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Abstract—This work focuses on dynamic DAG scheduling
under memory constraints. We target a shared-memory platform
equipped with p parallel processors. We aim at bounding the
maximum amount of memory that may be needed by any
schedule using p processors to execute the DAG. We refine the
classical model that computes maximum cuts by introducing
two types of memory edges in the DAG, black edges for
regular precedence constraints and red edges for actual memory
consumption during execution. A valid edge cut cannot include
more than p red edges. This limitation had never been taken
into account in previous works, and dramatically changes the
complexity of the problem, which was polynomial and becomes
NP-hard. We introduce an Integer Linear Program (ILP) to
solve it, together with an efficient heuristic based on rounding
the rational solution of the ILP. In addition, we propose an
exact polynomial algorithm for series-parallel graphs. We provide
an extensive set of experiments, both with randomly-generated
graphs and with graphs arising form practical applications,
which demonstrate the impact of resource constraints on peak
memory usage.

Index Terms—Workflow; task graph; dynamic scheduler;
memory constraint; complexity.

I. INTRODUCTION

In the last decade, task systems have become ubiquitous to
deploy scientific applications on large-scale parallel platforms.
In such systems, the application is represented by a Directed
Acyclic Graph (DAG) of tasks, where the nodes represent
the tasks (a computational kernel composed of a sequential
set of operations to be applied to the input data), and the
edges represent the dependencies between the tasks. The set of
dependencies defines a partial order of execution. The problem
is to map the tasks onto a set of p computing processors. In this
paper, we target shared-memory platforms, where available
processors consist of dozens of cores that share a main
memory. A traditional objective is to determine a scheduling
that minimizes the total execution time, or makespan. The
makespan minimization problem has received considerable
attention in the scheduling literature. On the theoretical side,
many complexity results establish NP-hardness and inapprox-
imability results. On the more practical side, several list
heuristics have been developed to achieve close-to-optimal
makespans. These heuristics typically aim at minimizing the
critical path of the schedule, and use estimations of task
priorities such as bottom levels [1], [2]. However, all these
heuristics are designed statically, meaning that they assign
tasks to processors in a pre-determined ordering, before the

beginning of the parallel execution. It turns out such static
strategies are unlikely to reach their expected performance,
and this for many reasons: (i) task duration estimates are
known to be inaccurate and may be affected by unexpected
preemptions by the system; (ii) data transfer costs on the
platform are hard to correctly model and significantly vary
from one execution to another, because they strongly depend
upon link contention; and (iii) the resulting small estimation
errors are likely to accumulate and to cause large delays.
Altogether, static heuristics end up making wrong decisions!

This explains why most runtime systems [3], [4], [5], [6],
[7], [8] rely on dynamic scheduling, where task allocations and
their execution ordering are decided at runtime, based on the
system state and unexpected events. These runtime systems
dynamically maintain the list of tasks that are ready for
execution, and assign them on-the-fly to processors, thereby
accurately balancing the workload. However, not all dynamic
schedules are equally good, because of memory constraints.
Intuitively, a dynamic scheduling can be seen as a parallel
traversal of the task graph, with all processors progressing
simultaneously on different paths. At any time-step in the
execution, the amount of memory needed for the traversal
depends upon the input and output data of the tasks that are
active at that step (see Section III for a detailed description),
and this memory amount should never exceed the maximum
memory made available to the application. Otherwise, the
traversal will require the use of swap mechanisms or out-
of-core execution, which will dramatically (and negatively)
impact the achieved makespan [9], [10].

Consider a task graph whose internal nodes require a
large volume of temporary data, such as graphs arising from
multifrontal solvers [11]. Improper scheduling decisions may
lead dynamic schedules to hit a memory wall at some step
while everything was going fine in the previous steps; the
dynamic schedule suddenly reaches a state where any further
decision (any choice of the next task to execute) will exceed
the amount of available memory. This unfortunate scenario
arises because dynamic schedules usually consider only tasks
that are ready for execution, and have thus a very limited
insight into the fraction of the task graph that is yet to be
discovered and processed. To avoid such a pitfall, some global
information on the task graph is required to guide the dynamic
schedule and enforce safe execution paths.

In summary, dynamic scheduling is needed for performance,



but one should ensure that any dynamic schedule that can be
produced by the runtime system will never exceed the total
amount of memory available to the application. There are
few existing studies that take dynamic memory footprint into
account when scheduling task graphs, as detailed below in Sec-
tion II. In our previous work [12], [13], we have proposed an
approach to ensure that any dynamic schedule never exceeds
the available memory. In a nutshell, the idea is to introduce
fictitious dependencies in the task graph to cope with memory
constraints: these additional edges restrict the set of valid
schedules and, in particular, forbid the concurrent execution
of too many memory-intensive tasks. Formally, the additional
edges are introduced to decrease the value of the maximal
directed cut of the task graph, where the cut represents the total
memory currently used after executing some tasks (those on
one side of the cut) and before executing the rest of the tasks
(those on the other side of the cut). There is a price to pay:
each additional edge adds a fictitious dependence constraint,
thereby limiting the degree of parallelism in the execution. We
provide a detailed overview of this approach in Section III.

