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1 Introduction
A fundamental requirement in scientific computing is the ability to solve a system of linear equations
Ax=Db, (1.1)

where A is a large, dense n X n nonsingular matrix. This can be done at a speed that is close to
the peak performance on current computer architectures, for example, by using libraries such as the
NVIDIA CUSOLVER library [35], MAGMA [27,46], and MKL [28] that redesign and highly optimize the
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standard LAPACK algorithms [1] for GPU and multi-core architectures. The solvers use direct methods
in a fixed/working precision arithmetic, namely, the IEEE standard double-precision 64-bit floating-
point arithmetic (FP64), or single precision 32-bit floating-point arithmetic (FP32). Recently, various
machine learning and artificial intelligence neural network applications increased the need for half precision
arithmetic, and vendors started to accelerate it in hardware, in the form of either the IEEE FP16 format [26]
or the bfloat16 format [29] (see Table 1.1). Currently, the NVIDIA V100 Tensor Cores (TCs) can execute
FP16-TC at up to 120 teraFLOP/s versus 7.5 teraFLOP/s for FP64 and 15 teraFLOP/s for FP32. Thus,
developing algorithms to exploit the much higher performance that lower-precision arithmetic offers can
have significant impact in scientific, high-performance computing (HPC).

This paper presents a class of mixed-precision algorithms and an accompanying set of computational
techniques that we have developed to accelerate (1.1) in FP 64, which is the de facto standard for scientific
computing. We show that the new mixed-precision techniques can accelerate the solution by a significant
factor using the faster lower precisions, while still retaining FP 64 quality.

The mixed-precision approach is based on an iterative refinement process in FP 64 arithmetic:

Xit1 =X+ ¢i, (1.2)

which is performed until x;; | has a backward error at the FP 64 level, or some other user-specified tolerance.
Here, c; is a correction vector obtained by mixed-precision solution of the correction equation Ac; = b — Ax;.

The fundamentals of the mixed-precision approach (1.2) are based on the mixed-precision iterative
refinement algorithm. The main idea is to compute an LU factorization of A in low precision and use
the factorization to solve the correction equation. These methods have been studied in the past, as discussed
in Section 2. A persistent challenge has been to redesign the techniques for new architectures and to
develop highly tuned implementations that resolve computational issues such as inefficient parallelization,
scaling, and use of mixed-precision calculations. To address this problem on GPU Tensor Cores, we
develop a number of innovations for mixed-precision computations (outlined in Section 3) as well as
leverage building blocks from HPC numerical libraries such as CUSOLVER and MAGMA, which provide
state-of-the-art, high-performance algorithms such as LU factorization—including a set of highly tuned
mixed-precision iterative refinement algorithms using either the FP32 or the FP16 as lower precision for
the LU factorization (e.g., FP32 —FP64 and FP16 —FP64) [17,45].

Recently, some work on the HPL-AI [12] benchmark—which is a benchmark similar to the well-known
HPL benchmark [25] that is used for ranking the TOP500 supercomputers in the world, but which uses
iterative refinement to solve the linear system—showed unprecedented and attractive results on the top
machine in the world. The HPL-AI benchmark using iterative refinement with FP16-TC as the lower
precision achieved 445 petaFLOP/s (June 2019) and 550 petaFLOP/s (November 2019) on the Summit
supercomputer [37] while the FP 64 standard HPL scored 148.6 petaFLOP/s [5,38].

Table 1.1: Parameters for the IEEE FP16, FP32, and FP64 arithmetic precisions, the mixed-precision
FP16-TC, and their respective peak performances on an NVIDIA V100 GPU. “Range" denotes the order
of magnitude of the smallest subnormal (xXp;n ), and largest and smallest positive normalized floating-
point numbers. The FP16-TC features mixed-precision arithmetic operations, where inputs are FP16 and
computations are performed in full (FP32) precision.

Arithmetic Size Range Unit roundoff ~ Peak Tflop/s
(bits) Xmin,s Xmin Xmax (V100 GPU)
FP16-TC  16/32 120
BFloatl6 16 12x10738  34x10% 3.9%x1073 N/A
FP16 16 6.0x 1078 6.1 x107 6.6 x 10* 49x1074 30
FP32 32 14x107% 12x10738¥  34x10% 6.0x 1078 15

FP64 64  49x1073% 22x107308  18x10%%  1.1x10°16 7.5
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2 Related Work

Iterative refinement is a long-standing method that was programmed by Wilkinson in the 1940s for the ACE
digital computer. The idea is to improve the computed solution of a linear system by iteratively solving
a correction equation and adding the correction to the current solution; see Wilkinson [47], Moler [34],
Stewart [43], Demmel [11], and, for a comprehensive treatment, Higham [21, Chap. 12]. The three tasks—
original solve/factorization, residual computation, and correction equation solve—can be done in the same
precision (fixed precision) or in different precisions (mixed precision). The original usage was mixed
precision, with the residual computed at twice the working precision. Fixed-precision iterative refinement
was analyzed by Skeel [42] for a solver based on LU factorization and by Higham [19,20] for a general
solver. In the 2000s, motivated by processors equipped with FP32 that had speed 2x that of FP64,
mixed-precision iterative refinement—with the LU factorization done in FP32 and everything else done
in FP 64—was explored in [6,31].

Replacing the direct triangular solves of the correction equation with an iterative method, as suggested
in [7] in a mixed-precision context, leads to “nesting” of two iterative methods, which in general are called
“inner—outer” iterations, the latter having been studied both theoretically and computationally [15,39,41],
including in mixed-precision computation scenarios [3]. Recently, Carson and Higham [7,8] analyzed a
three-precision iterative refinement scheme (factorization precision, working precision, residual precision)
and concluded that if the condition number of A is not too large, namely Kkw(A) = ||A||eo[[A ™! [0 < 10%,
then using FP16 for the 0(n3) portion (the LU factorization) and (FP32, FP64) or (FP64, FP128)
as the (working, residual) precision for the O(nz) portion (refinement loop), one can expect to achieve
forward error and backward error on the order of 10~% and 1071© respectively. We note that, if £ is an
approximate solution of Ax = b the forward error is defined by ||£ — X||eo/||X||cc and the backward error
is defined by min{ e : (A+ AA)x = b, ||AA|| < €||A|| } and can be evaluated as ||r||2/(||A]|2]|£]l2), where
r = b— AX. Carson and Higham also proposed the use of the GMRES method preconditioned by the FP16
LU factorization as the refinement procedure and showed that in this case the constraint on the condition
number can be relaxed to k..(A) < 108 when the (working, residual) precision is (FP32, FP64) and to 10'2
when the (working, residual) precision is (FP64, FP128). Analysis covering this GMRES-based approach
when two precisions are used with the residual precision equal to the working precision is given in [22].

An investigation of similar iterative refinement methods on earlier generations of GPUs can be found
in[18].

