
royalsocietypublishing.org/journal/rsta

Research
Cite this article: Dongarra J, Grigori L,
Higham NJ. 2020 Numerical algorithms for
high-performance computational science.
Phil. Trans. R. Soc. A 378: 20190066.
http://dx.doi.org/10.1098/rsta.2019.0066

Accepted: 9 December 2019

One contribution of 15 to a discussion meeting
issue ‘Numerical algorithms for
high-performance computational science’.

Subject Areas:
applied mathematics, computational
mathematics, computer modelling and
simulation

Keywords:
numerical algorithms, numerical linear
algebra, rounding errors, floating-point
arithmetic, high-performance computing,
exascale computer

Author for correspondence:
Nicholas J. Higham
e-mail: nick.higham@manchester.ac.uk

Numerical algorithms for
high-performance
computational science
Jack Dongarra1,2,3, Laura Grigori4 and

Nicholas J. Higham3

1Innovative Computing Laboratory (ICL), University of Tennessee,
Knoxville, TN, USA
2Oak Ridge National Laboratory, Oak Ridge, TN, USA
3Department of Mathematics, University of Manchester,
Manchester M13 9PL, UK
4Alpines, Inria Paris, Sorbonne Université, Université de Paris, CNRS,
Laboratoire Jacques-Louis Lions, 75012 Paris, France

NJH, 0000-0001-5956-4976

A number of features of today’s high-performance
computers make it challenging to exploit these
machines fully for computational science. These
include increasing core counts but stagnant clock
frequencies; the high cost of data movement; use
of accelerators (GPUs, FPGAs, coprocessors), making
architectures increasingly heterogeneous; and multi-
ple precisions of floating-point arithmetic, including
half-precision. Moreover, as well as maximizing
speed and accuracy, minimizing energy consumption
is an important criterion. New generations of
algorithms are needed to tackle these challenges.
We discuss some approaches that we can take to
develop numerical algorithms for high-performance
computational science, with a view to exploiting the
next generation of supercomputers.

This article is part of a discussion meeting
issue ‘Numerical algorithms for high-performance
computational science’.

1. Introduction
High-performance computing (HPC) illustrates well the
rapid pace of technological change. A current high-end
smartphone can perform linear algebra computations at
speeds substantially exceeding that of a Cray-1, which
was first installed in 1976 and was widely regarded as
the first successful supercomputer.

2020 The Author(s) Published by the Royal Society. All rights reserved.

http://crossmark.crossref.org/dialog/?doi=10.1098/rsta.2019.0066&domain=pdf&date_stamp=2020-01-20
http://dx.doi.org/10.1098/rsta/378/2166
mailto:nick.higham@manchester.ac.uk
http://orcid.org/0000-0001-5956-4976

2

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A378:20190066

..

1.17 TFlop/s

59.7 GFlop/s

400 MFlop/s

1.66 EFlop/s

148 PFlop/s

1.14 PFlop/s

1 Eflop/s
100 Pflop/s

10 Pflop/s

1 Pflop/s
100 Tflop/s

10 Tflop/s

1 Tflop/s

1 Gflop/s

100 Gflop/s

100 Mflop/s

19
94

19
96

19
98

20
00

20
02

20
04

20
06

20
08

20
10

20
12

20
14

20
16

20
18
20

19

10 Gflop/s

Figure 1. Performance development of supercomputers as tracked by the TOP500. The red line (middle) shows the performance
for the highest-performing system on the list, the blue line (bottom) shows the lowest-performing system (number 500) and
the orange line (top) shows the sum of the performance of all the systems on the TOP500. (Online version in colour.)

Just a few years ago, teraFLOP/s (1012 floating-point operations/second)1 and terabytes (1012

bytes of secondary storage) defined state-of-the-art HPC. Today, those same values represent a PC
with an NVIDIA accelerator and local storage. In 2019, HPC is defined by multiple petaFLOP/s
(1015 floating-point operations/second) supercomputing systems and cloud data centres with
many exabytes of secondary storage.

Figure 1 shows this exponential increase in advanced computing capability based on the high-
performance LINPACK benchmark [1] used in the TOP500 list of the world’s fastest computers
[2]. Although the solution of dense linear systems of equations is no longer the best measure of
delivered performance on complex scientific and engineering applications, these historical data
illustrate how rapidly HPC has evolved. While HPC has benefited from the same semiconductor
advances as commodity computing, sustained system performance has risen even more rapidly,
due in part to the increasing size and parallelism of high-end systems.

Today, HPC is at a critical juncture, in which several aspects of computer architectures have
come together to both create challenges and also offer opportunities.

— Core counts on processors are increasing, but clock frequencies are not (Moore’s Law will
come to an end in the next few years [3,4]).

— The cost of data movement is starting to dominate the cost of floating-point arithmetic.
— Accelerators (GPUs, FPGAs, coprocessors) are becoming more powerful and more usable,

so that heterogeneous architectures are increasingly prevalent.
— Minimizing energy consumption is an increasingly important criterion.
— Low precision floating-point arithmetic is now available in hardware on accelerators and

offers greater throughput, albeit less accuracy.

We need a new generation of numerical algorithms that takes account of all these aspects in
order to meet the demands of applications on the evolving hardware. Computers attaining an
exascale rate of computation (1018 floating-point operations per second) will soon be available,
and for their success we will need numerical software that extracts good performance from
these massively parallel machines. Algorithms, software and hardware are all crucial. Indeed,
as noted in [5], ‘it is widely recognized that, historically, numerical algorithms and libraries have
contributed as much to increases in computational simulation capability as have improvements
in hardware’.

1Floating-point operation rates are for 64-bit floating-point operations.

3

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A378:20190066

..

In this paper we discuss some of the approaches we can take to developing numerical
algorithms for high-performance computational science, and we also look towards the next
generation of supercomputers and discuss the challenges they will bring. We begin, in the next
section, by looking at how to exploit the availability of different precisions of floating-point
arithmetic. In §3 we consider the cost of communicating data and outline some approaches to
reducing communication costs. In §4 we consider how to exploit data sparsity, which allows
data to be compressed without significant loss of information. Finally, in §5 we discuss exascale
computers and some of the algorithmic techniques that may need to be used in software for them.

2. Mixed precision algorithms
For many years, scientific computing has been carried out in single precision (fp32) or double
precision (fp64) arithmetic, on hardware supporting the 1985 IEEE arithmetic standard [6]. In
2008, the revised IEEE standard [7] introduced half-precision (fp16) and quadruple precision
(fp128) formats. Half-precision was defined for storage only, but several manufacturers now
support it for computation. Quadruple precision is available only in software, with the exception
of the IBM z13 mainframe systems, designed for business analytics workloads [8]. Another form
of half-precision called bfloat16 was introduced by Google on its Tensor Processing Unit and will
be supported by Intel in its forthcoming Nervana Neural Network Processor and Cooper Lake
processor and on the Armv8-A architecture [9–13]. Table 1 gives the key parameters for all these
arithmetics.

We would expect the cost of a floating-point operation to be approximately proportional to
the number of bits in the operands, and therefore going from double precision to single precision
or single precision to half-precision should give a factor of 2 speed-up in arithmetic costs and a
reduction in energy costs. (A notable exception to this rule of thumb was the Sony/Toshiba/IBM
(STI) CELL processor, on which single-precision arithmetic was up to 14 times faster than
double precision arithmetic [14]). Lower precision data also reduce storage requirements and
data movement costs. In fact, even greater benefits are available. NVIDIA’s Volta and Turing
architectures contain tensor cores that can carry out a block fused multiply-add (FMA) operation
X = AB + C, where A (fp16), B (fp16) and C (fp16 or fp32) are 4 × 4 matrices, at fp32 precision, and
provide the result X as an fp16 or fp32 matrix; see figure 2. The tensor cores have a throughput
of one block FMA per clock cycle and enable a peak fp16 performance eight times faster than
for fp32. The tensor cores therefore give both speed and accuracy advantages over pure fp16
computations.

Clearly, then, the use of precisions lower than the traditional single and double is attractive for
numerical computing as regards computational cost. Nowhere is this being exploited more than
in machine learning, where it is now commonplace to carry out parts of the computations in low
precision, possibly in precisions even lower than half-precision [15,16].

However, several issues must be faced in order to make successful use of low precision
floating-point arithmetic. First, the IEEE standard fp16 arithmetic has a very narrow range, as
shown in table 1: the largest floating-point number is 65504 and the smallest normalized positive
number is of order 10−4. Overflow is therefore likely except for ‘well behaved’ problems and
underflow, or the appearance of subnormal numbers (which, since they have leading zeros in the
significant, have less precision than normalized numbers) can readily be generated.

More fundamentally, low precision computations will give results of (at best) correspondingly
low accuracy, so the question is how such computations can be exploited within an algorithm
aiming for higher accuracy. One obvious answer is within a fixed point iteration xk+1 = g(xk),
where g : R

n → R
n. An example is Newton’s method for f (x) = 0: xk+1 = xk − Jf (xk)−1f (xk), where

Jf is the Jacobian of f . The early iterations can be carried out in low precision and the precision
gradually increased until the working precision is in use. Assuming that the starting point x0 and
all subsequent exact iterates lie within the region of convergence of an attractive fixed point, the
iteration should still converge to that fixed point to the working precision. The speed-up obtained

4

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A378:20190066

..