However, this previous work [12], [13] does not account
for resource limitation: there are only p processors, hence no
more than p tasks can be processed concurrently. In terms
of memory usage, ignoring resource limitation translates into
considering too many potential cuts, thereby requiring too
many fictitious edges, which unduly constraints the dynamic
schedules. In this paper, we refine the standard model for
memory-aware scheduling and introduce the first mechanism
to take resource limitation into account. Our new model
involves two types of memory edges in the DAG, black edges
for regular precedence constraints, and red edges for actual
memory consumption during execution. Then a valid edge
cut cannot include more than p red edges. This limitation
dramatically changes the complexity of the problem, which
was polynomial with a single edge type and becomes NP-
hard with two edge types. We provide an optimal solution for
series-parallel graphs and an efficient heuristic for arbitrary
graphs. The main contributions of this paper are the following:
• We introduce a new model with colored edges to account

for resource constraints when computing peak memory;
• We show that the optimization problem becomes NP-

complete, but we introduce an Integer Linear Program
(ILP) to solve it, together with an efficient heuristic based
on rounding the rational solution of the ILP. We also
propose an exact polynomial algorithm for series-parallel
graphs (SPGs);

• We provide an extensive set of experiments, both with
randomly-generated graphs and with graphs arising form
practical applications, that demonstrate the impact of
resource constraints on peak memory usage.

The rest of the paper is organized as follows. We first
briefly review the existing work on memory-aware task graph
scheduling in Section II. We provide background on memory-
aware scheduling in Section III. Then, Section IV is the core of
the paper: we introduce the new model, assess its complexity,
provide an optimal algorithm for Series Parallel Graphs, and

discuss extensions. Section V is devoted to simulations both
with randomly-generated graphs and with graphs arising form
practical applications; we compare the solution compute by
an ILP solver together with the solution found by an efficient
polynomial-time heuristic. Finally, we conclude and give hints
for future work in Section VI.

II. RELATED WORK

Memory and storage have always been limiting parameters
for large computations, as outlined by the pioneering work of
Sethi and Ullman [14] on register allocation for task trees,
modeled as a pebble game. The problem of determining
whether a directed acyclic graph can be pebbled with a given
number of pebbles (i.e., executed with a given number of
registers) has been shown NP-complete by Sethi [15] if no ver-
tex is pebbled more than once (the general problem allowing
recomputation, that is, re-pebbling a vertex which have been
pebbled before, has been proven PSPACE complete [16]).

This model was later translated to the problem of scheduling
a task graph under memory or storage constraints for scientific
workflows whose tasks require large I/O data. Such workflows
arise in many scientific fields, such as image processing,
genomics, and geophysical simulations. In several cases, the
underlying task graph is a tree, with all dependences oriented
towards the root, which notably simplifies the problem: this
is the case for sparse direct solvers [17] but also in quantum
chemistry computations [18]. For such trees, memory-aware
parallel schedulers have been proposed in [19], and the impact
of processor mapping on memory consumption has been
studied in [10].

The problem of general task graphs handling large data has
been identified by Ramakrishnan et al. [9] who introduced
clean-up jobs to reduce the memory footprint and propose
some simple heuristics. Their work was continued by Bharathi
et al. [20] who developed genetic algorithms to schedule
such workflows. More recently, runtime schedulers have also
been confronted to the problem: in the StarPU task-based
runtime system, attempts have been made to reduce memory
consumption by throttling the task submission rate [21].

As explained in the introduction, we have previously pro-
posed a way to restrict the potentially large memory needed for
the traversal of a task graphs by adding fictitious edges [12],
[13]. Our method consists in first computing the worst achiev-
able memory of any parallel traversal, using either a linear
program or a min-flow algorithm. Then if the previous compu-
tation detects a potential situation when the memory exceeds
what is available on the platform, we add a fictitious edge
in order to make this situation impossible to reach in the
new graph. This study is inspired by the work of Sbîrlea
et al. [22]. In that study, the authors focus on a different
model, in which all data have the same size (as for register
allocation). They target smaller-grain tasks in the Concurrent
Collections (CnC) programming model [23], a stream/dataflow
programming language. Their objective is, just as ours, to
schedule a DAG of tasks using a limited memory. To this
purpose, they associate a color to each memory slot and



then build a coloring of the data, in which two data items
with the same color cannot coexist. If the number of colors
is not sufficient, additional dependence edges are introduced
to prevent too many data items to coexist. These additional
edges respect a pre-computed sequential schedule to ensure
acyclicity. An extension to support data of different sizes is
proposed, which conceptually allocates several colors to a
single data, but is only suitable for a few distinct sizes.