3 Contributions

The primary motivation of this paper is to propose and implement a high-performance framework for the
mixed-precision iterative refinement solvers that make use of GPU Tensor Core—accelerated FP16-TC. To
this end, we:

e Develop a framework for exploiting GPU Tensor Cores in mixed-precision (FP16-TC-
FP32/FP64) iterative refinement solvers and describe the path to develop high-performance,
Tensor-Cores-enabled dense linear algebra building blocks that can be used to exploit the FP16-TC
in HPC applications.

e Provide algorithmic advancement to minimize trouble related to matrices not representable in
FP16’s limited range. Matrices from a wide range of applications become singular in FP16
because their entries are not representable in the limited FP 1 6 range. In our algorithm, the original
data is never represented in precision below FP32. This technique is the first step toward our
proposition for a new set of mixed-precision factorization algorithms. In addition, we investigate
scaling techniques that can also help fix issues related to the FP 16 range.

e Introduce a new class of multi-precision dense matrix factorization algorithms. Historically,
iterative refinement solvers have always used only one precision for the factorization (lower
precision) and a higher (one or two) precision for the refinement loop. Such a design means that
the factorization will be performed in FP1 6, the refinement loop in FP64. However, as our study
will show, performing the whole factorization in FP16 is not optimal, for two main reasons [24].
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First, an FP 16 factorization has reduced accuracy. Second, having to represent the original matrix
in FP16 can be problematic. In our work, the factorization itself is implemented in multiprecision
to allow better accuracy and to be able to solve a wider range of problems than was possible before.

e Compare iterative refinement with preconditioned GMRES as the solver with preconditioned
GMRES applied directly to the linear system (with no iterative refinement).

e Develop a performance model that accurately predicts performance gains, allowing users to decide
in advance if such iterative refinement solvers can be beneficial for their problems.

e Present experiments that show that many problems, representing different areas of applications,
with both dense and sparse matrices, can be accelerated by our mixed-precision iterative refinement
solver up to 5x when using the FP16-TC, or about 2x when using the FP 32 arithmetic.

e Quantify—in practice—the performance and limitations of this approach on the latest hardware
architecture from NVIDIA, namely, the Volta V100 GPU.

e Show how the performance of the mixed-precision iterative refinement solver is not sensitive to
the FP 64 compute throughput.

e Study the benefits and applicability of TCAIRS for linear systems with multiple right-hand sides.

e Provide experiments for both real and complex data.

e Present a study of the energy efficiency of the iterative refinement solver exploiting the Tensor
Cores and show that it can reduce power consumption by up to 80%.

The developments are released within the CUDA toolkit CUSOLVER library [35] and in the MAGMA
library [17,33] to make these experiments independently reproducible and to allow the scientific community
to exploit this work.

We also would like to point readers who are interested in energy efficiency and power measurement
to our work in [16] which investigates the energy gain that can be brought by the iterative refinement
techniques from a power consumption point of view.

4 Iterative Refinement Solver: Background

The standard method for solving a linear system Ax = b is Gaussian elimination with partial pivoting, or
equivalently, the LU factorization method with partial pivoting. An LU factorization represents A as the
product of a lower triangular matrix L and an upper triangular matrix U, so that A = LU. Thus, solving
Ax = b reduces to solving two triangular systems:

Ax=b=LUx=0>b: solve Ly = b then solve Ux = y.

The factorization costs O(n>) operations while the triangular solve costs O(n?) operations, so for large n
almost all the time is spent in the factorization and the triangular solve time is negligible. In practice, partial
pivoting is used to ensure numerical stability, resulting in a factorization PA = LU, where P is a permutation
matrix. For simplicity of exposition, we suppress P in what follows (thus A <— PA). Throughout the paper A
is assumed to be nonsingular.

The basic way to solve such a system is to perform these operations in one precision, typically the
precision to which the user wishes to obtain the solution, or the precision in which the input data is given.
We call this the working precision and denote it by u®.

(a) Iterative Refinement

Iterative refinement aims to improve the accuracy or backward error of a computed solution X to Ax = b.
It consists of a series of iterations (the refinement loop) and is described in Algorithm 4.1 in the general
three-precision form proposed by Carson and Higham [8]. The three precisions of arithmetic used are
defined by their respective unit roundoffs: uf > uf > u*. We write “in precision uf” (etc.) to mean “in
floating-point arithmetic of precision uf”.

As seen in Algorithm 4.1, we denote by u" the precision in which step 1 is carried out. Step 2 is
performed in the precision uf, which is the precision of the LU factorization: it uses the LU factors to
solve the correction equation Ac = r and then it casts the solution ¢; to the working precision u%. Step 3

is carried out with precision u%. If all three steps can be computed exactly then the iterative refinement
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Convert A — AS from precision u¥ to uf;
Perform LU factorization of A/ in precision uf )
Find the initial solution x( using the computed LU factorization of Alin precision uf, then cast xg to
precision u¥ ;
//Refinement loop, outer loop
repeat
1. Residual: Compute residual r; < b — Ax; in precision u" and cast it to u¥ ;
2. Correction: Solve Ac; = r;, using the LU factorization in precision uf then cast the result ¢; to the
working precision u" ;
3. Update: Correct the current solution x; ;| = x; + ¢; in precision u";

until x; | is accurate enough;

Algorithm 4.1: Classical iterative refinement (IR) algorithm.

algorithm completes in one iteration. However, in floating-point arithmetic the above steps usually need to
be repeated.

If uf = u™ = u" the method is called fixed-precision iterative refinement; otherwise, it is mixed-precision
iterative refinement. Fixed-precision iterative refinement can be used to improve the backward error of an
LU factorization without a strong stabilizing pivoting strategy [2,32,42]. On the other hand, mixed-precision
iterative refinement also improves the forward error to the working precision—if the condition number of
A is not too large: ufx..(A) < 1. We denote this method by IR.

In our analysis and experiments we take u* = u", so we do not use extra precision in forming the
residuals.

(b) The LU factorization

Algorithmically, as presented in Algorithm 4.2 and illustrated in Figure 4.1, the LU factorization can be
viewed as a sequence of steps with two distinct phases per step: (1) a panel factorization that affects the data
depicted by the orange portion of Figure 4.1, and 2) a trailing matrix update that updates data represented
by the magenta (denoted by 7;) and green colors (A;) in Figure 4.1. From a software point of view, we know
that PanelFactorize is a memory-bound step performed through the Xget £2 routine and occupies a
small portion of the total time, while TrailingMatrixUpdates are compute-bound and are performed
using the Level-3 Basic Linear Algebra Subprograms (BLAS) routines Xt rsm (for 7;) and Xgemm (for A;).
The A; updates occupy the greatest portion of the time spent in the factorization. Thus one might expect the
performance of the LU factorization to be asymptotically similar to the Level-3 BLAS Xgemm routine.

for P, € {P,P,,...,P,} do
PanelFactorize(F)
TrailingMatrixUpdate(T(i))
TrailingMatrixUpdate(M”)

Algorithm 4.2: The LU factorization process.

5 Multi-Precision Factorizations

In contrast to the standard factorization that works in one precision (see Algorithm 4.2), we have developed
a new class of multi-precision factorizations that use a higher precision calculation uft for critical parts
of the algorithm while using a lower precision uf¢ for the other parts (the parts that are numerically less
sensitive and also the most time consuming). The most useful case of the multi-precision factorization
approach is when FP16 is used for the factorization, i.e., when uf of Algorithm 4.1 is equal to FP16.
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«—>
stepd —»>  step2 ——»  step3d  ——>  stepd

Figure 4.1: Two-phase implementation of a one-sided factorization.

Originally, in our previous work [18], we found that performing the factorization in only FP 16 suffers from
many issues, such as the entries of the matrix A being outside the representable range of the FP 16, making
the matrix singular in uf, as well as causing numerical troubles during the panel computation. By using
the multi-precision approach, we can maintain the benefit of the high speed of the FP16 precision while
producing a better solution than performing the whole factorization in FP16.

For example, in the case of a FP32-FP16 LU factorization, the O(n%) work in the panel factorization
will be computed in FP 32, and the O(n®) FLOPs in the trailing matrix updates will be done in FP16. This
is illustrated in Algorithm 5.1. Note that the trailing matrix update for A; is a mixed-precision Xgemm,
where Piﬂ and Tif[ are of lower precision uf, while the input A{h and the resulting Aif" are in higher
(FP32) precision uft. This type of operation is a feature of the NVIDIA tensor cores hardware, and we
are trying to take advantage of it by providing a fast factorization while maintaining the sensitive portion
of the computation in higher precision. For the sake of completeness, we briefly describe how the NVIDIA
Tensor Cores operate and allow us to get the A{" in higher (FP32) precision uft. The Tensor Cores are
programmable matrix-multiply-and-accumulate units that can deliver up to 120 teraFLOP/s on NVIDIA
Volta GPU hardware. This number is higher on newer NVIDIA hardware. On an NVIDIA Volta GPU, each
Tensor Core performs the operation D = A x B + C, which is an “FP 16 input multiply with full-precision
product and FP 32 accumulate” as shown in Figure 5.1. The matrix inputs A and B are in FP16, while the
matrices C and D could be in FP16 or FP32. In our case the matrix D is the matrix C and it is in FP32.