X = A B + C

fp16 or fp32 fp16 fp16 fp16 or fp32

Figure 2. The tensor cores in the NVIDIA Volta and Turing architectures carry out this (possibly) mixed precision 4 × 4 matrix
multiplication and addition in one clock cycle, accumulating the scalar sums at fp32 precision. (Online version in colour.)

Table 1. Parameters for floating-point arithmetics: number of bits in significand (mantissa), including the implicit most
significant bit; number of bits in exponent; and, to three significant figures, unit roundoff u, smallest positive (subnormal)
number x(s)min, smallest normalized positive number xmin and largest finite number xmax. In Intel’s bfloat16 specification,
subnormal numbers are not supported [10], so any number less than xmin in magnitude is flushed to zero; the value shown
holds if subnormal numbers are supported.

signif. exp. u x(s)min xmin xmax
bfloat16 8 8 3.91 × 10−3 9.18 × 10−41 1.18 × 10−38 3.39 × 1038

. .

fp16 11 5 4.88 × 10−4 5.96 × 10−8 6.10 × 10−5 6.55 × 104
. .

fp32 24 8 5.96 × 10−8 1.40 × 10−45 1.18 × 10−38 3.40 × 1038
. .

fp64 53 11 1.11 × 10−16 4.94 × 10−324 2.22 × 10−308 1.80 × 10308
. .

fp128 113 15 9.63 × 10−35 6.48 × 10−4966 3.36 × 10−4932 1.19 × 104932
. .

by executing the first few iterations at low precision will clearly be limited in general. However,
if the iteration has large set-up costs, greater efficiencies are possible, as we now explain.

Consider a linear system Ax = b, where A ∈ R
n×n is non-singular. The standard method of

solution is to compute an LU factorization A = LU and then solve the two triangular systems
Ly = b and Ux = y. In practice, pivoting is used in the LU factorization: either partial pivoting
(row interchanges) if A is dense or pivoting for stability and to preserve sparsity (row, and
possibly column, interchanges) if A is sparse; for simplicity we omit these interchanges from the
equations. The key to exploiting different precisions is to observe that most of the work in solving
Ax = b lies in computing the LU factorization: for dense matrices this costs O(n3) flops (floating-
point operations) compared with the O(n2) flops required to solve a triangular system. We can
compute an LU factorization A ≈ L̂Û in low precision and use it to obtain an initial guess x0.
Then we can refine the solution by what amounts to Newton’s method for f (x) = b − Ax, namely
xk+1 = xk + A−1(b − Axk). But of course we cannot exactly apply the matrix A−1, so we replace it
by Û−1L̂−1 and implement

— compute rk = b − Axk (at the working precision),
— solve L̂Ûdk = rk (at low precision),
— update xk+1 = xk + dk (at the working precision).

We hope that a few iterations of these equations will be enough to yield a backward error
‖b − Axk‖/(‖A‖‖xk‖ + ‖b‖) of order the working precision. Here, ‖ · ‖ denotes any standard vector
norm and the corresponding subordinate matrix norm.

This process is known as iterative refinement. It is an old method going back to the beginning
of the digital computer era, though in its original usage the residual is computed at twice
the working precision and all the other steps are done at the working precision. It was first
proposed in the form shown here by Langou et al. [17], who used single and double precisions.

5

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A378:20190066

..

Convergence will be achieved if κ(A)u� is sufficiently less than 1, where κ(A) = ‖A‖‖A−1‖ is the
matrix condition number and u� is the unit roundoff for the low precision arithmetic. This is a
severe restriction when we take the low precision to be fp16, as then we need κ(A) ≤ 104. Carson
& Higham [18,19] show how to greatly widen the class of problems to which iterative refinement
is applicable by using the LU factors as preconditioners and employing three precisions. Denote
the unit roundoff for the working precision by u and the unit roundoff for a possibly higher
precision by ur. Thus u� > u ≥ ur. The steps above now become

— compute rk = b − Axk at precision ur,
— solve MAdk = Mrk, where M = Û−1L̂−1 by GMRES (at precision u, with M applied at

precision ur),
— update xk+1 = xk + dk at precision u.

GMRES [20] is an iterative Krylov subspace method that requires matrix–vector products with
the coefficient matrix, which here is MA, and these products reduce to a product with A and
triangular solve with L̂ and Û. Carson & Higham show that this GMRES-IR method based on
three-precisions converges under much weaker conditions than the traditional form of iterative
refinement. If the three precisions are fp16, fp64 and fp128, then we need κ(A) ≤ 1016 for
convergence, and if the algorithm is relaxed so that extra precision is not used in computing
rk and applying M then we need κ(A) ≤ 107 [21]. For GMRES-IR to be effective, we need GMRES
to converge quickly on the preconditioned system; it usually does, but there is a lack of theoretical
guarantees.

Haidar et al. [22,23] show that by taking advantage of the tensor cores on an NVIDIA V100
GPU, GMRES-IR can bring a speed-up of 4 over an optimized double precision solver and can
provide an energy reduction of 80%. Moreover, GMRES-IR has been shown to perform up to
three times faster than an optimized double precision solver at scale on the Summit machine [24],
which heads the November 2019 TOP500 list. So with this new twist, the old method of iterative
refinement provides a powerful way to exploit low precision arithmetic. The possibility of
overflow and underflow threatens to render the method ineffective for real-life problems, because
of their possible bad scaling, but Higham et al. [25] show how diagonal scaling can be used to
greatly reduce the possibility of overflow and underflow.

GMRES-IR can be extended to symmetric positive definite linear systems, with the use of low
precision Cholesky factorization [26]. Here, one must handle the possibility of the matrix losing
definiteness when rounded to lower precision. It can also be extended to linear least-squares
problems [26,27].

The MAGMA library (Matrix Algebra on GPU and Multicore Architectures)2 [28] supports
GMRES-IR, with fp16 or fp32 as the lower precision arithmetic.

GMRES-IR is used in the new HPL-AI benchmark, which ‘seeks to highlight the emerging
convergence of HPC and artificial intelligence (AI) workloads’ [29]. The benchmark uses double
precision for u and ur and a lower precision (expected to be chosen as half-precision) for u�.

A concern when low precision arithmetic is used is that rounding errors might cause
algorithms to lose all their accuracy. The reason is that rounding error bounds for basic linear
algebra kernels are typically of order nu or larger, where n is the problem dimension and u
is the unit roundoff of the working precision. In fp16, nu exceeds 1 for n as small as 2049.
However, rounding error bounds are worst-case bounds that are usually not attainable. In
practice, rounding errors often cancel to some extent, and so the worst case is not a predictor
of the typical behaviour. Wilkinson [30, p. 318] noted that ‘In general, the statistical distribution
of the rounding errors will reduce considerably the function of n occurring in the relative errors.
We might expect in each case that this function should be replaced by something which is no
bigger than its square root.’ Higham & Mary [31] give a rigorous probabilistic rounding error
analysis that justifies this rule of thumb, showing that under reasonable statistical assumptions

2See https://icl.cs.utk.edu/magma/

https://icl.cs.utk.edu/magma/

6

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A378:20190066

..

a number of standard error bounds still hold with high probability if constants are replaced by
their square roots. We are not yet seeing rounding errors make numerically stable linear algebra
algorithms unusable for low precisions, but more understanding is certainly needed.

In using mixed precision, it is necessary to decide how to choose the precisions in different
parts of an algorithm. Rounding error analysis of the algorithm is complicated by the need to
track the different precisions and by the possible use of a mixed-precision block FMA. Blanchard
et al. [32] analyse the use of a mixed-precision block FMA in the numerical linear algebra kernels
of matrix multiplication and LU factorization. Their analysis provides insight into finding a good
trade-off between performance and accuracy when these computations use the tensor cores on an
NVIDIA V100 GPU.

Many authors are experimenting with low precision arithmetic in machine learning and other
areas and are finding that it does not cause any deterioration in the quality of the computed
results. One example is in climate change [33–35]. Another is work reporting that in a Monte Carlo
simulation single-precision arithmetic was replaced by bfloat16 without any loss of accuracy [36].
We also mention that some hardware designed for specific applications employs low precision
because of its lower energy consumption and the reduced size of the chips; see, for example,
[37,38].

We note, however, the importance of carefully analysing the effects of lowering arithmetic
precision. To take a very simple example, suppose we want to evaluate ‖x‖2 for x = [α α]T as
(x2

1 + x2
2)1/2 in fp16 arithmetic. With α = 10−4 the computed result is 0, and hence the relative

error is 1, because α2 underflows to zero. In practice, one can scale the data to avoid this problem,
but this example serves to illustrate that low precision should not be used blindly.