While our previous study [12], [13] is a first step towards
the design of efficient memory-bounded dynamic schedulers, it
suffers from major shortcomings that prevents its use in actual
runtime schedulers:
• First, the running time of the algorithm is too high:

computing the worst possible memory, while done in
polynomial time, is expensive (O(n3) for a dense graph
with n vertices), and it has to be called after each edge
insertion, so potentially O(n2) times.

• Second, the algorithm assumes an unlimited number
of processors, and thus the simultaneous execution of
infinitely many tasks. Thus, it dramatically overestimates
the amount of memory that may actually be needed by a
parallel processing of the DAG.

In the present work, we alleviate both problems, through a new
model to finely take the number of processors into account,
and a new algorithm with much reduced complexity for a
special case of task graphs (series-parallel graphs).

Finally, a recent paper studies the problem of computing
the maximum memory of a multithreaded computation [24].
Their model is more complex and dedicated to Cilk programs,
with the objective to derive low-complexity algorithms for this
problem (typically linear-time algorithms).

III. BACKGROUND

In Section III-A, we introduce the SIMPLEDATAFLOW-
MODEL [12], [13] to study memory usage for general DAGs.
This model is a natural extension of the original pebble
game [14], and of the model introduced by Liu for tree
graphs [17]. Then in Section III-B, we discuss how to emulate
more realistic models, and outline the limitations of the current
approach.

A. The SIMPLEDATAFLOWMODEL

The target application is described by a workflow of tasks
whose precedence constraints form a DAG G = (V,E). Each
node i ∈ V represents a task and each edge e ∈ E represents
a precedence constraint, expressed in the form of output and
input data. The processing time necessary to complete a task
i ∈ V is denoted by wi. The memory usage of the computation
is modeled only by the size of the data produced by the
tasks and represented by the edges. Specifically, for each edge
e = (i, j), we denote by me or mi,j the size of the data
produced by task i for task j. We assume that G contains
a single source node s and a single sink node t; otherwise,
one can add such nodes along with appropriate edges of zero
weight. An example of such a graph is illustrated in Figure 1.
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Fig. 1. Example of a workflow, (red) edge labels represent the size mi,j of
associated data, while (blue) node labels represent their computation weight
wi.

Memory consumption rules are remarkably simple in the
SIMPLEDATAFLOWMODEL. In the model, at the beginning of
the execution of a task i, all input data of i are immediately
deleted from the memory, while all its output data are allocated
to the memory. We introduce the following definitions for the
total input and output size of a node i ∈ V :

Inputs (i) =
∑

j|(j,i)∈E

mj,i, Outputs (i) =
∑

j|(i,j)∈E

mi,j .

Now, the total amount of memory Mused needed to store
all necessary data is transformed as follows when task i is
executed:

Mused ←Mused − Inputs (i) + Outputs (i) .

The SIMPLEDATAFLOWMODEL may seem unrealistic, be-
cause when we start executing a task, its inputs are imme-
diately deleted and we only allocate memory for its outputs.
In many scientific applications, it is required to store both the
inputs and the outputs throughout the execution of the task,
and maybe to allocate space for some temporary data internal
to the task. Fortunately, many complex memory behaviors,
including the latter one with input, output and temporary
data co-existing in memory, can be emulated in the SIMPLE-
DATAFLOWMODEL, via some elementary transformations of
the input DAG. Together with its simplicity, this versatility
explains the appeal of the the SIMPLEDATAFLOWMODEL and
its usage in the literature [17], [12], [13].

We detail elementary transformations to account for more
complex memory consumption rules in Section III-B. Before-
hand, we explain how to estimate peak memory usage in the
SIMPLEDATAFLOWMODEL. A schedule or parallel execution
of a DAG with p processors is defined by:
• An allocation µ of the tasks onto the processors (task i

is computed on processor µ(i));
• The starting times σ of the tasks (task i starts at time
σ(i)).

As usual, a valid schedule ensures that data dependences are
satisfied (σ(j) ≥ σ(i) + wi whenever (i, j) ∈ E) and that
processors compute a single task at each time step (if µ(i) =
µ(j), then σ(j) ≥ σ(i) + wi or σ(i) ≥ σ(j) + wj). When
considering parallel executions, we assume that all processors
use the same shared memory, whose size is limited. We say
that the data associated to the edge (i, j) is active at a given
time-step if the execution of i has started but not that of j.
This means that the (output) data of i is present in memory.