We emphasize that the different precisions used here in the multi-precision factorization are not to
be confused with the different precisions used in the refinement process. The uf precision denoted in
Algorithm 4.1 can be viewed as an umbrella for uft and uft. The input and output data for the factorization
is in uft and the factorization is carried out using both the uft and uf* precisions. Then it becomes a notation
preference to denote uf to be either of uft or uf’—but no matter the notation, the factorization will be carried
out with both precisions. This type of mixed-precision factorization was first developed and released within
the MAGMA library [17,33] and the CUDA toolkit CUSOLVER library [35].

Input: A in precision uft
uft < ufh
for P; € {Pl,Pz, . ,Pn} do

PanelFactorize(F) in precision ufb

TrailingMatrixUpdate(7;) in precision ufh
convert P, — Pif‘ from precision ufi to uft
convert T; — Tif * from precision uft to uff

TrailingMatrixUpdate(Aiﬁ’ :Alf’“ —Plf‘Tl-ﬂ ) using tensor cores

Algorithm 5.1: The multi-precision LU factorization process.
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FP16 or FP32

Sum with
FP16 Full precision FP32 Convert to
storage/input product accumulator FP32 result

maore products

Figure 5.1: Tensor Core matrix multiply and accumulate, showing how products of scalars within a 4 x 4
matrix multiplication are formed and accumulated.

The benefit of multi-precision factorization is two-fold. First, it helps solve many of the FP1 6 numerical
issues, as the input matrix A is never converted to FP1 6, thus there are no issues related to the conversion
of A. Second, all the sensitive portions of the computation (panel factorization and triangular solve) happen
in FP 32, thus there are no issues related to FP 16 underflow or overflow in these portions. It is only during
the trailing matrix update (e.g., Schur rank-k update) of A where FP16 is involved, i.e., the use of a
mixed-precision Xgemm of the form:

Crp32 = Crp32 —Arp16Brpis- 5.

This means that issues related to the FP16 could only appear here where values of Arp16 and Brpig, are
large above the FP16 range. Thus we propose the auto-adaptive rounding mode to overcome this issue.

(a) Introducing Auto-Adaptive Rounding Technique

We propose an adaptive rounding technique that rounds A and B by round to nearest, except for values
larger than the FP 16 range which are rounded to the nearer of the maximal or minimal normalized FP16
values (namely £65504). Thus our proposed adaptive rounding method avoids breakdown in the algorithm
caused by overflows creating infinities.

As a result, our proposed multi-precision factorization ensures that during the factorization process
as soon as the values are within the FP32 range, there will be no overflow related to the FP16. In
practice, mixed-precision factorization gives accuracy between that of a fixed FP32 precision factorization
and a fixed FP16 factorization. When the fixed FP16 precision factorization works, mixed precision can
still produce a backward error between one and two orders of magnitude smaller than the pure FP16
factorization [4], while retaining the high performance of the FP 16 variant.

6 Iterative Refinement Using Preconditioned GMRES for the
Correction Equation IRGM

GMRES [40] is a popular Krylov subspace iteration for solving a general linear system of equations.
Following Carson and Higham [7], we consider another variant of iterative refinement by using
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preconditioned GMRES to approximately solve the correction equation Ac; = r; in step 2 of the classical
IR in Algorithm 4.1. GMRES will be preconditioned by the low-precision LU factors. The idea is that
the GMRES solver will provide a better and more stable approximate solution to Ac; = r; than the basic
triangular solve, which is directly affected by the quality of the low-precision LU factors. Using GMRES,
we can still guarantee that the solution of the correction equation Ac; = r; has some correct digits and a
residual at the level of the convergence tolerance requested by the algorithm. The convergence tolerance is
chosen to be of the order of the unit roundoft of the low-precision arithmetic used during the factorization
(e.g., we use 1074 or 1078 when the LU factorization is in FP16 or FP32, respectively). We denote
this variant by IRGM, and it is described in Algorithm 6.1. Note that U~ and L' are never explicitly
formed; instead matrix—vector products U ~' L~! Ay needed by GMRES are computed by multiplication by A
followed by two triangular solves. Since this paper focuses on the practical usage and possible performance
gains rather than error analysis, we point the reader to [7,8,22] for detailed error analysis of the IR and
IRGM techniques.

Convert A — Af from precision u¥ to uf;
Perform LU factorization of A/ in precision uf ;
Find the initial solution x( using the computed LU factorization of Af in precision uf then cast Xxp to
precision u¥ ;
//Refinement loop, outer loop
repeat
1. Residual: Compute residual r; - b — Ax; in precision u® and cast it to u". ;
2. Correction in IRGM : Solve U~ 'L~'A¢; = U~'L~1r; by GMRES in precision u¥ ;
3. Update: Correct the current solution x; | = x; + ¢; in precision u";
until X(;) is accurate enough;

Algorithm 6.1: iterative refinement using GMRES (IRGM) algorithm.

7 Preconditioned GMRES

The idea here is to use a preconditioned, full GMRES to solve the original linear system Ax = b, instead
of using preconditioned GMRES to solve the correction equation as in Section 6. This idea can be viewed
as setting the tolerance of the GMRES in Section 6 to the unit roundoff of FP 64, thus the correction will
be solved down to FP 64 accuracy, meaning the refinement loop of Algorithm 6.1 will finish in one outer
iteration. This proposition comes from the analysis of the Krylov subspace on which the GMRES method
is based. In Section 6, the refinement loop can be viewed as a restarted GMRES, but instead of performing
m iterations before each restart, it performs any number of iterations until it reaches the tolerance set for the
GMRES (e.g., 10# in this study), while the method proposed here uses a full GMRES until convergence.
It is well known that a full GMRES most likely converges faster than the restarted one because it uses
all the previously constructed Krylov subspace to find the new direction to minimize the residual, while
the restarted one starts constructing a new Krylov subspace after each restart. Our experiments show that
for hard cases, where the convergence requires more than 30 iterations, the proposed preconditioned full
GMRES has an advantage over the method proposed in Section 6, while for problems where the number
of iterations is small, both methods behave the same within one to two iterations difference. In order to
illustrate this behavior, we generate a hard test case and depict the convergence history in Figure 14.3 for
both real and complex matrices. Since it is one of the hard cases, we can see that the classical IR cannot
converge. The TRGM and GM refinement methods both follow the same path for the first iteration of the
outer loop of the TRGM method, (e.g., the first 40 and 60 iterations for real and complex cases, respectively).
After that the GM refinement method continues to decrease the residual using the entire previously generated
Krylov subspace to find the new direction, while the TRGM method starts the construction of a new set of
Krylov subspace vectors, resulting in slower convergence. We mention that for all other cases depicted in
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Section 14 both the GM and the IRGM refinement methods behave similarly, while the IR method can fail
sometimes. However, we caution that one does not normally run Krylov methods to convergence to the
working precision and the convergence rate of GMRES is not well understood for general matrices A, so
the behavior we have observed may not always hold.

8 Scaling Techniques

Numerical algorithms that deal with FP 16 computations must deal with the limited range of representable
elements in FP16 (see Table 1.1 for more details). For example, when converting a matrix A to App1g,
the matrix entries may overflow or underflow. Our approach avoids overflow (as long as the FP 32 range
is not exceeded) and reduces the chance of underflow. Thanks to the proposed innovative multi-precision
factorization A is never converted to FP1 6. Instead, it is converted to FP 32 which, together with the use of
auto-adaptive rounding method (see Section 5(a)) in the factorization, excludes such problems. Even though
the proposed multi-precision factorization alleviates many of the FP16 numerical issues (e.g., related
to conversion or to computation), some other issues still need attention. In particular, if the computation
involves values close to or above the range limit then the quality of the LU factors might be compromised
and might require other techniques to cope with the low bits that FP16 explores. One such technique is
scaling. We note that, the bfloat16 arithmetic provide a range similar to the FP32 but with short mantissa
and thus it could also be used for the factorization and avoids (as long as the FP 32 range is not exceeded)
overflow related to the FP 16 range. However, we expect the short mantissa to be a limitation.