Numerical experiments are essential to gain understanding, but they are not possible if the
relevant hardware is not available or if one wishes to try potential new floating-point formats. In
this case, simulation is necessary. Higham & Pranesh [39] present a tool for simulating arithmetics
of different precisions in Matlab, give pointers to simulations in other languages, and explain why
some simulations deliver results that are too accurate.

3. Algorithms minimizing data transfer
The cost of communication, that is the cost of transferring data between different processing
units or between different levels of the memory hierarchy, dominates the cost of many
algorithms, in terms of both time and energy consumption. Several studies outline a large
disproportion between the improvements in processor technologies and improvements in
memory or interconnect technologies. Writing in 1995, Wulf & McKee [40] noted that ‘we are
going to hit a wall in the improvement of system performance unless something basic changes’.
We are clearly also facing the interconnect network wall, with the network latency and bandwidth
improvements lagging well behind improvements in processor technologies. A comprehensive
report studying data from 1995 to 2004 [41] concluded that while the time per flop had improved
at a rate of 59% yearly, the network latency had improved at a rate of only 15% yearly, while
DRAM latency had improved by only 5.5% yearly. Nowadays, even if processor frequencies tend
not to vary by much, per socket flop performance continues to improve by, e.g., increasing the
number of floating-point operations per cycle per core or the number of cores per socket. The
network latency, as measured at the user level in an MPI call, is of a few microseconds; see e.g. [42]
for recent data.

Many works have addressed the communication problem. One of the first attempts to reduce
communication in dense linear algebra was by Barron & Swinnerton-Dyer [43] in 1960. They
were using the EDSAC 2 computer to solve linear systems of equations by Gaussian elimination,
and the largest system that could be stored in the main store had 31 equations. As pointed out
in the paper, the subroutine implementing Gaussian elimination was the first library subroutine
written for the EDSAC 2. Nowadays, this is still one of the first routines optimized on a new
supercomputer, in particular because it is used in the high-performance LINPACK benchmark
that determines the TOP500 list [2]. For solving systems with more than 31 equations, the data

7

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A378:20190066

..

had to be read from and written back to auxiliary magnetic-tape storage during the elimination.
The authors introduce two algorithms that aim at reducing the data transferred between the main
store and the auxiliary magnetic-tape. The first one uses a block LU factorization with partial
pivoting to ensure numerical stability. This block factorization is the basis of the algorithms
implemented in most of the dense linear algebra libraries, going from LAPACK [44] and
ScaLAPACK [45] to modern versions based on runtime systems as PLASMA [46]. The second
algorithm introduces a different pivoting strategy, a block pairwise pivoting strategy, and it can
be shown that with this pivoting strategy the algorithm minimizes communication between two
different levels of the memory hierarchy. However, while the factorization remains stable for
systems of small size, it is observed in [47] that it might become unstable for systems of the large
sizes encountered nowadays.

In recent years, a different approach has been introduced for reducing, or even minimizing,
communication in numerical linear algebra, which relies on different ways to compute the same
algebraic operations. For example, the LU factorization of a matrix is computed by using a
different pivoting strategy than partial pivoting, while the numerical stability is still ensured.
Indeed, since the numerical approach used to compute the algebraic operation changes, special
care needs to be taken to ensure that the novel algorithms remain at least as stable as conventional
ones. These algorithms are referred to as communication avoiding.

Some of the major results obtained in this context are asymptotic lower bounds on
communication for dense linear algebra operations based on direct methods, such as LU
factorization, QR factorization, rank revealing factorizations and singular value or eigenvalue
decompositions. These lower bounds indicate the minimum amount of communication, in terms
of the number of messages and volume of communication that needs to be transferred when
computing such a decomposition on a sequential machine with two levels of memory or between
the processors of a parallel machine. The pioneering results obtained by Hong and Kung in
1981 [48] provide lower bounds on the volume of data that has to be transferred during the
multiplication of two matrices between two different memories, a memory of size M in which
the matrices do not fit entirely, and memory of large size in which the matrices can be stored.
These bounds were extended in [49] to the parallel case and proved by using the Loomis and
Whitney inequality, which enables one to bound the number of floating-point operations that can
be performed given the data available in the memory of size M. They were later extended to
bound both the volume of communication and number of messages and to LU factorization and
QR factorization under certain assumptions in [50], and then to a wider variety of direct linear
algebra algorithms [51].

We explain in more detail the lower bounds on communication for the case in which the linear
algebra operation involves dense matrices of dimension n × n and is executed in parallel on P
processors, and the memory available per processor is of the order of n2/P. Then the lower
bounds on the volume of communication (# words) and on the number of messages that need
to be exchanged between processors are

words ≥ Ω

(
n2
√

P

)
, # messages ≥ Ω

(√
P
)

. (3.1)

Here, f (n) = Ω(g(n)) means that there is a non-zero constant c such that f (n) ≥ cg(n) for all
sufficiently large n. Cannon’s algorithm [52] for dense matrix multiplication and block Cholesky
factorization both attain these bounds and hence minimize communication asymptotically in
terms of both volume of communication and number of messages. However, most of the
remaining conventional algorithms attain the lower bound on the volume of communication
but do not attain the lower bound on the number of messages. It is to be noted that the lower
bound on the number of messages does not depend on the size of the data, but depends only
on the number of processors. And for most conventional algorithms, the number of messages
increases proportionally with the dimensions of the matrices. For example, to ensure numerical
stability, partial pivoting is used during the LU factorization: at each step it finds the off-diagonal

8

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A378:20190066

..

element of maximum magnitude in the pivot column and permutes the corresponding row to
the diagonal position. This leads to a collective communication among all processors owning the
corresponding column and hence overall the number of messages is proportional to the number of
columns in the input matrix. A different pivoting strategy is used in the communication avoiding
LU factorization introduced in [53], referred to as tournament pivoting, which allows the LU
factorization of a block of columns to be computed with only log2 P messages. The same approach
can be used to compute a low-rank approximation of a matrix or its rank revealing factorization,
while also ensuring bounds on the errors of the approximation. Perhaps one of the most useful
examples is an algorithm referred to as TSQR, which computes the QR factorization of a tall and
skinny matrix, that is a matrix with few columns and many rows, with only log2 P messages.
To the best of our knowledge, the idea goes back to [54,55] with a presentation in a general
setting and proofs that it minimizes communication provided in [56]. With some additional
computation [57], the output provided by TSQR can be identical to the output provided by
a conventional algorithm as implemented in LAPACK. Speed-ups resulting from using these
communication avoiding algorithms are reported in [57], for example.

While direct methods in dense linear algebra are well-understood today from a
communication complexity point of view, deriving lower bounds on communication for sparse
matrices is a much harder problem, for both iterative and direct methods. It is possible to
apply directly the bounds derived for dense matrices to direct methods involving matrices with
arbitrary sparsity structure, but in general, these bounds can become vacuous. A few results exist,
though, for matrices with specific sparsity structures. Tight lower bounds on communication for
the sparse Cholesky factorization of a model problem are derived in [58], and the multiplication
of Erdős-Rényi matrices is discussed in [59]. Reducing communication in iterative methods is a
challenging topic, with an additional difficulty being the fact that the convergence of iterative
methods depends on the spectral properties of the matrices involved. Approaches such as s-step
methods (e.g. [60,61] and the references therein) or enlarged Krylov methods [62,63] are actively
investigated.

Many open questions remain to be addressed beyond linear algebra. In a general setting,
the problem to tackle is the following. Given an algorithm based on multiple nested loops
that reference arrays with different dimensions, the goal is to identify lower bounds on
communication for this algorithm, and subsequently an optimal loop tiling that allows those
bounds to be attained. Results along this direction are presented in [64] and they are based
on the discrete multilinear Holder–Brascamp–Lieb (HBL) inequalities. The polyhedral model
used in the compiler community is another approach for reorganizing nested loops to reduce
data movement, and there might be interesting connections between the two approaches.
Avoiding communication in machine learning algorithms is a timely topic, with several recent
results obtained for, e.g., primal and dual block coordinate descent methods [65], least angle
regression [66] and with many open venues to explore.

Dealing with data in high dimensions represented as tensors is another timely and challenging
topic. There are few existing results on communication bounds for tensors, e.g. bounds for
symmetric tensor contractions are derived in [67], or for the volume of communication of
metricized tensor times Khatri–Rao product in [68]. One interesting question is to understand
if algorithms such as alternating least squares and density matrix renormalization group are able
to minimize communication.

4. Exploiting data sparsity
In this section, we address the problem of dealing with large volumes of data by exploiting ‘data
sparsity’. This problem arises in many applications, ranging from scientific computing where
complex phenomena are simulated over large domains and long periods of time, to machine
learning where large volumes of data are processed. Data sparsity refers to the fact that, due to
redundancy, the data can be efficiently compressed while controlling the loss of information.

9

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A378:20190066

..