We now compare parallel and sequential schedules. A
sequential schedule S of a DAG G is defined by a total order σ
of its tasks. Clearly, the memory used by a sequential schedule
at a given time-step is the sum of the sizes of the active data.
The peak memory of such a schedule is the maximum memory
used during its execution, which is given by:

Mpeak(σ) = max
i

∑
j s.t. σ(j)≤σ(i)

Outputs (j)− Inputs (j) (1)

where the set {j s.t. σ(j) ≤ σ(i)} represents the set of tasks
started before task i, including itself. Equation (1) demon-
strates the simplicity of the SIMPLEDATAFLOWMODEL,
where input data are replaced by output data as the execution
progresses.

Furthermore, Equation (1) allows us to state a prominent
feature of the SIMPLEDATAFLOWMODEL: there is no differ-
ence between sequential schedules and parallel executions as
far as memory is concerned! More precisely, for each parallel
execution (µ, σ), there exists a sequential schedule with equal
peak memory: simply consider a sequential schedule that starts
tasks in the same order as the parallel execution (see the
detailed proof in [13]). A key consequence is that we can
bound the maximum memory of any parallel execution: it
is equivalent to computing the peak memory of a sequential
schedule. Then, to compute the peak memory of a sequential
schedule, we define a topological cut (S, T ) of a DAG G
as a partition of G in two sets of nodes S and T such
that s ∈ S, t ∈ T , and no edge is directed from a node
of T to a node of S. An edge (i, j) belongs to the cut if
i ∈ S and j ∈ T . The weight of a topological cut is the
sum of the weights of the edges belonging to the cut. For
instance, in the graph of Figure 1, the cut ({s, a, b}, {c, d, t})
is a topological cut of weight 11. Note that this cut would
not be a topological cut if the edge (d, a) was present in
the graph. In the SIMPLEDATAFLOWMODEL, the memory
used at a given time is equal to the sum of the sizes of
the active output data, which depends solely on the set of
nodes that have been executed or initiated. Therefore, the
maximal peak memory of a DAG is equal to the maximum
weight of a topological cut. It turns out that there exists an
algorithm to compute a maximal topological cut with poly-
nomial complexity O

(
|V ||E| log

(
|V |2/|E|

))
[13]. As stated

in the introduction, if the maximal topological cut exceeds
the total memory available, we have proposed in our previous
work to add fictitious edges that will go backwards (from T
to S) and will decrease the weight of the cut. Unfortunately,
the approach is very costly [12], [13]: we may need to insert
O(|V |2) edges, each at a cost O(|V |3) if the DAG is dense
(with |E| = Θ(|V |2)).

B. Emulation of more realistic models

As explained above, the SIMPLEDATAFLOWMODEL does
not account for the fact that inputs and outputs of a given
task often reside in memory simultaneously. However, this
is a common behavior for scientific applications, and some
studies [25] further account for some temporary data mtemp

i

that has to be in memory when processing task i (in addition
to task inputs and outputs). The memory needed for processing
task i becomes Inputs (i) + mtemp

i + Outputs (i). Such a
behavior can be emulated in the SIMPLEDATAFLOWMODEL,
as illustrated on Figure 2. Each task i is split into two nodes
i1 and i2. We transform all edges (i, j) in edges (i2, j), and
edges (k, i) in edges (k, i1). We also add an edge (i1, i2) with
an associated data of size Inputs (i) + mtemp

i + Outputs (i).
Task i1 represents the allocation of the data needed for the
computation, as well as the computation itself, and its weight
is thus wi1 = wi. Task i2 stands for the deallocation of the
input and temporary data and has weight wi2 = 0.

i

wi = 10, mtemp
i = 1

2 3
i1

10

i2

0
2 6 3

Fig. 2. Transformation of a task as in [25] (left) to the SIMPLEDATAFLOW-
MODEL (right).

After this transformation, the graph includes two types of
edges. The edges that were originally present in the graph
and stand for regular dependencies between tasks are called
the black edges. The edges that have been added to represent
computations are called the red edges. Both edge types have
different roles. In particular, there cannot be more than p red
edges in a cut representing an actual state of a parallel com-
putation of the graph with p processors. We now understand
another limitation of the SIMPLEDATAFLOWMODEL: while it
can emulate parallel executions with realistic memory rules,
computing the maximum cut of the transformed graph will
only provide a loose upper bound of the maximum memory
needed by any dynamic schedule. In other words, we can still
compute the maximum cut of the transformed graph, but it
will overestimate the amount of memory that may actually be
needed during a parallel execution of the DAG. One major
contribution of this paper is to introduce a new framework
which distinguishes between black and red edges to account
for resource constraints.