Originally, scaling was introduced in the context of iterative methods to speed up their convergence.
Later, scaling was also used in direct methods (both dense and sparse) as a way to reduce the condition
number of a matrix. In our work, we introduce scaling in the context of the iterative refinement solver.
The goal of scaling is first to make a double- or single-precision matrix representable in FP16, as well as
reduce its condition number since the convergence of the iterative refinement solver might be affected by
the condition number of the matrix. Different approaches for scaling could be used. Research about scaling
techniques for dense and sparse system can be found in [13,14]. More recently, [24] studied different scaling
techniques for the iterative refinement solver using FP1 6 precision with tests on relatively small matrices.
In this paper we study three approaches for scaling, similar to [24], and we show the effect of each method
on the convergence of the iterative refinement solver. We first discuss a scalar scaling technique and then
we discuss a two-sided diagonal scaling method. We also study a technique that uses a combination of the
two scaling approaches.

(a) Scalar Scaling

The idea here is to scale the matrix in such a way that its elements are mapped to be within a constant of
(scaled)

the FP16 interval range, i.e., a;; € [—6xmax, Oxmax), where 0 € (0, 1] is a parameter. (Recall that xmax
is given in Table 1.1.) This technique is described in Algorithm 8.1. The strategy does two things: it ensures
that the matrix fits into the FP 16 range and it stretches the elements to cover a fraction 8 of the range, so
as to make the best possible use of the limited range. Since the matrix is subsequently LU factorized, it
is important that some headroom is allowed for growth during the factorization: if the elements grow by a
factor p, then 6 should be less than 1/p,. For many problems, p, < 100 with partial pivoting, so 6 = 0.01
will be sufficient.

One of the effects of this algorithm is that it can result in many elements underflowing, which is possible
if many of the elements of A are sufficiently smaller in magnitude than apay.

The effect of this scaling on the quality and the convergence of the iterative refinement solver is analyzed
in Section 14.

1. Find Admax = max,-“’j \a,-j|
2. Let 4 = Oxmax/amax
3. Scale A such that A(scaled) = HA

Algorithm 8.1: Scalar scaling.
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(b) Two-Sided Diagonal Scaling

To address the issues of the scalar scaling, let us study another scaling strategy that applies a two-sided
diagonal scaling to A such that A(s¢@/ed) — RAC, where R = diag(r;) and C = diag(c;) are diagonal matrices.
Note that r; and ¢;,i = 1 : n are the scaling factors for each row and column of A, respectively. Such scaling
algorithms have been developed in the context of linear systems, and in particular we focus on the scaling
algorithm provided by LAPACK through the routine XGEEQU. We describe the two-sided diagonal scaling
algorithm of XGEEQU in Algorithm 8.2. This technique computes row and column scaling intended to
equilibrate a matrix A and reduce its condition number. R holds the row scale factors and C the column
scale factors, chosen to make the largest element in each row and column of the matrix Alscaled) (with
elements AGS<@led) (j iy = R(i)  A(i, j) * C(j)) have an absolute value of 1 (note that every row and column
must be nonzero since A is nonsingular).

forie {1,2,...,n} do

| Ri=1/]AG,)]

A=RA

// A is row equilibrated
for j € {1,2,...,n} do

| €= 1/AG, )]

Algorithm 8.2: Two-sided scaling.

(c) Two-Sided Diagonal Scaling Followed by Scalar Scaling

The idea here is to use a combination of the scaling techniques described above. We represent the
implementation in Algorithm 8.3. First, a two-sided scaling will be performed on A to smooth its values and
minimize its condition number by making all the values within the FP16 range. Then, a scalar scaling
will be applied (see lines 2—4 from Algorithm 8.3) in order to move the elements towards the largest
representable number so as to make the best possible use of the limited FP 1 6 range. More details about this
technique can be found in [24]. We note that since the intent of the two-sided diagonal scaling is to make
the maximal absolute value of A less than or equal to one, we can say that 8 in line 2 of Algorithm 8.3 will
be equal to 1. For the choice of 0, we used the choice made in [24]. If 0 is close to 1 then we maximize the
use of the FP 16 range and thereby reduce the chance of underflow (which in the worst case could make the
matrix singular). On the other hand, 6 needs to be sufficiently less than 1 to allow headroom so subsequent
computations do not overflow. We followed the study of [24] and used 6 = 0.1.

1. Perform A = RAC
2. Let B be the maximum magnitude of any entry of A.

3. Let 4 = Oxmax/B
4. scale A such that A(ealed) — &

Algorithm 8.3: Two-sided scaling and scalar scaling.

We discuss the three scaling techniques described above in section 14 and show the benefits of each.

9 Multiple Right-Hand Side Optimizations

Many engineering applications require Ax = b to be solved for multiple right-hand sides (RHSs). For that,
and in order to accommodate such applications, we designed and developed our Tensor Cores Accelerated
Iterative Refinement Solver in such a way that allows for the efficient solution of multiple right-hand
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sides. The TCAIRS consists of two main phases, the factorization phase and the refinement phase. The
factorization phase performs an LU decomposition on the matrix A and is thus independent of the number
of right-hand sides for which the linear system needs to be solved. As a result, this phase remains the
same. The refinement phase is where the solution is refined to achieve the precision of the input data. In
this work, we optimized and used the IR method described in Algorithm 4.1 for the solution of multiple
right hand side. When multiple right-hand sides have to be solved, we need to adapt the computation of
the residual to guarantee that all the solution vectors are accurate. This can be achieved if the error norm
used for convergence checking is taken to be the maximal norm of all residuals (e.g., the maximal norm
of each residual corresponding to each vector). This way, once the convergence is achieved, we guarantee
that all solution vectors are accurate to the tolerance requested. However, since the refinement phase is
memory bound, performing the refinement vector by vector is too expensive and will lead to a quick drop
in the performance. Instead, we replace the matrix-vector operation Xgemv when computing the residual
of b — Ax; at iteration { with a matrix-matrix product Xgemm to compute all the residuals at once. We also
replace the computation of an approximate solution using the LU factorization with the computation of
all approximate solutions at once (e.g., replacing the two triangular solves over one vector using Xt rsv
routines with two triangular solves for many vectors at once using the t rsm routine). Moreover, to avoid
computing the maximal norm of each residual, and then take the maximum of all of them, we only compute
the norm of the first vector, and check if it satisfies the convergence error tolerance; if not, then we do not
compute the remaining residual norm, but rather we step to the next iteration of the refinement loop, and
keep doing the same process until that norm (norm of the first residual vector) satisfies the convergence error
tolerance. It is at this point that we move to computing the next residual norm and follow the same process
until all norms satisfy the convergence tolerance. To summarize, as soon as a residual norm does not satisfy
the tolerance, we skip the norm computation of the remaining residuals and perform a new refinement
iteration. This technique reduces the amount of memory-bound operations to be performed when multiple
right-hand sides are requested.

10 Sensitivity of Performance to FP64 Compute Throughput

Because of the way the mixed-precision IR solver solves a problem—first using reduced and mixed-
precision, and then by refining the solution to attain the FP 64 accuracy with a memory bandwidth bound
algorithm—it highlights the fact that it could be a good candidate to solve an FP64 problem with good
performance on a GPU with Tensor Core capabilities, high memory bandwidth and not necessarily high
FP 64 throughput. This is theoretically demonstrated in detail in section 12 through the development of a
model of the solver. We also then conducted such experiment by using the NVIDIA Turing GPU which is
almost identical to Volta GPU except for FP 64 compute throughput. This was chosen as a surrogate method
to throttling only the FP 64 compute throughput on Volta GPUs. We will show in section 15 (Figure 15.5)
that our TCAIRS exhibits on a Quadro RTX8000 (Turing TU102 GPU) the same performance as on a high
FP 64 compute throughput card such as the Quadro GV100 (Volta GV100 GPU).