A classic example in this context is the n-body problem in physics for which some forces
between all pairs of n particles are computed with O(n) flops by using the fast multipole method
(FMM) [69], while a direct evaluation of these forces requires O(n2) flops. This method relies
on treating separately the contributions from near particles, which are computed directly, from
contributions from distant particles, which are evaluated by using multipole expansions. This
approach can be used in other applications, as for example in the discretization of boundary
integral operators. The operator in this case is defined as G(xi, yj), where G : R

d × R
d → C

is a kernel operator, with d ∈ N
∗, and the interaction domains are X := {x1, . . . , xm} and Y :=

{y1, . . . , yn}. The associated dense matrices, referred to as BEM matrices, are full rank, but
the kernel evaluation can be again separated into interactions which are computed directly
and interactions which are evaluated fast through compression. The original FMM method is
kernel-dependent, but later on several kernel-independent methods have been proposed, kernel
independent FMM, e.g. [70], hierarchical matrices or H2 matrices. For a discussion of hierarchical
matrices see e.g. [71–74].

An algebraic compression method used by all communities dealing with large volumes of data
nowadays is the singular value decomposition (SVD) of a matrix. Given A ∈ R

m×n, the problem
is to compute a rank-k approximation Ak = ZWT, where Z ∈ R

m×k, WT ∈ R
k×n and k
 min (m, n).

We suppose for simplicity that m ≥ n and that the matrices are real. When the matrix A is sparse, in
the sense that there are few elements of A that are non-zero, an additional goal is to obtain factors
Z and W that preserve the sparsity of A. Very often the matrix A is used in an iterative procedure,
such as a Krylov subspace solver. At each iteration of these algorithms, the multiplication of
A with a vector is approximated by the multiplication of Ak with the vector, and this leads to
significant computational and memory savings.

The SVD factors a matrix as A = UΣVT, where U ∈ R
m×m and V ∈ R

n×n are orthogonal
matrices whose columns are the left and right singular vectors of A, respectively, and Σ ∈ R

m×n is
a diagonal matrix whose diagonal elements are σ1(A) ≥ · · · ≥ σn(A) ≥ 0. The rank-k truncated SVD
of A is Aopt,k = UkΣkVT

k , where Σk is the leading k × k principal submatrix of Σ containing on its
diagonal the largest singular values σ1(A), . . . , σk(A), Uk is formed by the k leading columns of U,
and Vk is formed by the k leading columns of V. A result of Eckart & Young [75] shows that the
best rank-k approximation of A in both the 2-norm and the Frobenius norm is Aopt,k = UkΣkVk:

min
rank(Ak)≤k

||A − Ak||2 = ||A − Aopt,k||2 = σk+1(A) (4.1)

and

min
rank(Ak)≤k

||A − Ak||F = ||A − Aopt,k||F =
⎛
⎝ n∑

j=k+1

σ 2
j (A)

⎞
⎠

1/2

. (4.2)

However, computing the SVD of a large matrix is prohibitevely expensive, and an active
research area focuses on algorithms that approximate the SVD, compromising accuracy for
speed. There are three properties of interest for these approximations: we follow here the
definitions from [76]. The first concerns the low-rank approximation and compares the error of
the approximation, measured in the 2-norm ‖A − Ak‖2 or Frobenius norm ‖A − Ak‖F, with the
optimal error obtained by the SVD from (4.1) and (4.2), respectively. The second one focuses
on the approximation of the k leading singular values of A by the singular values of Ak. The
approximation is called spectrum preserving if 1 ≤ σi(A)/σi(Ak) ≤ γ for all i = 1, . . . , k and some
γ ≥ 1, with γ being a low degree polynomial in k and the dimensions of the matrix m, n. The third
property focuses on the approximation of the trailing n − k singular values of A. The low-rank
approximation is a kernel approximation of A if 1 ≤ σj(A − Ak)/σk+j(A) ≤ γ , for all j = 1, . . . , n − k
and some γ ≥ 1.

There are two different classes of algorithms, deterministic algorithms, whose guarantees
hold deterministically, and randomized algorithms, whose guarantees hold with high probability.
Several different deterministic algorithms exist. The Lanczos method (see, e.g. [77]) is a
computationally efficient iterative algorithm, in particular for sparse matrices, for approximating

10

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A378:20190066

..

the leading singular values and associated singular vectors of a matrix. Rank revealing
factorizations based on QR factorization with column permutations or LU factorization with row
and column permutations are also efficient approaches for computing a low-rank approximation.
The first factorization of this type, the QR factorization with column pivoting, referred to as QRCP,
was introduced in [78]. It can be shown that with this algorithm, ‖A − Ak‖2 ≤ 2k√n − k σk+1(A),
but in practice QRCP works very well. The strong rank revealing QR factorization [79] or LU
factorization with column and row tournament pivoting [80] provide guarantees for the low-
rank approximation, spectrum preserving, and kernel approximation properties, with γ being a
low degree polynomial in m, n and k. These factorizations can be computed in O(mnk) flops. In the

case of strong rank revealing factorization, γ =
√

1 + f 2k(n − k), where f is a small constant. In the

case of LU with column and row tournament pivoting, γ = (1 + F2
TP(n − k))1/2(1 + F2

TP(m − k))1/2,

where FTP ≤ (2k)−1/2(n/k)log2(
√

2fk) for binary tree-based tournament pivoting. The spectrum-
revealing property holds for a submatrix of Ak. Since f and k are small, FTP can be seen as a
low degree polynomial in n and k. For more details see [80].

Randomized algorithms are based on the technique of linear sketching. The so-called
randomized SVD determines a linear sketching of A ∈ R

m×n by multiplying A with a random
matrix Ω1 ∈ R

n×� from a certain distribution on matrices; it then computes an orthonormal
basis Q1 for AΩ1 and finally obtains the low-rank approximation Ak = Q1QT

1 A. Here, � ≥ k is an
oversampling parameter. For an overview, see e.g. [81,82]. The random matrix Ω1 is chosen to
be a Johnson–Lindenstrauss transform or a fast Johnson–Lindenstrauss transform, as in the sub-
sampled randomized Hadamard transform (SRHT) introduced in [83]. The computation of AΩ1
costs 2mn log2 � + 1 flops when Ω1 is an SRHT ensemble and A is dense, and the QR factorization
of AΩ1 costs 2m�2 flops. However computing QT

1 A still costs 2mn� flops, which is comparable
to the cost of deterministic algorithms based on QR and LU rank revealing factorizations. Hence
randomized LU-like approaches have been introduced later to decrease this cost, for example,
the randomized SVD with row selection algorithm [81]. For a study of the connection between
deterministic and randomized low-rank approximation algorithms, see [76].

In terms of guarantees, the literature focused on bounding the error of the approximation,
typically in the Frobenius norm, ‖A − Ak‖F, by using the Johnson–Lindenstrauss embedding
and oblivious subspace embedding properties of these ensembles. The spectrum preserving
and kernel approximation properties of randomized algorithms were studied only very recently
in [76]. As a main result, [76] introduces sharp bounds of a randomized generalized LU
factorization that uses SRHT ensembles to sketch both the columns and the rows of A. The
resulting low-rank approximation is computed in O(nm log2(�′) + m��′) flops, where �′ > � > k
represent the oversampling of rows and columns, respectively, and are a polylog-factor larger
than m, n, k and the probability δ.

Communication plays an important role in the efficiency of an algorithm, as discussed in
§3. When k
 min(m, n) and the matrix A is distributed over many processors, a lower bound
on the number of messages that need to be exchanged between processors to compute a rank-
k approximation is Ω(log2 P). Deterministic algorithms such as QR with column pivoting [78]
or strong rank revealing QR [79] are not able to attain this bound, as they require exchanging
Ω(k log2 P) messages between processors. Communication avoiding algorithms, described in §3,
solve this problem by using, for example, tournament pivoting techniques to select columns
and/or rows in the context of rank revealing LU and QR factorizations.

The choice of the most appropriate low-rank approximation algorithm depends on the
problem that needs to be solved. There are situations in which the low-rank approximation needs
to be computed while traversing only once (or O(1) times) the rows or columns of A, as in stream
algorithms. Another common situation is when the matrix A is given only implicitly, for example,
as a product of several matrices. In this case, the Lanczos method or randomized algorithms
are suitable since they require only multiplying a vector by A. By contrast, factorization-based
methods require forming the matrix A explicitly. In other cases, as for example, in boundary
element methods (BEM), computing all the elements of the BEM matrix is too expensive with

11

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A378:20190066

..

respect to the overall cost of multiplying it with a vector using either FMM or hierarchical matrix
representation. In this case, low-rank sub-blocks of BEM matrices are compressed by using the
so-called adaptive cross approximation (ACA) method (see, e.g. [71]). The important problem is
to compute a low rank approximation while preserving interpretability of the original data. One
such example is the feature extraction problem in data mining. When A is a non-negative matrix
(all its elements are non-negative), the NMF factorization computes a low-rank approximation
ZWT such that both Z and W are non-negative matrices.