IV. RESOURCE CONSTRAINTS

We formally state the optimization problem in Section IV-A
and assess its complexity in Section IV-B for general graphs.
We also formulate the problem as the solution of an Integer
Linear Program (ILP) in Section IV-C, and we introduce an ef-
ficient heuristic. Finally, we give an efficient algorithm to solve
the problem series-parallel graphs, or SPGs, in Section IV-D.

A. Optimization problem

As outlined in Section III-B, when we transform an edge-
weighted DAG G to the SIMPLEDATAFLOWMODEL, the
resulting graph contains two different types of edges: those
that correspond to edges of G, and those that correspond to
computations (vertices of G). In terms of graph properties,
this can be modeled as a 2-coloring of the edges. In what
follows, computation edges are referred to as red edges, and
communication edges as black edges. Recall that the memory



weight of computation edges is the sum of the memory used
by the input, the output and temporary data of the computation.
Therefore, the weight of red edges will likely be larger than
that of black edges, which only carry the weight of input or
output data.

The max-cut of the graph may well go through an arbitrary
number of red edges. However, if the program is scheduled on
a platform with p processors, hence at most p computations
can be executed in parallel. Therefore, the max-cut is an
overestimation of maximum memory usage of the program,
and the difference may be quite large especially because red
edges have larger weights. Figure 3 illustrates this scenario.
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Fig. 3. Example of DAG for which the maxcut is an overestimation of the
maximum memory used. The weight of the maxcut (in blue) is 14. For p = 1,
the max cut with at most 1 computation edge (red edges, green cut) has weight
10.

The natural question that arises is how to compute the max-
imum topological cut of a DAG cutting at most p computation
edges. We state this question formally:

Problem 1. P-MAXTOPCUT Optimization
Input: a DAG G = (V,E), a weight function m : E → N,

a coloring of the edges c : E → {red, black}, a number of
processors p ∈ N∗.

Output: A topological cut C = (S, T ) of G, with maximum
weight M∗(C) =

∑
e∈(S×T )∩Em(e), crossing at most p red

edges, i.e.
∑
e∈(S×T )∩E 1c(e)=red ≤ p.

and the corresponding decision problem:

Problem 2. P-MAXTOPCUT

Input: a DAG G = (V,E), a weight function m : E → N,
a coloring of the edges c : E → {red, black}, a number of
processors p ∈ N∗, a memory bound W ∈ N.

Question: Is there a topological cut C = (S, T ) in G, with
weight at least W , crossing at most p red edges?

In what follows, we will use the term “p-cut” to refer
to a topological cut crossing at most p red edges, and “p-
maxcut” for a topological cut with maximum weight among
those crossing at most p red edges.

B. Complexity

As discussed in Section III-A, computing the maximum-
weight topological cut (without colored edges) of a graph
can be done in polynomial time. We show that adding the

constraint on colors of edges makes the problem very combi-
natorial:

Theorem 1. P-MAXTOPCUT is NP-Complete

Proof. The P-MAXTOPCUT problem is in NP : the set S of
the cut (S, T ) is a polynomial certificate. One can check in
polynomial time that the cut is topological, has weight at least
W and includes at most p red edges. For the completeness,
we use a reduction from the MAX-K-SUBSETINTERSECTION
(MSI) problem, which is NP-Complete [26]. The MSI prob-
lem is the following:

Definition 1. Given a set X , C = {Si}i∈[1,...,l] a set of l
subsets of X , two integers k ≤ l and q, find a subset I ⊆
[1, . . . , l] such that |I| = k and

∣∣∣∣ ⋂
i∈I

Si

∣∣∣∣ ≥ q. In other words,

find k subsets Si such that the cardinality of their intersection
is greater or equal to q.

Consider an instance I1 of MSI: a set X , C a collection
of l subsets of X , two integers k and q. Let n = |X|. We
build the following instance of P-MAXTOPCUT: G = (V,E),
where

V = {s, t} ∪ {ui|i = 1, . . . , l} ∪ {vj |j = 1, . . . , n}
E = {(s, ui)|i = 1, . . . , l} ∪ {(vj , t)|j = 1, . . . , n}
∪ {(ui, vj)|xj /∈ Si}

where the edges from s to the ui are red and have weight
n + 1, the other are black. The edges from the vj to t have
weight 1, and the edges from the ui to the vj have weight
0. Finally, let p = k and W = (n + 1)p + q. See figure 4.
If a node vj has no predecessor (respectively a node ui has
no successor), we can add a black edge (s, vj) (respectively
(ui, t)) with weight 0. This allows us to consider the case with
only one source and target, but does not change the rest of the
proof, hence we will omit these edges in the rest of the proof.
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Fig. 4. DAG for the reduction: (ui, vj) ∈ E ⇔ xj /∈ Si