However, we should mention that applications in scientific computing typically do not only rely on
solving a dense linear system Ax = b, and even when they need it, this is typically one component of the
whole application. Generally, domain-specific algorithms, and other linear algebra functionality such as fast
Fourier transforms (FFTs), eigenvalues, singular values, least squares, symmetric LDLT decomposition, and
matrix-matrix products are commonly used in applications. Thus to use GPU cards with low FP 64 compute
throughput for HPC scientific applications we will need many other mixed-precision numerical algorithm
improvements.

11 Energy Efficient Implementation

Power efficiency in HPC is increasingly becoming a concern. Over the last few decades, the improving
performance of HPC systems has come at the cost of increased electrical power consumption. The main
concerns are increased power bills, e.g., going beyond affordable budgets, and increased impact on
the environment. To help mitigate the power constraints in modern and future HPC systems, different
approaches have been investigated. Exploiting both the hardware features and algorithms is an effective
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solution to achieve power efficiency and to address those energy constraints. In this work we redesigned
the solvers, which are typically the most time-consuming kernels in HPC applications, to provide energy-
efficient alternatives. While most of the energy efficiency approaches aim to reduce the consumption with
a minimal performance penalty, our TCAIRS improves both the performance and the energy efficiency.
Indeed, we show below that by efficiently using the Tensor Core hardware and mixed precision, compared
with highly optimized linear system solvers, our solver delivers the same accuracy solution and with more
than 80% reduction in the energy consumption.

Also, our TCAIRS is a GPU-only implementation, which means it does not use the CPU for any
computation. Thus, the CPU is idle, which also adds an advantage to the efficiency that such a solver can
provide, in particular because CPUs require significant power consumption while providing significantly
less performance. In other words, if CPUs contribute to the computation, their rate of FLOPs/Watt is very
low, and thus we are going to observe a decrease in the energy efficiency of the solver. We will show
in section 16 that our solver can effectively reach 94 gigaFLOP/s per Watt for FP64 real data and 126
gigaFLOP/s per Watt for FP64 complex data problems. These results significantly improve and extend
previous work based on hybrid algorithms that use both CPUs and GPUs [16].

12 Performance Analysis

Mixed-precision methods derive their performance from the higher performance of lower-precision
arithmetic. The theoretical peaks for the main precisions are shown in the last column of Table 1.1. In
practice, the achievable Xgemm performance is less, but maintains a similar trend. Figure 12.1 quantifies
the currently achievable performance for the NVIDIA GV100 GPU. In particular, we see that the PCle
GV100 has a practical peak of 6.8 teraFLOP/s in FP64, 14 teraFLOP/s in FP32, 28 teraFLOP/s in
FP16, and a remarkable 85 teraFLOP/s in FP16-TC (Tensor Cores). However, the performance of the
LU factorization relies mostly on the performance of the rank-k Xgemm updates, where the blocking size
k is typically 256. These updates occur during each step of the LU algorithm, as given in Algorithm 4.2.
Their performances are shown in Figure 12.1a (the dashed lines) for the four available precisions (FP 64,
FP32,FP16,and FP16-TC). Note that the rank-k hgemm—TC achieves about 35 teraFLOP/s, compared to
about 25 teraFLOP/s for the rank-k hgemm, 13 teraFLOP/s for the rank-k sgemm, and around 6 teraFLOP/s
for the rank-k dgemm. We note that in our work we always use the FP16-TC (hgemm-TC) and not the
standard fused multiply—add (FMA) FP16 hgemm.

The multi-precision LU factorization from Algorithm 5.1, with uf* equal to FP32 and ufl equal to
FP16-TC, was implemented and tuned for current hardware. Figure 12.1b shows the performance for the
FP64,FP32,and FP16-TC precisions on GV100 GPUs using the cuSolver library [35]. As expected, the
LU implementation follows roughly the same trend as the hgemm—TC kernel for large n, showing that the
implementation is well optimized and able to attain its theoretical upper bound. The hget r£-TC solver
achieves a speedup of up to 4.5x over dgetrf and a 2.4x speedup over sgetrf. The speedups further
increase for matrix orders larger than 40,000.

Having the achievable performance P of the LU factorization, we can derive a theoretical performance
analysis of the mixed-precision (MP) algorithms. This analysis is needed in order to understand and predict
the cases where iterative refinement can be used. In particular, the interest is in cases where the solution can
be reached faster than the reference (e.g., the FP64 dgesv routine). We recall that the iterative refinement
solver performs an LU factorization in low precision, followed by a refinement loop based on either the
classical IR, the IRGM, or the GM refinement method to improve the solution to €rpg4. Thus we can model
performance for the real case by

203 2n?

time for FP64 = + s (12.1)
3Pdgetrf Pdtrsv

23 < 2n? 2n? )
time for MP = +k + + , (12.2)
3Phgetrf7TC Pdgemv Pstrsv 5

where P is the performance of the corresponding routine, k is the number of iterations to achieve the
FP64 accuracy (including the inner GMRES iterations in the case of the TRGM solver), and & is other
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(a) Performance of Xgemm for square matrices and
for the rank-k update used in the LU factorization
(Xgetrf).

Figure 12.1: Performance for FP 64, FP32, and FP16-TC routines on an NVIDIA V100 GPU.

Effect of the number of iterations for 3 < k < 50

[[JFP16-TC — FP64 dhgesv
4 [IFP32 — FP64 dsgesv

Expected Speedup over dgesv
N

2k 4k 6k 8k10k 14k 18k 22k 26k 30k 34k

Matrix size
Figure 12.2: Expected speedup of the iterative refinement solver over dgesv as function of the number of
iterations and the matrix size.

work required by the iterative refinement such as norm computation, residual calculation, pivoting, and
synchronizations. Experiments show that & is negligible compared with the cost of the dgemv and the
strsv.

Based on the LU performance results provided in Figure 12.1b and on the benchmark of the dgemv and
strsv routine, we illustrate in Figure 12.2 the expected speedup of the iterative refinement solver using
either the FP32 or the FP16-TC precision (dsgesv and dhgesv—-TC respectively) as a function of the
number of iterations (see also [17] for more details). In the latter case the expected speedup is up to a factor
4. We also note that the study for complex arithmetic is similar and the expected performance follows the
same ratio, and for that we omit to redo the same model.

13 Experimental setup

Our experiments were performed on a system with one 10-core Intel(R) Xeon(R) E5-2650 v3 CPU running
at 2.30 GHz equipped with an NVIDIA Quadro GV100 PCle GPU and an NVIDIA Quadro RTX 8000
PCle GPU.

To study the proposed methods and to highlight their practical use, we performed a large set of
experiments on 21 types of matrices, with each type featuring different properties that represent a wide

(b) Performance of Xget rf for different precisions.
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Table 13.1: Description of the test matrices, where cond is k> (A).

Type Description

0 - Random numbers with diagonal modified to be dominant

1 A >0 Random o in [ﬁ7 1] such that their logarithms are uniformly distributed
2 - Random o in [ﬁ7 1] such that their logarithms are uniformly distributed
3 A >0 Clustered o: o:[l,....,l,ﬁ]

4 - Clustered o: c=]Il,....1, Colnd

5 A >0  Arithmetically distributed 6: 0, =1— (%)(1 — ﬁ), i=1,...,

6 - Arithmetically distributed 6: ;= 1— (%)(1 -2, i=1....n

7 A >0 Geometrically distributed 6: o; =cond™ =1,i=1,...n,

8 - Geometrically distributed 6:  0; = cond™ = Jdi=1,...,n,

range of real life problems. We found that we could classify the 21 types of matrices using 6 representative
cases that we present in Table 13.1. The matrices of singular vectors are random orthogonal matrices from
the Haar distribution [44]. In the table, A > 0 denotes that the matrices have real, positive eigenvalues, and
they are symmetric positive definite.