A challenging topic that we do not discuss here is compressing data in high dimensions that
is represented as a tensor, which is a multidimensional array. For a review on this topic, see
e.g. [84–86]. This problem arises in a large variety of applications, such as high-dimensional
parametric PDEs, electronic structure calculations, and machine learning. Tensors do not enjoy
the optimality properties of the rank-k truncated SVD for matrix compression, as in (4.1) and
(4.2). The problem of finding a best low-rank approximation by factoring a tensor into a sum of
component rank-one tensors (by using the CP decomposition) is ill posed [87] for many ranks.
For example, an approximation of a lower rank can provide better errors. As this illustrates, there
are many fascinating open problems, including deriving (parallel) algorithms for computing low-
rank tensor approximations and dealing with tensors that have high rank but are formed from
many subtensors of small rank.

Algorithms that exploit data sparsity should not, of course, sacrifice numerical stability, which
is especially important if they are implemented in precisions lower than double. Positive results
in this regard are given in [88,89].

5. Towards HPC’s next scale
HPC combines hardware, software and algorithms to deliver the highest capability at a given
time. In the 1980s, vector supercomputing dominated HPC, notably in the systems designed
by the late Seymour Cray. The 1990s saw the rise of massively parallel processing and shared-
memory multiprocessors, built by Silicon Graphics, Thinking Machines and others. In turn,
clusters of commodity (Intel/AMD x86) and purpose-built processors (e.g. IBM’s BlueGene),
dominated the 2000s. Today, those clusters have been augmented with computational accelerators
and GPUs and HPC means computing in the range of hundreds of petaFLOP/s. We are on the
verge of reaching the next big milestone in HPC: the exascale computing era.

Planning for exascale computers has been underway in the USA for around a decade [90–92].
The research and development costs to create an exascale computing system have been estimated
to exceed $1 billion, with annual operating costs of tens of millions of dollars, so these systems
require significant investment from governments and research agencies. The European Union,
Japan and China all have next-generation computing system research and development projects
in competition with the USA [93–95].

We briefly discuss some challenges that will arise in using exascale computers, to add to the
mixed precision, data movement and data sparsity challenges described above.

(a) Asynchronous algorithms
To solve very large problems by iteration on parallel architectures, we can reduce communication
and synchronization overheads by removing the requirement that an iterate is fully updated
before moving on to the next iteration. A processor is allowed to work with whatever data
it has without waiting for new data to arrive from other processors. Thus the order in which
components of the solution are updated is arbitrary and the past values of components are used
in the updates. This is an old idea [96] that has attracted renewed interest in recent years; see e.g.
[97,98]. The hope is that reducing communication and synchronization will result in shorter time
to the solution even though more iterations may be required. In the future, iterative algorithms
that are (almost) totally asynchronous may become competitive for a wide range of application
problems.

12

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A378:20190066

..

Figure 3. A computer visualization, created by Texas Advanced Computing Center (TACC) supercomputer Ranger, of Hurricane
Ike. It shows the storm developing in the Gulf of Mexico before making landfall at the Texas coast. (Online version in colour.)

(b) Autotuning
Given the diverse, evolving and possibly heterogeneous architectures on which software must
run, automatic ways to select the various algorithmic parameters will be increasingly needed
in order to achieve good performance, energy efficiency, load balancing and so on. Autotuning
is already routinely used for core numerical linear algebra algorithms, see, e.g. [99,100], and
references therein.

(c) Fault tolerance
Exascale systems will have such a large number of processors that failure of one or more
processors during a run will be routine, so the whole software system must be able to cope with
such failures. Restarting a computation, possibly from a checkpoint, is not sufficient. Algorithm-
based fault-tolerance techniques already exist, e.g. [101], but new paradigms will be needed for
handling faults at both the application level and the system level.

(d) Randomized algorithms
Randomization is an increasingly popular technique that can take several forms. Randomly
transforming the data (without changing the solution) can help avoid the need for costly
operations such as pivoting in a factorization [102], while, as discussed in the previous section,
random sampling of a matrix can approximate a subspace with computations dominated by
matrix multiplication [81,103].

(e) Exploiting artificial intelligence
AI, including machine learning and deep learning, offers the promise of being able to boost
HPC applications to produce superior capabilities and performance. This is an increasingly
active and rapidly advancing research field. At SC18 (the International Conference for HPC,
Networking, Storage, and Analysis), AI featured heavily in the applications nominated for the
prestigious Gordon Bell award of the Association for Computing Machinery [104], including in
work identifying extreme weather patterns from high-resolution climate simulations, identifying
materials’ atomic-level information from electron microscopy data and simulating earthquake

13

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A378:20190066

..

physics in urban environments. Future research must determine what applications can benefit
from AI and how it can best be implemented at large scale.

To mention just one benefit that exascale systems will bring, weather models will be able
to predict the timing and path of severe weather events, such as hurricanes, more rapidly and
with more accuracy by using much higher spatial resolution, incorporating more physics and
assimilating more observational data [105]. Figure 3 shows an existing visualization.

Meeting the hardware and software challenges posed by HPC will produce considerable
trickle-down benefits. These include enhancements to smaller computer systems and many types
of consumer electronics—from smartphones to cameras—as available devices become smaller,
faster, more fault tolerant and more energy efficient. The benefits of exascale computing will flow
not just from classical simulations but also from large-scale data analysis, machine learning and
deep learning, and often the integration of all three approaches.

Data accessibility. This article has no additional data.
Authors’ contributions. All authors drafted and revised the manuscript. All authors read and approved the
manuscript.
Competing interests. We declare we have no competing interests.
Funding. The work of J.D. was supported by the Exascale Computing Project (17-SC-20-SC), a joint project of
the US Department of Energy’s Office of Science and National Nuclear Security Administration. The work of
L.G. has received funding from the European Research Council (ERC) under the European Unions Horizon
2020 research and innovation programme (grant agreement no. 810367). The work of N.J.H. was supported
by the Royal Society.
Acknowledgements. We thank Massimilano Fasi, Theo Mary, Mantas Mikaitis, Srikara Praensh and Mawussi
Zounon for their comments on a draft manuscript.

References
1. Dongarra JJ. 1988 The LINPACK benchmark: an explanation. In Supercomputing, First

International Conference, Athens, Proceedings (eds EN Houstis, TS Papatheodorou, CD
Polychronopoulos). Lecture Notes in Computer Science, vol. 297, pp. 456–474. Berlin,
Germany: Springer.

2. Meuer H, Strohmaier E, Dongarra J, Simon H, Meuer M. TOP500 Supercomputer Sites.
http://www.top500.org.

3. Shalf JM, Leland R. 2015 Computing beyond Moore’s law. Computer 48, 14–23.
(doi:10.1109/MC.2015.374)

4. Shalf J. 2020 The future of computing beyond Moore’s law. Phil. Trans. R. Soc. A 378, 20190061.
(doi:10.1098/rsta.2019.0061)

5. Group EMW. 2004 Applied mathematics research for exascale computing. Report US
Department of Energy, Office of Science Advanced Scientific Computing Research Program.

6. IEEE Computer Society 1985 IEEE Standard for Binary Floating-Point Arithmetic,
ANSI/IEEE Standard 754-1985. New York, NY: Institute of Electrical and Electronics
Engineers.

7. IEEE Computer Society 2008 IEEE Standard for Floating-Point Arithmetic, IEEE Std 754-2008
(revision of IEEE Std 754-1985). New York, NY: IEEE Computer Society.

8. Lichtenau C, Carlough S, Mueller SM. 2016 Quad precision floating point on the IBM z13. In
2016 IEEE 23nd Symp. Computer Arithmetic (ARITH), Santa Clara, CA, pp. 87–94.

9. Feldman M. 2018 Intel Lays Out Roadmap for Next Three Xeon Products. See https://www.
top500.org/news/intel-lays-out-roadmap-for-next-three-xeon-products/ (accessed 5 June
2019).

10. Intel Corporation. 2018 BFLOAT16—Hardware Numerics Definition. White paper.
Document number 338302-001US.

11. Rao N. 2018 Beyond the CPU or GPU: Why Enterprise-Scale Artificial Intelligence
Requires a More Holistic Approach. See https://newsroom.intel.com/editorials/
artificial-intelligence-requires-holistic-approach (accessed 5 November 2018).

12. Lutz DR. 2019 ARM Floating Point 2019: Latency, Area, Power. In 2019 IEEE 26th Symp. on
Computer Arithmetic (ARITH), Kyoto, Japan, pp. 97–98. Piscataway, NJ: IEEE.

http://www.top500.org
http://dx.doi.org/doi:10.1109/MC.2015.374
http://dx.doi.org/doi:10.1098/rsta.2019.0061
https://www.top500.org/news/intel-lays-out-roadmap-for-next-three-xeon-products/
https://www.top500.org/news/intel-lays-out-roadmap-for-next-three-xeon-products/
https://newsroom.intel.com/editorials/artificial-intelligence-requires-holistic-approach
https://newsroom.intel.com/editorials/artificial-intelligence-requires-holistic-approach

14

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A378:20190066

..

13. Stephens N. 2019 BFloat16 processing for Neural Networks on Armv8-A. See
https://community.arm.com/developer/ip-products/processors/b/ml-ip-blog/posts/
bfloat16-processing-for-neural-networks-on-armv8_2d00_a (accessed 14 October 2019).