Now, assume that I1 has a solution, i.e. there are p subsets
(Si)i∈I of X whose intersection has cardinality at least q.
Then consider the cut (S, T ) where

S = {s} ∪ {ui|i /∈ I} ∪ {vj | no predecessor of vj is in S}

and T = V \S: it goes through the edges (s, ui) for i ∈ I and
through the edges (vj , t) for xj ∈

⋂
i∈I

Si. It is a topological

cut, has exactly p red edges and by construction of G, all the



vj corresponding to the xj that are in the intersection of the
Si are not linked to the corresponding ui. Therefore, we can
put at least q of them in S, and the cut crosses at least q
edges (vj , t) of weight 1. Hence, the cut has weight at least
p · (n+ 1) + q · 1 (the first term counts the weight of the red
edges, the second term counts the weight of the (vj , t) edges),
and therefore it is a solution to I2.

Conversely, assume that I2 has a solution, i.e. there exists
a topological cut (S, T ) with at most p red edges and weight
greater than (n+ 1)p+ q. It goes through exactly p red edges,
otherwise if it goes through less that p red edges, it can have
weight at most (p−1)(n+1)+n·1 as the other edges carrying
weight are the edges of weight 1, and there are only n of them.
As the weight is greater that (n+ 1)p+ q, we get that the cut
crosses at least q edges (vj , t) of weight 1.

Let I = {i|ui ∈ T}, the set of the indices of the subsets
corresponding to the (s, ui) edges crossed by the cut. As
remarked above, |I| = p = k, therefore we have selected
exactly k subsets. To show that I is a solution to I1, we need

to show that
∣∣∣∣ ⋂
i∈I

Si

∣∣∣∣ ≥ q.

Let Y = {xj |vj ∈ S} be the set of elements xj such that
the edge (vj , t) is crossed by the cut. As mentioned above,
the cut crosses at least q such edges, therefore |Y | ≥ q. For
all y ∈ Y , as the cut is topological, we have that they are not
linked to any of the Ci, i ∈ I . Therefore, by construction of
G, ∀i, y ∈ Ci. Hence, y ∈

⋂
i∈I

Ci, and we get Y ⊆
⋂
i∈I

Ci, and

therefore
∣∣∣∣ ⋂
i∈I

Ci

∣∣∣∣ ≥ q, therefore I1 has a solution.

Last, we show that this reduction is polynomial. The size
of I1 is n + l + log(q). We do not need to count log(k) as
k ≤ l. The created instance I2 has |V | = n+ l+ 2 nodes and
|E| ≤ n + l + nl edges, and weight W = np + q, therefore
log(W ) = O (log(n) + log(p) + log(q)). Therefore I2 has
size polynomial in the size of I1. Therefore, P-MAXTOPCUT
is NP-complete.

C. Integer Linear Program and Heuristic

The following Integer Linear Program (ILP) can be used to
compute the p-maxcut:

max
∑

(i,j)∈E

mi,jdi,j (2)

∀(i, j) ∈ E, di,j = pi − pj (3)
∀(i, j) ∈ E, di,j ≥ 0 (4)

ps = 1 (5)
pt = 0 (6)∑

(i,j)∈E

isred i,jdi,j ≤ p (7)

∀i, pi ∈ {0, 1} (8)

The p variables are used to assign vertices to either S (pi = 1)
or T (pi = 0). We consider that isred i,j = 1 if c(i, j) = red
and isred i,j = 0 otherwise. This ILP is adapted from the one
from [13] which computes the maximum topological cut of

G. A single constraint has been added: Equation (7) limits the
number of red edges from S to T to at most p.

In the case of the maximum topological cut without resource
constraints, there is a simple way to solve this ILP by
solving it over the rational numbers and rounding to integers.
Unfortunately, due to the additional constraint (Equation (7)),
the rounding procedure does not give a valid optimal value in
the case of P-MAXTOPCUT. However, this gives the intuition
for a heuristic. Starting from a fractional solution of the above
linear program and a threshold value w ∈ [0, 1], we can derive
an integer solution as follows: we take the pis returned by the
rational solution, and set pi to 0 in the integer solution if and
only if we had pi ≤ w in the rational solution (and we let
p1 = 1 otherwise). This describes a topological cut, which
might use more than p red edges. We propose to apply this
rounding procedure to all possible values of w. In practice, we
only have to consider all pi rational values for i = 1, . . . , |V |
as well as w = 1. Among these |V | + 1 values of w, we
return the topological cut with at most p red edges with
maximum weight (if any). Note that this procedure may fail
if no rounding produces a cut with less that p red edges.
However, considering all the |V | + 1 rounding values makes
this very unlikely. In particular, it never happened in all the
simulations reported in Section V: the heuristic always found
a solution; furthermore, that solution was close to the optimal
value in most cases (see Section V for details).