We also performed an extensive study on sparse matrices from the SuiteSparse Matrix Collection! [10].

14 Numerical Behavior

We first study the numerical behavior of our Tensor Cores Accelerated Iterative Refinement Solver using
the three proposed refinement techniques, and show the convergence history of each technique for the
different types of matrices. Then we discuss the benefit of using the Krylov GMRES solver. We also show
the difference between using the TRGM and the GM technique. We then study the effect of scaling on the
convergence of the solver for matrices from Table 13.1 as well as for the matrices from SuiteSparse.

In all our experiments, ufr = ufv,

(a) Convergence Behavior

This study aims to provide an analysis of each method’s sensitivity relative to a wide range of matrices
representable for different scientific applications. In addition, our goal is to provide insight into the
performance expected from the iterative refinement methods. For example, if an iterative refinement method
requires a large number of iterations to achieve FP 64 solution accuracy for a certain matrix type, then we
can expect that its performance will degrade relative to the standard dge sv, and it may be even slower (see
Section 12 for the expected performance as a function of the number of iterations). We note that the number
of iterations that we report is the total number of iterations—including the inner GMRES iterations in the
case of the TRGM solver. This means that the number of iterations reported is a precise indicator of the time
spent in the refinement loop. The convergence criterion used in our experiments is the same as the one used
in the state-of-the-art LAPACK iterative refinement solver dsgesv, namely ||[Ax —b||/(||A]||x]|) < €"v/n,
where " is the machine precision at the working precision (e.g., €"F%* in our experiments) and 7 is the
size of the matrix.

In the figures below, we plot the relative residual ||[Ax — bl /(||A]|]|x]|)

e at each iteration for the FP16~-TC variant of the iterative refinement solver using the three
proposed iterative refinement algorithms GM, (green) IR (yellow), and IRGM (blue),

e at each iteration for the FP 32 variant using the GM algorithm (purple),

o of the final solution at the user level for the standard FP64 solver (horizontal orange line),

!Formerly known as the University of Florida Sparse Matrix Collection.
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e of the final solution at the user level for the iterative refinement solver with the FP16—-TC as lower
precision (horizontal green, yellow and blues lines for the GM, IR and IRGM refinement methods
respectively).

e of the final solution at the user level for the iterative refinement solver with the FP32 as lower
precision (horizontal purple line),

The no_cvg text in the figures mean that the corresponding refinement solver did not converge after 200
iterations.

Matrix of type 5 : n = 22000, Koo (A) = 3.8e+04 Matrix of type 5 : n = 22000, Koo (A4) = 4.5e+04
no scaling no scaling
©FP16-TC—FP64 GM ©FP16-TC—FP64 GM
FP16-TC—FP64 IR FP16-TC—FP64 IR
10°F gFPlS-TCﬂFPM TRGM|] 10°F 2FP16-T(HFPG4 IRGM||
FP32—FP64 FP32—FP64
© -10 | 4 o .
g 10 g 10 10 |
kel kel
‘0 ‘0
o °
1075 ¢ R 10715
TR - T FPTYTTT TTITIIY ediiaad
10201 1 1020}
1022 ¢ i i ‘ i 1 1022k
0 1 2 3 4 5 0 1 2 3 4 5
#iterations #iterations
(a) Real case. (b) Complex case.

Figure 14.1: Convergence history of the proposed iterative refinement solver having either the FP32 as
lower precision (using the GM refinement method) or the FP16-TC as lower precision ( using the GM, IR,
and IRGM refinement methods). Matrix of size 22,000 x 22,000. Matrix of type 5: positive eigenvalues and
arithmetic distribution of its singular values 6; = 1 — (£=1)(1 — —L). Similar behavior has been observed

n—1 cond
for matrices of types 0, 1, 3, and 7 within =+ 1 iteration.

Matrix of type 6 : n = 22000, K (A) = 8.2e+04 Matrix of type 6 : n = 22000, £ (A) = 1.1e+05
no scaling no scaling
©FP16-TCFP64 GM ©TFP16-TCFP64 GM
FP16-TC—FP64 IR FP16-TC—FP64 IR
0%+ A FP16-TC—FP64 IRGM | 107 A FP16-TC—FP64 IRGMH
A FP325FP64 A FP325FP64
S0t S1010
e} e}
b= 2
I I
1018 Fee 10 ¢
-20 | 4 -20 [
10 10
e e e e e e e e B e e e s e o*e
0123456789 10111213141516171819 0 3 6 9 12 15 18 21 24 27 30 33
# iterations # iterations
(a) Real case. (b) Complex case.

Figure 14.2: Convergence history of the proposed iterative refinement solver having either the FP32 as
lower precision (using the GM refinement method) or the FP16-TC as lower precision ( using the GM, IR,

and TRGM refinement methods). Matrix of size 22,000 x 22,000. Matrix of type 6: arithmetic distribution
of its singular values 0; = 1 — (%)(1 - ﬁ). Similar behavior has been observed for matrices of types 2,

4, and 8 within = 2 iterations.
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Matrix of type 6 : n = 22000, Kk (A) = 2.4e+07 Matrix of type 6 : n = 22000, K (A) = 2.0e+07
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(a) Real case. (b) Complex case.

Figure 14.3: Convergence history of the proposed iterative refinement solver having either the FP32 as
lower precision (using the GM refinement method) or the FP16~-TC as lower precision ( using the GM, IR,
and IRGM refinement methods). Matrix of size 22,000 x 22,000. Matrix of type 6: arithmetic distribution
of its singular values 6; = 1 — (%)(1 - colnd). The matrix is generated with a large condition number to
show the difference between the three proposed iterative refinement algorithms as well as to display the

effect of the condition number on the convergence rate.

Figures 14.1 and 14.2 show the convergence history given by the relative residual at each step of the
refinement loop for the six proposed iterative refinement solvers (the two precision implementations—
FP16-TC and FP32—each using one of the three refinement methods GM, IR or IRGM). We note
that when we use the FP32 as lower precision, the three refinement methods (i.e., GM, IR, and IRGM)
behave exactly the same. Thus, to make graphs clear, we only show the GM implementations and denote
them by FP32—FP64. The graphs are labeled as FPXX—FP64 YY, where “XX" corresponds to the
lowest precision used during the LU factorization (FP16-TC or FP32), and “YY" represents the iterative
refinement technique (GM, IR, or IRGM) used to attain the FP 64 solution accuracy. In addition, in order to
also compare the quality of the solution, we draw three horizontal lines that correspond to the residual of
the solution at the output of our iterative refinement solver as well as the one at the output of the standard
FP 64 precision (dgesv and zgesv for real and complex cases, respectively).

In Figure 14.1, we display the convergence history of a matrix of type 5, but as mentioned in the caption,
we observed the same behavior for the matrices of types 0, 1, 3, and 7 within =+ 1 iteration difference. Here
we can see that the TCAIRS using the FP 32 as lowest precision converges within 3 iterations. Furthermore,
we observe that the TCAIRS using the FP16-TC as lowest precision converges within 4 iterations for all
refinement method variants (GM, IR, and IRGM). For these type of matrices, since the number of iterations
is small, we can expect a large speedup over the FP 64 routine. We believe that the FP 32 solver will achieve
a 2x speedup and the FP16-TC one will achieve about 4x speedup while delivering a solution at FP64
accuracy. More details about the performance are provided in the next section.

Figure 14.2 represents a matrix of type 6, which is very similar to type 5 in the sense that they both have
the same singular values. However, their eigenvalues differ. We also mention that the same convergence
trend has been observed for other matrices of types 2, 4, and 8. Thus, we omit the graphs for of all of them.
The matrices generated with types 2, 4, 6, and 8 characteristics are more difficult than the ones with types 0,
1, 3,5, and 7. The convergence of FP16—TC requires more iterations, namely ~ 17 iterations. Interestingly,
the FP16-TC solver is doing well for this type of harder problem and is able to bring the solution down
to the FP64 accuracy within an acceptable number of iterations. As a result, we could expect that the
FP16-TC will provide about 3—4 x speedup over the FP 64 counterpart solver while delivering a solution
at FP 64 accuracy.