14. Kurzak J, Dongarra J. 2007 Implementation of mixed precision in solving systems of
linear equations on the cell processor. Concurrency Computat. Pract. Exper. 19, 1371–1385.
(doi:10.1002/cpe.1164)

15. Gupta S, Agrawal A, Gopalakrishnan K, Narayanan P. 2015 Deep learning with limited
numerical precision. In Proc. 32nd Int. Conf. on Machine Learning, JMLR: Workshop and
Conference Proceedings, Lille, France, vol. 37, pp. 1737–1746.

16. Svyatkovskiy A, Kates-Harbeck J, Tang W. 2017 Training distributed deep recurrent neural
networks with mixed precision on GPU clusters. In MLHPC’17: Proc. Machine Learning on
HPC Environments, pp. 10:1–10:8. New York, NY: ACM Press.

17. Langou J, Langou J, Luszczek P, Kurzak J, Buttari A, Dongarra J. 2006 Exploiting the
performance of 32 bit floating point arithmetic in obtaining 64 bit accuracy (revisiting
iterative refinement for linear systems). In Proc. 2006 ACM/IEEE Conf. on Supercomputing,
Tampa, FL.

18. Carson E, Higham NJ. 2017 A new analysis of iterative refinement and its application to
accurate solution of ill-conditioned sparse linear systems. SIAM J. Sci. Comput. 39, A2834–
A2856. (doi:10.1137/17M1122918)

19. Carson E, Higham NJ. 2018 Accelerating the solution of linear systems by iterative
refinement in three precisions. SIAM J. Sci. Comput. 40, A817–A847. (doi:10.1137/
17M1140819)

20. Saad Y, Schultz MH. 1986 GMRES: a generalized minimal residual algorithm for solving
nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 7, 856–869. (doi:10.1137/
0907058)

21. Higham NJ. 2019 Error analysis for standard and GMRES-based iterative refinement in
two and three-precisions. Manchester Institute for Mathematical Sciences, The University
of Manchester UK. (http://eprints.maths.manchester.ac.uk/2735)

22. Haidar A, Abdelfattah A, Zounon M, Wu P, Pranesh S, Tomov S, Dongarra J. 2018a The
design of fast and energy-efficient linear solvers: on the potential of half-precision arithmetic
and iterative refinement techniques. In Computational Science—ICCS 2018 (eds Y Shi, H Fu,
Y Tian, VV Krzhizhanovskaya, MH Lees, J Dongarra, PMA Sloot), pp. 586–600. Cham,
Switzerland: Springer International Publishing.

23. Haidar A, Tomov S, Dongarra J, Higham NJ. 2018b Harnessing GPU Tensor Cores for Fast
FP16 Arithmetic to Speed up Mixed-Precision Iterative Refinement Solvers. In Proc. Int.
Conf. for High Performance Computing, Networking, Storage, and Analysis (SC’18) (Dallas, TX),
pp. 47:1–47:11. Piscataway, NJ, USA: IEEE Press.

24. Buck I. 2019 World’s fastest supercomputer triples its performance record. See https://
blogs.nvidia.com/blog/2019/06/17/hpc-ai-performance-record-summit/ (accessed 24
June 2019).

25. Higham NJ, Pranesh S, Zounon M. 2019 Squeezing a matrix into half precision,
with an application to solving linear systems. SIAM J. Sci. Comput. 41, A2536–A2551.
(doi:10.1137/18M1229511)

26. Higham NJ, Pranesh S. 2019 Exploiting lower precision arithmetic in solving symmetric
positive definite linear systems and least-squares problems. MIMS EPrint 2019.20
Manchester Institute for Mathematical Sciences, The University of Manchester UK. (http://
eprints.maths.manchester.ac.uk/2736)

27. Carson E, Higham NJ, Pranesh S. In preparation Three-Precision GMRES-based Iterative
Refinement for Least Squares Problems. Manchester Institute for Mathematical Sciences, The
University of Manchester UK.

28. Tomov S, Nath R, Ltaief H, Dongarra J. 2010 Dense linear algebra solvers for multicore with
GPU accelerators. In 2010 IEEE Int. Symp. on Parallel Distributed Proc., Workshops and Phd
Forum (IPDPSW), Atlanta, GA, pp. 1–8.

29. Dongarra JJ, Luszczek P, Tsai YM. HPL-AI Mixed-Precision Benchmark. See https://icl.
bitbucket.io/hpl-ai/.

30. Wilkinson JH. 1961 Error analysis of direct methods of matrix inversion. J. Assoc. Comput.
Mach. 8, 281–330. (doi:10.1145/321075.321076)

https://community.arm.com/developer/ip-products/processors/b/ml-ip-blog/posts/bfloat16-processing-for-neural-networks-on-armv8_2d00_a
https://community.arm.com/developer/ip-products/processors/b/ml-ip-blog/posts/bfloat16-processing-for-neural-networks-on-armv8_2d00_a
http://dx.doi.org/doi:10.1002/cpe.1164
http://dx.doi.org/doi:10.1137/17M1122918
http://dx.doi.org/doi:10.1137/17M1140819
http://dx.doi.org/doi:10.1137/17M1140819
http://dx.doi.org/doi:10.1137/0907058
http://dx.doi.org/doi:10.1137/0907058
http://eprints.maths.manchester.ac.uk/2735
https://blogs.nvidia.com/blog/2019/06/17/hpc-ai-performance-record-summit/
https://blogs.nvidia.com/blog/2019/06/17/hpc-ai-performance-record-summit/
http://dx.doi.org/doi:10.1137/18M1229511
http://eprints.maths.manchester.ac.uk/2736
http://eprints.maths.manchester.ac.uk/2736
https://icl.bitbucket.io/hpl-ai/
https://icl.bitbucket.io/hpl-ai/
http://dx.doi.org/doi:10.1145/321075.321076

15

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A378:20190066

..

31. Higham NJ, Mary T. 2019 A new approach to probabilistic rounding error analysis. SIAM J.
Sci. Comput. 41, A2815–A2835. (doi:10.1137/18M1226312)

32. Blanchard P, Higham NJ, Lopez F, Mary T, Pranesh S. 2019 Mixed precision block
fused multiply-add: error analysis and application to GPU Tensor Cores. Manchester
Institute for Mathematical Sciences, The University of Manchester UK. (http://eprints.
maths.manchester.ac.uk/2733)

33. Hatfield S, Düben P, Chantry M, Kondo K, Miyoshi T, Palmer T. 2018 Choosing the optimal
numerical precision for data assimilation in the presence of model error. J. Adv. Model. Earth
Syst. 10, 2177–2191. (doi:10.1029/2018MS001341)

34. Palmer TN. 2020 The physics of numerical analysis: a climate modelling case study. Phil.
Trans. R. Soc. A 378, 20190058. (doi:10.1098/rsta.2019.0058)

35. Tintó Prims O, Acosta MC, Moore AM, Castrillo M, Serradell K, Cortés A, Doblas-Reyes
FJ. 2019 How to use mixed precision in ocean models: exploring a potential reduction of
numerical precision in NEMO 4.0 and ROMS 3.6. Geoscientific Model Dev. 12, 3135–3148.
(doi:10.5194/gmd-12-3135-2019)

36. Yang K, Chen YF, Roumpos G, Colby C, Anderson J. 2019 High Performance Monte Carlo
Simulation of Ising Model on TPU Clusters. arXiv e-prints, p. 15. See http://arxiv.org/abs/
1903.11714.

37. Hopkins M, Mikaitis M, Lester DR, Furber S. 2020 Stochastic rounding and reduced-precision
fixed-point arithmetic for solving neural ordinary differential equations. Phil. Trans. R. Soc. A
378, 20190052. (doi:10.1098/rsta.2019.0052)

38. Tagliavini G, Mach S, Rossi D, Marongiu A, Benin L. 2018 A Transprecision Floating-Point
Platform for Ultra-Low Power Computing. In 2018 Design, Automation and Test in Europe Conf.
and Exhibition (DATE), Dresden, Germany, pp. 1051–1056.

39. Higham NJ, Pranesh S. 2019 Simulating low precision floating-point arithmetic. SIAM J. Sci.
Comput. 41, C585–C602. (doi:10.1137/19M1251308)

40. Wulf WA, McKee SA. 1995 Hitting the memory wall: implications of the obvious. SIGARCH
Comput. Archit. News 23, 20–24. (doi:10.1145/216585.216588)

41. Graham SL, Snir M, Patterson CA (eds). 2005 Getting up to speed: the future of supercomputing.
Washington, DC: National Academies Press.

42. Zimmer C, Atchley S, Pankajakshan R, Smith BE, Karlin I, Leininger ML, Bertsch A, Ryujin
BS, Burmark J, Walker-Loud A, Clark MA, Pearce O. 2019 An Evaluation of the CORAL
Interconnects. In Proc. Int. Conf. for High Performance Computing, Networking, Storage and
Analysis, SC’19 pp. 39:1–39:18. New York, NY: ACM.