D. Series-Parallel Graphs

Series-Parallel Graphs, or SPGs, are widely used in the
literature because they nicely model fork-join types of com-
putations such as BSP (Bulk Synchronous Model) [27], [28].
SPGs are defined inductively as follows:

Definition 2. A series-parallel graph (SPG) is either:
• the “Edge” graph E(m, r) = ({s, t}, {(s, t)}): two

nodes, the source and the target, linked by an edge. m is
the weight of that edge, r ∈ {true, false} is true if and
only if c(s, t) = red,

• the series composition of two SPGs G1 = (V1, E1)
and G2 = (V2, E2) (with respective sources and targets
(s1, t1) and (s2, t2):

Series(G1, G2) = (V1 ∪ V2, E1 ∪ E2)

with source s = s1, target t = t2, with t1 = s2 in the
resulting graph,

• the parallel composition of two SPGs G1 = (V1, E1) and
G2 = (V2, E2):

Par(G1, G2) = (V1 ∪ V2, E1 ∪ E2)

with source s = s1 = s2 and target t = t1 = t2.
Series and parallel composition are illustrated on Figure 5.

Theorem 2. The P-MAXTOPCUT problem can be solved in
time O(|E|p2) for a SPG with |E| edges on a platform with
p processors.
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Proof. A SPG is a binary tree of its constructors, called its
decomposition tree (see Figure 6): leaves of the tree are the
edges of the SPG, internal nodes are the series and parallel
constructors. Note that every internal node has exactly two
children, thus the tree is a full binary tree. Furthermore, given
a series-parallel graph, its decomposition tree can be built in
linear time [29], [30].
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Fig. 6. Example of SP Graph (left) and its decomposition tree (right). S =
Series constructor, P = Parallel, E = Edge.

Furthermore, if G is the series composition of G1 and G2,
then a topological cut of G is either a topological cut of G1

or of G2: the topological constraints forbid a cut that goes
through both. Similarly, if G = Par(G1, G2), then any cut of
G that goes through G1 goes through G2 as well. Therefore,
a topological cut of G with p red edges will cross k red edges
in G1 and p − k red edges in G2, for some k, 0 ≤ k ≤ p.
Finally, if G is a red edge (s, t), it has no topological cut with
zero red edges, and one nonempty topological cut: ({s}, {t}).
If G is a black edge, then its maxcut is ({s}, {t}).

Let M(G, k) denote the weight of the k-maxcut of a SPG
G. The previous remarks lead to the following formulas:

M(E(m, r), k) = m,∀k ≥ 1,∀r ∈ {True, False}

(9)
M(E(m,True), 0) = −∞ (10)
M(E(m,False), 0) = m (11)

M(Serie(G1, G2), k) = max {M(G1, k),M(G2, k)} (12)
M(Par(G1, G2), k) = max

j=0...k
{M(G1, j) +M(G2, k − j)}

(13)

Using these formulas, one can compute M(G, k) using the
values of M(G1, i), i = 1 . . . p and M(G2, j), j = 1 . . . p in
time O(p) for each k = 1. . . p, hence in total time O(p2). Using
dynamic programming and storing the values of M(G′, i), i =
1 . . . p for all G′ in the decomposition tree of G, one can
compute the p-maxcut of G in time O(p2 ·N), where N is the
number of nodes in the decomposition tree of G. To conclude
on the complexity, we need to show that N = O(|E|). It is
well-known that for any l ≥ 1, a full binary tree (i.e. each
node is either of leaf or has two children) with l leaves has
exactly 2l − 1 nodes1. Using the fact that the leaves of the
decomposition tree of G are exactly the edges of G, we obtain
that N = 2|E| − 1, and therefore the algorithm runs in time
O(|E|p2).

V. SIMULATION RESULTS

In this section, we perform simulations to assess the impact
of resource constraints on the memory peak for dynamic
schedulers. We also study whether the rounding heuristic
described in Section IV-C succeeds to compute a p-maxcut
close to the optimal one.

A. Datasets

We used both synthetic task graphs and graphs from classi-
cal HPC applications. Specifically, we report experiments for
five datasets. The first dataset is generated using the DAGGEN
software [31]. We use the same parameters that were used to
produce a dataset widely used in the scheduling literature [32],
[33], [13]. These graphs count between 10 and 100 tasks.

Five parameters influence the generation of these DAGs.
The number of nodes belongs to {10, 25, 50, 100}. The width,
which controls how many tasks may run in parallel, belongs to
{0.2, 0.5, 0.8}. The regularity, which controls the distribution
of the tasks between the levels, belongs to {0.2, 0.8}. The
density, which controls how many edges connect two consec-
utive levels, belongs to {0.2, 0.8}. The jump, which controls
how many levels an edge may span, belongs to {1, 2, 4}.
Combining all these parameters, we get a dataset of 144 DAGs.