‘We mention that we performed some experiments with a basic FP16 implementation that does not use
the Tensor Cores and we found that such implementation requires many more iterations to converge for this
type of matrices. It also fails for other problems like the one in Figure 14.3 and many of the sparse problem
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shown below. This is because the accumulation in the FP16-TC compared with the basic FP16 is done in
FP 32 arithmetic and thus produces a better result than the pure FP1 6. In addition we should not forget the
fact that a basic FP16 (e.g., using the standard fused multiply—add (FMA)) will not exhibit the same high
speed as the one with Tensor Cores. Such an algorithm and implementation will therefore be substantially
slower, so we do not discuss it in this paper.

Figure 14.3 shows a substantially more difficult matrix. It is a matrix of type 5 where we increased the
condition number to be within the F'P 32 range rather than the FP16—-TC range. With such a configuration,
even the FP32 will have trouble converging within 3 iterations, and will require about 10 iterations.
For this type of matrix, and such a high condition number, the FP16-TC—FP64 IR variant is not
able to converge. The basic IR method solving Ac; = r; directly using the computed LU factors and the
solution is not accurate enough to allow the IR method to converge. However, both the TRGM and the
GM refinement techniques (FP16-TC—FP64 IRGM, and FP16-TC—FP64 GM) are able to achieve the
FP64 solution accuracy. This reveals the sensitivity of the IR variant and highlights the importance of
using the preconditioned GMRES method. What happens here is that the GMRES method delivers a more
stable solution to the refinement process (because the GMRES fixes the perturbed solution, thanks to the
Krylov basis) which allows both the GM and the TRGM method to converge. We also note that the diamond
marker in the green line—the curve that represents FP16-TC—FP64 IRGM—shows the number of outer
iterations (outer refinement loop) in the TRGM solver. In our experiment, the GMRES tolerance of the IRGM
method is set to 104, Thus, at each outer iteration of the refinement loop of the TRGM method the solution
of Ac = r is correct to 10~* accuracy. We can see that the number of outer iterations is about 4, which is
consistent with the theory of [7,8]. More details about using GMRES inside the refinement process can be
found in [7,8].

Now, when comparing the two successful refinement methods in Figure 14.3 (i.e., GM and IRGM), we
note that the GM method converges faster than the TRGM one. The GM method uses preconditioned GMRES
to solve the whole linear system Ax = b, using the L and U factors as a preconditioner instead of using
the preconditioned GMRES to solve the correction equation Ac = r, as in Section 6. In the ITRGM method
GMRES will stop at 10~%, then the outer refinement loop will compute a new residual, and then another
GMRES is called to solve the new correction equation. Thus, the IRGM method can be viewed as a restarted
GMRES—but instead of performing m iterations before each restart, it performs any number of iterations
until it reaches the tolerance set for the GMRES (i.e., 10~% in this study), and only then restarts. This is
confirmed by the shape of the IRGM convergence history, and we can see that after each outer iteration
(diamond in the green line) the GMRES starts constructing a new Krylov basis to solve the new correction
equation Ac; = r;. This hard case example highlights the benefit of using a full GMRES to solve the system
(e.g., the GM method) where the GMRES benefits from the entire previously constructed basis to compute
the new direction for each new solution.

To make this study more general and cover many real life cases, we conducted the same study for sparse
matrices arising from different engineering areas from the SuiteSparse Matrix Collection. The names, size,
and condition numbers of these matrices are given in Table 15.1. We illustrate the convergence history
results in Table 14.1 and Table 14.2 (the "no scaling” column). These matrices have condition numbers
varying from 10! to 109, For the iterative refinement solver using the FP32 as lower precision (Table 14.1),
we mention that it converges for all of these cases, except for the problem "ramage02”, where we also found
that the scaling technique can be the remedy. Interestingly, we notice that the Tensor Cores Accelerated
Iterative Refinement Solver using the FP16—-TC precision as the lowest precision (Table 14.2) is able to
converge for most of these problems and provide a solution similar to the one provided by the FP 64 routine
within a small number of iterations. These results highlight the benefit that the TCAIRS can bring to such
applications, and one can expect a large speedup for these problems. We were surprised by the wide range
of problems that the FP16-TC iterative refinement solver (TCAIRS) can solve. These results motivated
us to look into further details and analyze why for some of these problems the FP16-TC variant had
issues converging. We found that if we apply scaling to the matrix we can make the FP16-TC variant
cope and solve these problems as well. This will be discussed below. We also mention that both the GM
and the TRGM methods converged better than the standard IR method. Also, we notice the robustness and
better convergence behavior that the GM refinement method showed compared to its IRGM counterpart. The
GM method always converged similarly to or faster than the TRGM one. For hard cases, such as problem
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"sme3Db* and "ramage02”, we can observe the restarted shape of the GMRES of the IRGM method while
the GM method illustrated around 40% less iterations.

Lesson: For the matrices considered, the TCAIRS using the FP16—TC precision is the most powerful
method in terms of performance, and it is able to cope with and solve many problems representing
many engineering areas within an acceptable number of iterations. The FP32 refinement variants
show a more consistent behavior of small numbers of iterations regardless of the matrix types, except
for minor cases. However, as shown in the analysis and in the performance sections, the maximum
speedup that the FP32 variant can provide is less than 2x while the variant using FP16-TC
can achieve 4x. These results suggest the surprising effectiveness and robustness of the FP16-TC
arithmetic, showing it might be robust enough for use in HPC linear system solvers.

(b) Scaling Techniques

As discussed above in Section 8, scaling has been studied and used in many direct and iterative full-
precision solvers (e.g., a fixed-precision solver such as the FP 64 solver) as a remedy to provide an accurate
and stable solution for matrices with elements of widely varying magnitudes. In our work, as in the
work of [24], we study scaling in the context of the iterative refinement solver and analyze its benefit.
In Section 8 we proposed three scaling techniques and we denoted them by scalar scaling, diagonal scaling,
and diagonal+scalar scaling. In this section we comment on the experimental results of these techniques. We
first study these scaling approaches for the synthetic matrices described in Table 13.1 and then we comment
on their benefit for the sparse problems from the SuiteSparse Matrix Collection.

Synthetic matrices. For the synthetic matrices of Table 13.1, we mention that only the scalar scaling
need be used. The diagonal scaling technique proposed above computes a row and a column scaling intended
to equilibrate the matrix A such that the largest element in each row and column of A has absolute value 1.
Since the entries of the synthetic matrices are generated within a distribution between the interval [—1,1],
there will be no row or column scaling to be found. As a result, the diagonal scaling will not change or scale
the matrix A. For the same reason, the diagonal+scalar scaling is equivalent to just scalar scaling. Hence
we illustrate only the effect of the scalar scaling for the synthetic matrices of Table 13.1. We choose the
same matrices shown in Figure 14.1 and Figure 14.2 and perform the scalar scaling to the matrix A before
we solve it using our iterative refinement solver. We illustrate the convergence history in Figure 14.4. The
graph in Figure 14.4a is the convergence history of a matrix of type 5 without scaling, while the one on
the right in Figure 14.4b corresponds to the convergence history of the same matrix but with the scalar
scaling performed. As we can see, the scalar scaling does not provide any benefit here. Already for such
matrices the iterative refinement solver converged very quickly and did not suffer from any perturbation.
On the graph in Figure 14.4c, we represent the convergence history for a matrix of type 6 without any
scaling and we depict the convergence history of the scaled matrix in Figure 14.4d. Here we can see that the
scalar scaling cannot improve the convergence of the three refinement methods (GM, IR, and IRGM) of the
FP16-TC variant, and, rather, it affects the numerics in a negative manner leading to a non-convergence.
The reason for this behavior is that the scalar scaling increases the magnitude of the entries of A with the
aim of minimizing the underflow—but since the entries of A become large, for matrices of this type (as well
as matrices of types 2, 4, and 8), we believe that element growth greater than 8! = 10 causes elements of
U to lie outside the FP 16 range and then get rounded back onto the range, which reduces the quality of the
LU factors, leading to non-convergence.