43. Barron DW, Swinnerton-Dyer HPF. 1960 Solution of simultaneous linear equations using a
Magnetic-Tape store. Comput. J. 3, 28–33. (doi:10.1093/comjnl/3.1.28)

44. Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J, Croz JD, Greenbaum
A, Hammarling S, McKenney A, Sorensen D. 1999 LAPACK users’ guide. Philadelphia, PA:
Society for Industrial and Applied Mathematics.

45. Blackford LS, Choi J, Cleary A, D’Azevedo E, Demmel J, Dhillon I, Dongarra J, Hammarling
S, Henry G, Petitet A, Stanley K, Walker D, Whaley RC. 1997 ScaLAPACK users’ guide.
Philadelphia, PA: Society for Industrial and Applied Mathematics.

46. Dongarra J, Gates M, Haidar A, Kurzak J, Luszczek P, Wu P, Yamazaki I, Yarkhan A,
Abalenkovs M, Bagherpour N, Hammarling S, Šístek J, Stevens D, Zounon M, Relton SD.
2019 PLASMA: parallel linear algebra software for multicore using OpenMP. ACM Trans.
Math. Software 45, 161–1635. (doi:10.1145/3264491)

47. Grigori L, Demmel J, Xiang H. 2011 CALU: a communication optimal LU factorization
algorithm. SIAM J. Matrix Anal. Appl. 32, 1317–1350. (doi:10.1137/100788926)

48. Hong JW, Kung HT. 1981 I/O complexity: the red-blue pebble game. In STOC’81: Proc. 13th
Annual ACM Symp. on Theory of Computing, pp. 326–333. New York, NY: ACM.

49. Irony D, Toledo S, Tiskin A. 2004 Communication lower bounds for distributed-
memory matrix multiplication. J. Parallel Distrib. Comput. 64, 1017–1026. (doi:10.1016/j.jpdc.
2004.03.021)

50. Demmel JW, Grigori L, Hoemmen M, Langou J. 2008 Communication-avoiding parallel and
sequential QR and LU factorizations: theory and practice. Technical Report UCB/EECS-2008-
89 University of California Berkeley, EECS Department. LAWN #204.

http://dx.doi.org/doi:10.1137/18M1226312
http://eprints.maths.manchester.ac.uk/2733
http://eprints.maths.manchester.ac.uk/2733
http://dx.doi.org/doi:10.1029/2018MS001341
http://dx.doi.org/doi:10.1098/rsta.2019.0058
http://dx.doi.org/doi:10.5194/gmd-12-3135-2019
http://arxiv.org/abs/1903.11714
http://arxiv.org/abs/1903.11714
http://dx.doi.org/doi:10.1098/rsta.2019.0052
http://dx.doi.org/doi:10.1137/19M1251308
http://dx.doi.org/doi:10.1145/216585.216588
http://dx.doi.org/doi:10.1093/comjnl/3.1.28
http://dx.doi.org/doi:10.1145/3264491
http://dx.doi.org/doi:10.1137/100788926
http://dx.doi.org/doi:10.1016/j.jpdc.2004.03.021
http://dx.doi.org/doi:10.1016/j.jpdc.2004.03.021

16

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A378:20190066

..

51. Ballard G, Demmel J, Holtz O, Schwartz O. 2011 Minimizing communication in linear
algebra. SIAM J. Matrix Anal. Appl. 32, 866–901. (doi:10.1137/090769156)

52. Cannon LE. 1969 A cellular computer to implement the Kalman filter algorithm. PhD thesis,
Montana State University.

53. Demmel J, Grigori L, Gu M, Xiang H. 2015 Communication-avoiding rank-revealing QR
decomposition. SIAM J. Matrix Anal. Appl. 36, 55–89. (doi:10.1137/13092157X)

54. Golub GH, Plemmons RJ, Sameh A. 1988 Parallel block schemes for large-scale least-squares
computations. In High-speed computing: scientific applications and algorithm design (ed. RB
Wilhelmson), pp. 171–179. Urbana and Chicago, IL, USA: University of Illinois Press.

55. Pothen A, Raghavan P. 1989 Distributed orthogonal factorization: Givens and Householder
algorithms. SIAM J. Sci. Stat. Comput. 10, 1113–1134. (doi:10.1137/0910067)

56. Demmel JW, Grigori L, Hoemmen M, Langou J. 2012 Communication-optimal parallel and
sequential QR and LU factorizations. SIAM J. Sci. Comput. 34, 206–239. Short version of
technical report UCB/EECS-2008-89 from 2008. (doi:10.1137/080731992)

57. Ballard G, Demmel J, Grigori L, Jacquelin M, Nguyen HD, Solomonik E. 2014 Reconstructing
Householder Vectors from Tall-Skinny QR. In Proc. IEEE Int. Parallel and Distributed Processing
Symposium IPDPS, Phoenix, AZ.

58. Grigori L, David PY, Demmel J, Peyronnet S. 2010 Brief announcement: Lower bounds on
communication for direct methods in sparse linear algebra. In Proc. ACM SPAA, Santorini,
Greece.

59. Azad A, Ballard G, Buluc A, Demmel J, Grigori L, Schwartz O, Toledo S, Williams S. 2016
Exploiting multiple levels of parallelism in sparse Matrix-Matrix multiplication. SIAM J. Sci.
Comput. 38, 624–651. (doi:10.1137/15M104253X)

60. Hoemmen M. 2010 Communication-avoiding Krylov Subspace Methods. PhD thesis,
Berkeley, CA, USA. AAI3413388.

61. Carson E. 2015 Communication-Avoiding Krylov Subspace Methods in Theory and Practice.
PhD thesis, University of California at Berkeley, CA.

62. Grigori L, Moufawad S, Nataf F. 2016 Enlarged Krylov subspace conjugate gradient
methods for reducing communication. SIAM J. Matrix Anal. Appl. 37, 744–773.
(doi:10.1137/140989492)

63. Grigori L, Tissot O. 2019 Scalable linear solvers based on enlarged Krylov subspaces
with dynamic reduction of search directions. SIAM J. Sci. Comput. 41, C522–C547.
(doi:10.1137/18M1196285)

64. Christ M, Demmel J, Knight N, Scanlon T, Yelick KA. 2013 Communication lower bounds
and optimal algorithms for programs that reference arrays—part 1. Technical Report
UCB/EECS-2013-61 EECS Department, University of California, Berkeley.

65. Devarakonda A, Fountoulakis K, Demmel J, Mahoney MW. 2019 Avoiding communication
in primal and dual block coordinate descent methods. SIAM J. Sci. Comput. 41, C1–C27.
(doi:10.1137/17M1134433)

66. Das S, Demmel J, Fountoulakis K, Grigori L, Mahoney MW. 2019 Parallel and
communication avoiding least angle regression. CoRR. See http://arxiv.org/abs/1905.11340.

67. Solomonik E, Demmel J, Hoefler T. 2017 Communication lower bounds of bilinear
algorithms for symmetric tensor contractions. ArXiv e-prints.

68. Ballard G, Knight N, Rouse K. 2018 Communication lower bounds for Matricized Tensor
Times Khatri-Rao Product. In Proce. IEEE Int. Parallel and Distributed Processing Symposium
(IPDPS), Vancouver, Canada, pp. 557–567.

69. Greengard L, Rokhlin V. 1987 A fast algorithm for particle simulations. J. Comput. Phys. 73,
325–348. (doi:10.1016/0021-9991(87)90140-9)

70. Martinsson PG, Rokhlin V. 2007 An accelerated kernel-independent fast multipole method
in one dimension. SIAM J. Sci. Comput. 29, 1160–1178. (doi:10.1137/060662253)

71. Bebendorf M. 2008 Hierarchical matrices. Leipzig, Germany: Springer.
72. Börm S, Grasedyck L, Hackbusch W. 2003 Hierarchical matrices. (https://www.

researchgate.net/publication/277293203_Hierarchical_Matrices)
73. Hackbusch W. 2015 Hierarchical matrices: algorithms and analysis, 3rd edn. Springer Series in

Computational Mathematics. Baltimore, MD: Springer.
74. Keyes DE, Ltaief H, Turkiyyah G. 2020 Hierarchical algorithms on hierarchical architectures.

Phil. Trans. R. Soc. A 378, 20190055. (doi:10.1098/rsta.2019.0055)

http://dx.doi.org/doi:10.1137/090769156
http://dx.doi.org/doi:10.1137/13092157X
http://dx.doi.org/doi:10.1137/0910067
http://dx.doi.org/doi:10.1137/080731992
http://dx.doi.org/doi:10.1137/15M104253X
http://dx.doi.org/doi:10.1137/140989492
http://dx.doi.org/doi:10.1137/18M1196285
http://dx.doi.org/doi:10.1137/17M1134433
http://arxiv.org/abs/1905.11340
http://dx.doi.org/doi:10.1016/0021-9991(87)90140-9
http://dx.doi.org/doi:10.1137/060662253
https://www.researchgate.net/publication/277293203_Hierarchical_Matrices
https://www.researchgate.net/publication/277293203_Hierarchical_Matrices
http://dx.doi.org/doi:10.1098/rsta.2019.0055

17

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A378:20190066

..

