterogeneous platforms

Some related work targets the scheduling of real-time applications

on heterogeneous platforms, but without considering fault toler-

ance. For instance, [29] targets the execution of a DAG, but con-

sidering neither energy consumption nor fault-tolerance (when

DAGs are scheduled, tasks are always assumed to have the same

deadline). [7] targets the execution of independent tasks that access

shared resources, the access to resources being exclusive. Their

objective is to maximize the number of instances for which a solu-

tion is found. [14], [17] and [28] minimize energy consumption by

using DVFS, [14] when scheduling independent tasks, [17] a DAG,

and [28] a moldable application. [21] considers the scheduling of

independent tasks and DAGs under an energy constraint, while

[20] considers the scheduling of independent tasks under a thermal

constraint. [27] proposes a fully polynomial-time approximation

scheme (FPTAS) for minimizing the energy consumption for a set

of independent tasks executed on a set of heterogeneous (unrelated)

processing elements.

Some of the related work considers the execution of real-time ap-

plications on heterogeneous failure-prone platforms but is limited

to coping with a single failure per task or per processor. [15] maxi-

mizes the reliability of the considered DAG but does not consider

energy consumption and follows the primary/backup technique

and, thus, is limited to at most one failure per task of the DAG. [16]

attempts to maximize resource utilization (and does not consider

energy) when scheduling a set of independent tasks. It assumes

that at most one processor can fail, which enables the simultaneous

scheduling of several backup tasks on the very same processor as

at most one of them will need to be executed. [13] minimizes the

energy consumed for the execution of a DAG while satisfying a

reliability threshold. The proposed solution uses DVFS and Power

Mode Management (i.e., the ability to switch off idle processors to

low-power inactive state). This solution, however, cannot produce

a schedule more reliable than the original one. It also supports at

most one fault per processor. [6] minimizes the energy consumed

for the execution of a set of independent tasks while satisfying a

reliability threshold using DVFS and following a primary-backup

approach.

Very few studies consider the execution of real-time applications

on heterogeneous failure-prone platforms and can cope with two

or more failures per task. [19] minimizes the energy consumed for

the execution of a set of independent tasks while satisfying a relia-

bility threshold. The proposed solution uses DVFS. This solution,

however, is based on a primary-backup approach that is then ex-

tended. This approach, by design, cannot produce a schedule more

reliable than the original one with two replicas per task, strongly

relies on DVFS, and schedules several replicas of a same task on

the same processor (what most other approaches forbid). [5] tar-

gets the execution of a DAG on a heterogeneous platform while

satisfying a reliability threshold. However, the objective is not the

minimization of energy consumption but the maximization of the

utilization of energy consumption, which can be seen as a yield of

reliability improvement with respect to increase energy consump-

tion. As a consequence, [5] produces energy greedy schedules (see

subplots (a-1), (b-1), and (c-1) of Figure 1 in [5]). In Chapter 3 of

the already mentioned book [24], the authors consider cost min-

imization (which can be energy minimization) when scheduling

a DAG under deadline and reliability constraints. Therefore, we

consider the same problem but for a set of independent tasks rather

than for a DAG. Because of the dependence between tasks and the

chosen as-soon-as-possible scheduling of [24], this solution tends

to schedule simultaneously the different replicas of a single task.

As already pointed out in the studies [9, 12] that this can lead to a

significant waste of energy. Therefore, it would have been unfair to

compare our solution to that of [24] applied on independent tasks.

From what precedes, we have only identified a single existing

solution that enables to schedule real-time tasks on heterogeneous

platforms while minimizing energy consumption and satisfying

some bound on the overall reliability. However, this solution being

dedicated to DAGs lacks the possibility to minimize the overlapping

between replicas of a same task, what have been previously proved

to be crucial [9] and what we specifically targeted (cf. Section 4).

8 CONCLUSION
In this work, we have studied the problem of executing periodic real-

time tasks on an heterogeneous platform, with several objectives:

minimizing the energy consumption, guaranteeing some reliability

thresholds, and meeting all deadlines. For each task, we decide how

many replicas should be launched, and on which processors to map
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them. We tagged one replica per task as “primary” replica and the

other ones as “secondary” replicas. To obtain an absolute measure

for the evaluation of our heuristics, we have computed a theoretical

lower bound on energy consumption. Extensive simulations show

that our best heuristic always achieve very good performance, very

close to the lower bound (on average only 4% higher than this lower

bound). This performance was reached by considering processors

in the deP order when mapping the replicas of a task (roughly

speaking, deP is the ratio of a task failure rate by its energy cost),

by executing primary replicas as soon as possible and secondary

ones as late as possible, and by tagging replicas as “primary” using

an earliest completion time criterion when processors are highly

correlated, using an smallest energy criterion otherwise. Further-

more, while all decisions are taken with the worst-case execution

times (WCETs) of tasks as only input, the simulations used the

actual execution times; the best heuristic always achieved excellent

performance even when the actual execution times were far smaller

than the WCETs, showing the robustness of our approach.

Future work will aim at extending the algorithms to periodic

graphs of tasks instead of independent task sets. The dependences

between tasks will dramatically complicate the mapping and sched-

uling problems.
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