The next three datasets represent actual workflow appli-
cations and have been generated with the Pegasus Work-
flow Generator [34]. We consider three different applications,

1See https://en.wikipedia.org/wiki/Binary_tree.



named LIGO, MONTAGE, and GENOME, each containing 20
graphs of 50 nodes and 20 graphs of 100 nodes. We assumed
that the memory needed during the execution of a node is
negligible compared to the size of the input and output data,
which must be kept in memory during this process.

The last dataset consists in the task graphs of the
QR_MUMPS [35] application, when applied on matrices from
the University of Florida Sparse Matrix Collection [36]. These
matrices were ordered using either the colamd [37] or
scotch[38] ordering. The 24 resulting task graphs are indeed
trees of tasks whose size vary from 39 to 5900 nodes.

For all these graphs, we computed both the maximum
topological cut (maxcut), the maximum topological cut with at
most p red edges (p-maxcut) using the ILP Gurobi solver[39],
and the solution returned by the heuristic. The C++ code
used for the simulation is publicly available online at https:
//github.com/GBathie/PMaxcut.

B. Results

The first set of simulations studies the impact of the number
of processors (the value of p) when computing the p-maxcut,
comparing it with to the maximum topological cut without any
bound on resources (p = ∞). We plot in Figure 7 the ratios
maxcut/p-maxcut obtained in all cases, using Tukey boxplots.
The box presents the median, the first and third quartiles. The
whiskers extend to up to 1.5 times the box height (interquartile
range). While the results largely depend on the target, we
observe globally that taking p into account when computing
the maximum topological cut dramatically reduces its value in
most cases. Note that, for better readability, we remove outliers
from the plots, as they only concern special cases where the
gain of using the p-maxcut instead of the maxcut was even
higher. For the Pegasus datasets, the value of the cut is reduced
at least by a factor 1.6 (LIGO with p = 10) and at most by
a factor 17 (LIGO with p = 1). For QR-Mumps, the value of
the cut is reduced at least by 5% (p = 10) and at most by a
factor 1.38 (p = 1). For the DAGGEN datasets, this ratio goes
from 1.10 tup o 5.5. In most cases, the ratio p-maxcut/maxcut
decreases when the number of processors grows from 1 to 10,
except for the MONTAGE graphs which exhibit a very large
degree of parallelism.

Figure 8 presents the results of the heuristic for the MON-
TAGE and LIGO datasets, normalized to the optimal p-maxcut
computed with the ILP. We use the same boxplots, except that
outliers are drawn and appear separately as empty circles. We
observe that the heuristic is able to find a cut with a weight
very close to optimal only for small values of p. For all the
other datasets, the heuristic finds a p-maxcut which is at most
2% smaller than the optimal one in 99% of the cases.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have revisited dynamic DAG scheduling
under memory constraints. We have introduced a new model
that takes resource limitation into account when computing
peak memory needs. By coloring those edges that represent
temporary memory requirements during task execution, we

bound the memory actually needed during an execution with
p processors as a function of p, while previous work assumed
unlimited resources. The additional constraints due to resource
limitation turn an otherwise polynomial problem into a NP-
hard problem. We have introduced an Integer Linear Program
(ILP) to solve it, together with an heuristic based on rounding
the rational solution of the ILP. Furthermore, we provide an
exact polynomial algorithm for the particular case of serial-
parallel graphs. With an experimental study conducted over
randomly-generated graphs and task graphs from actual appli-
cations, we show that our refined approach can significantly
reduce the weight of the maximum topological cut.

Future work includes several promising directions. The first
direction is to compare the ILP and the heuristic on task
graphs of very large size, because we expect the ILP to fail
providing a solution beyond a certain number of nodes. The
second direction is to design efficient strategies to reduce peak
memory in the refined model with colored edges, thereby
extending previous approaches to the new model. The third
direction is to study the behavior of a restricted class of dy-
namic schedulers which try and select low memory-consuming
tasks. For instance, instead of progressing to execute any ready
task, these restricted schedulers would only select ready-tasks
whose memory requirements keeps total memory consumption
below a given threshold. The algorithmic complexity of such
approaches will however probably remain very high. In partic-
ular, it is not clear how to fix the global threshold so that the
restricted schedulers have a good chance to execute the whole
task graph without exceeding the memory constraint. Finally,
the fourth direction would be to develop scheduling strategies
that rely upon a coarse representation of the task graph instead
of the complete graph, thereby allowing to deal with very
large graphs while (hopefully) keeping a tight estimation of the
total memory requirement. This would allow for an effective
implementation of scientific application at scale within a task-
based runtime system.
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