75. Eckart C, Young G. 1936 The approximation of one matrix by another of lower rank.
Psychometrika 1, 211–218. (doi:10.1007/BF02288367)

76. Demmel J, Grigori L, Rusciano A. 2019 An improved analysis and unified perspective on
deterministic and randomized low rank matrix approximations. Technical report Inria. See
http://arxiv.org/abs/1910.00223.

77. Parlett BN. 1998 The symmetric eigenvalue problem. Philadelphia, PA, USA: Society for
Industrial and Applied Mathematics. Unabridged, amended version of book first published
by Prentice-Hall in 1980.

78. Businger PA, Golub GH. 1965 Linear least squares solutions by Householder
transformations. Numer. Math. 7, 269–276. (doi:10.1007/BF01436084)

79. Gu M, Eisenstat SC. 1996 Efficient algorithms for computing a strong rank-revealing QR
factorization. SIAM J. Sci. Comput. 17, 848–869. (doi:10.1137/0917055)

80. Grigori L, Cayrols S, Demmel JW. 2018 Low rank approximation of a sparse matrix based
on LU factorization with column and row tournament pivoting. SIAM J. Sci. Comput. 40,
181–209. (doi:10.1137/16M1074527)

81. Halko N, Martinsson PG, Tropp JA. 2011 Finding structure with randomness: probabilistic
algorithms for constructing approximate matrix decompositions. SIAM Rev. 53, 217–288.
(doi:10.1137/090771806)

82. Woodruff DP. 2014 Sketching as a tool for numerical linear algebra. Found. Trends Theor.
Comput. Sci. 10, 1–157. (doi:10.1561/0400000060)

83. Sarlos T. 2006 Improved Approximation Algorithms for Large Matrices via Random
Projections. In 2006 47th Annual IEEE Symp. Foundations of Computer Science (FOCS’06),
Berkeley, CA, pp. 143–152.

84. Grasedyck L, Kressner D, Tobler C. 2013 A literature survey of low-rank tensor
approximation techniques. GAMM-Mitteilungen 36, 53–78. (doi:10.1002/gamm.201310004)

85. Hackbusch W. 2012 Tensor spaces and numerical tensor calculus, vol. 42. Berlin, Germany:
Springer Science & Business Media.

86. Kolda TG, Bader BW. 2009 Tensor decompositions and applications. SIAM Rev. 51, 455–500.
(doi:10.1137/07070111X)

87. de Silva V, Lim LH. 2008 Tensor rank and the ill-posedness of the best low-rank
approximation problem. SIAM J. Matrix Anal. Appl. 30, 1084–1127. (doi:10.1137/06066518X)

88. Higham NJ, Mary T. 2019 Solving block low-rank linear systems by LU factorization
is numerically stable. Manchester Institute for Mathematical Sciences, The University of
Manchester UK. (http://eprints.maths.manchester.ac.uk/2730/)

89. Xi Y, Xia J. 2016 On the stability of some hierarchical rank structured matrix algorithms.
SIAM J. Matrix Anal. Appl. 37, 1279–1303. (doi:10.1137/15M1026195)

90. Dongarra J et al. 2011 International exascale software project roadmap. Int. J. High
Performance Comput. Appl. 25, 3–60. (doi:10.1177/1094342010391989)

91. U.S. Department of Energy. 2010 The Opportunities and Challenges of Exascale Computing.
Technical report Office of Science Washington, D.C., USA.

92. Kothe D, Lee S, Qualters I. 2019 Exascale computing in the United States. Comput. Sci. Eng.
21, 17–29. (doi:10.1109/MCSE.2018.2875366)

93. Kalbe G. 2019 The European approach to the exascale challenge. Comput. Sci. Eng. 21, 42–47.
(doi:10.1109/MCSE.2018.2884139)

94. Qian D, Luan Z. 2019 High performance computing development in China: a brief review
and perspectives. Comput. Sci. Eng. 21, 6–16. (doi:10.1109/MCSE.2018.2875367)

95. Sorensen B. 2019 Japan’s Flagship 2020 ‘Post-K’ system. Comput. Sci. Eng. 21, 48–49.
(doi:10.1109/MCSE.2018.2886646)

96. Chazan D, Miranker W. 1969 Chaotic relaxation. Linear Algebra Appl. 2, 199–222.
(doi:10.1016/0024-3795(69)90028-7)

97. Bethune I, Bull JM, Dingle NJ, Higham NJ. 2014 Performance analysis of asynchronous
Jacobi’s method implemented in MPI, SHMEM and OpenMP. Int. J. High Performance Comput.
Appl. 28, 97–111. (doi:10.1177/1094342013493123)

98. Chow E, Anzt H, Dongarra J. 2015 Asynchronous Iterative Algorithm for Computing
Incomplete Factorizations on GPUs. In High Performance Computing (eds JM Kunkel,
T Ludwig), pp. 1–16. Cham, Switzerland: Springer.

http://dx.doi.org/doi:10.1007/BF02288367
http://arxiv.org/abs/1910.00223
http://dx.doi.org/doi:10.1007/BF01436084
http://dx.doi.org/doi:10.1137/0917055
http://dx.doi.org/doi:10.1137/16M1074527
http://dx.doi.org/doi:10.1137/090771806
http://dx.doi.org/doi:10.1561/0400000060
http://dx.doi.org/doi:10.1002/gamm.201310004
http://dx.doi.org/doi:10.1137/07070111X
http://dx.doi.org/doi:10.1137/06066518X
http://eprints.maths.manchester.ac.uk/2730/
http://dx.doi.org/doi:10.1137/15M1026195
http://dx.doi.org/doi:10.1177/1094342010391989
http://dx.doi.org/doi:10.1109/MCSE.2018.2875366
http://dx.doi.org/doi:10.1109/MCSE.2018.2884139
http://dx.doi.org/doi:10.1109/MCSE.2018.2875367
http://dx.doi.org/doi:10.1109/MCSE.2018.2886646
http://dx.doi.org/doi:10.1016/0024-3795(69)90028-7
http://dx.doi.org/doi:10.1177/1094342013493123

18

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A378:20190066

..

99. Dongarra J, Gates M, Kurzak J, Luszczek P, Tsai YM. 2018 Autotuning numerical dense linear
algebra for batched computation with GPU hardware accelerators. Proc. IEEE 106, 2040–2055.
(doi:10.1109/JPROC.2018.2868961)

100. Whaley RC, Petitet A, Dongarra JJ. 2001 Automated empirical optimization of software and
the ATLAS project. Parallel Comput. 27, 3–35. (doi:10.1016/S0167-8191(00)00087-9)

101. Bouteiller A, Herault T, Bosilca G, Du P, Dongarra J. 2015 Algorithm-based fault tolerance
for dense matrix factorizations, multiple failures and accuracy. ACM Trans. Parallel Comput.
1, 10:1–10:28. (doi:10.1145/2686892)

102. Baboulin M, Dongarra J, Herrmann J, Tomov S. 2013 Accelerating linear system solutions
using randomization techniques. ACM Trans. Math. Software 39, 8:1–8:13. (doi:10.1145/
2427023.2427025)

103. Mary T, Yamazaki I, Kurzak J, Luszczek P, Tomov S, Dongarra J. 2015 Performance of
random sampling for computing low-rank approximations of a dense matrix on GPUs.
In Proc. Int. Conf. for High Performance Computing, Networking, Storage and Analysis (SC’15),
pp. 60:1–60:11. New York, NY, USA: ACM.

104. Inside HPC Staff. 2019 Gordon Bell Prize highlights the impact of AI. See https://insidehpc.
com/2019/02/gordon-bell-prize-highlights-the-impact-of-ai/ (accessed 25 October 2019).

105. Schulthess TC, Bauer P, Wedi N, Fuhrer O, Hoefler T, Schär C. 2019 Reflecting on the goal
and baseline for exascale computing: a roadmap based on weather and climate simulations.
Comput. Sci. Eng. 21, 30–41. (doi:10.1109/MCSE.2018.2888788)

http://dx.doi.org/doi:10.1109/JPROC.2018.2868961
http://dx.doi.org/doi:10.1016/S0167-8191(00)00087-9
http://dx.doi.org/doi:10.1145/2686892
http://dx.doi.org/doi:10.1145/2427023.2427025
http://dx.doi.org/doi:10.1145/2427023.2427025
https://insidehpc.com/2019/02/gordon-bell-prize-highlights-the-impact-of-ai/
https://insidehpc.com/2019/02/gordon-bell-prize-highlights-the-impact-of-ai/
http://dx.doi.org/doi:10.1109/MCSE.2018.2888788

	Introduction
	Mixed precision algorithms
	Algorithms minimizing data transfer
	Exploiting data sparsity
	Towards HPC's next scale
	Asynchronous algorithms
	Autotuning
	Fault tolerance
	Randomized algorithms
	Exploiting artificial intelligence

	References