Sparse matrices. For the matrices from the SuiteSparse Matrix Collection we performed the three
scaling techniques and illustrated the benefit of each in Table 14.1 and Table 14.2. The second block-
column of the tables (from the left) corresponds to the scalar scaling, the third block-column corresponds
to the diagonal scaling, and the fourth block-column (the right-most one) corresponds to applying the
diagonal+scalar technique. As can be seen, the scalar scaling behaves similarly to the no-scaling for easy
problems and it helped the convergence for harder cases. The diagonal scaling technique is more robust
and showed benefit for most of the cases. We can see that for problems that were already easy to be
solved by the iterative refinement solver without any pre-treatment, it did not slow down or affect the
convergence. We also noticed how beneficial the diagonal scaling was for problems where the TCAIRS
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Matrix of type 5 : n = 22000, ko (A) = 3.8e+04 Matrix of type 5 : n = 22000, ko (A) = 3.8e+04
no scaling scaled by scalar pu = 0.1fp16 000/ maz(|As|)
‘ ©FP16-TCFD64 GM ‘ ‘ ©FP16-TC>FP64 GM
FP16-TC—FP64 IR FP16-TC—FP64 IR
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(a) Matrix of type 5: no scaling. (b) Matrix of type 5: scalar scaling.
Matrix of type 6 : n = 22000, ko (A) = 8.2e+04 Matrix of type 6 : n = 22000, ko (A) = 8.2e+04
no scaling scaled by scalar p = 0.1fp16,azvar/maz(|Asl)
" [©TPI6.TCFP6d GM ‘ T TFP16-TCFP64 GM
FP16-TC—FP64 TR FP16-TC—FP64 TR
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(c) Matrix of type 6: no scaling. (d) Matrix of type 6: scalar scaling.

Figure 14.4: Effect of the different scaling techniques on the convergence of the iterative refinement solver.
The example here, is for a matrix of type 5 (top) and type 6 (bottom) for real case of size of 22,000 x 22,000.
‘We mention that complex cases behave similarly. Also, matrices of types 0, 1, 3, and 7 and type 2, 4, and 8
behave similarly to type 5 and type 6, respectively.

using the FP16-TC precision (e.g., Table 14.2) encountered trouble converging. The diagonal scaling
helped the iterative refinement solver using the FP16-TC to converge on problems that the method was
not able to solve without scaling. The scaling also helped decrease the number of iterations for problems
where the TCAIRS without scaling converged but with a large number of iterations ("mixtank”). We also
notice the decrease in the condition number of the matrices where diagonal scaling was applied. We show for
each matrix, the condition number before and after scaling. It can be seen that when the iterative refinement
solver using the FP16~-TC precision did not converge (e.g., dashes in Table 14.2), the condition number of
the matrices solved was very large > 103, and diagonal scaling helped decrease it, thereby enhancing the
convergence of the FP16-TC iterative refinement solver. Similarly, for the problem "mixtank” for example,
the FP16-TC iterative refinement solver converged within a medium number of iterations, but scaling
accelerates convergence. The third strategy of scaling was to combine the two scaling techniques together.
Our experiments showed that this strategy showed an unpredictable behavior. It helped some problems but
also was worse than no scaling from some others.

Lesson: Scaling techniques can enhance the convergence of the iterative refinement solver, in
particular for problems with large a condition number. The best scaling technique is the equilibrium
of the matrix which is denoted by the diagonal scaling. The scalar scaling might help the convergence
for many of these cases, as long as the value of 0 is taken less than the reciprocal of the growth factor,
thus u requires to be carefully chosen. The diagonal+scalar scaling showed that it behaves like scalar
scaling for most of the cases, except for some cases, it was worse than both scaling strategies.
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Table 14.1: Number of iterations required by the proposed iterative refinement solver having the FP32 as
lower precision (dsgesv) using the GM, IR, and IRGM refinement methods. Also, we show the effect of
the different scaling techniques in each block-column.

Name Size Koo (A) no scaling scalar scaling diagonal scaling diag+scalar scaling
IR | IRGM | GM IR | IRGM | GM KN(A’V) IR | IRGM | GM IR | IRGM | GM

crystk03 24696 | 2.09e+02 1 1 2 1 1 2 2.5e+01 | 1 1 2 1 1 2
crystm03 24696 | 8.24e+01 1 1 2 1 1 2 7.7e+00 | 1 1 2 1 1 2
TEM27623 27623 | 4.70e+03 1 1 1 1 1 2 2.1e+01 | 1 1 2 1 1 2
Goodwin054 | 32510 | 4.49e+06 2 2 3 2 2 3 22e+04 | 2 2 3 2 2 3
thermall 17880 | 1.60e+03 1 1 3 1 1 2 8.0e+01 | 1 2 3 2 2 2
Zhaol 33861 | 4.45e+02 1 1 3 2 1 2 1.6e+01 | 2 2 2 2 2 2
nd6k 18000 | 3.82e+02 1 1 2 1 1 2 1.0e+02 | 1 1 2 1 1 2
nd12k 36000 | 3.51e+02 1 1 2 1 1 2 1.0e+02 | 1 1 2 1 1 2
epbl 14734 | 2.62e+04 2 2 4 2 2 3 44e+04 | 2 2 3 2 2 3
appu 14000 | 1.02e+04 2 2 3 2 2 2 5.8e+03 | 2 2 3 2 2 2
ns3Da 20414 | 3.79¢+03 2 2 3 2 2 2 3.4e+03 | 2 2 3 2 2 2
mixtank new | 29957 | 4.69e+11 2 2 4 2 2 3 2.1e+05 | 2 2 4 2 2 3
€40r0100 17281 | 2.23e+08 2 3 4 3 4 4 l.1e+04 | 2 2 3 2 2 2
besstk25 15439 | 1.02e+10 1 1 1 1 1 2 6.2e+02 | 1 1 2 1 1 2
besstk37 25503 | 2.27e+09 1 1 2 1 1 2 1.5e+02 | 1 1 2 1 1 2
raefsky3 21200 | 5.18e+11 1 1 3 1 1 2 1.2e+04 | 2 2 3 2 2 2
thread 29736 | 1.78e+08 1 1 1 1 1 2 1.3e+03 | 1 1 2 1 1 2
sme3Db 29067 | 1.05e+08 || 15 10 9 15 11 9 3.8e+07 | 16 11 12 16 11 9
mult dcop 01 | 25187 | 9.55e+11 3 2 6 3 4 4 1.5e+08 | 2 2 5 2 2 3
ramage02 16830 | 4.52¢+08 - 60 39 - 58 38 || 4.5e+07 | 11 12 15 || 37 28 22

Table 14.2: Number of iterations required by the proposed iterative refinement solver having the FP16-TC
as lower precision (dhgesv—-TC) using the GM, IR, and IRGM refinement methods. Also, we show the
effect of the different scaling techniques in each block-column.

Name Size Koo (A) no scaling scalar scaling diagonal scaling diag+scalar scaling
IR | IRGM | GM IR | IRGM | GM K»(A") IR | IRGM | GM IR | IRGM | GM

crystk03 24696 | 2.09e+02 1 1 2 1 1 2 2.5e+01 | 1 1 2 1 1 2
crystm03 24696 | 8.24e+01 1 1 2 1 1 2 7.7e+00 | 1 1 2 1 1 2
TEM27623 27623 | 4.70e+03 1 1 1 1 1 2 2.1e+01 | 1 1 2 1 1 2
Goodwin054 | 32510 | 4.49e+06 8 5 6 8 5 5 22e+04 | 5 5 6 9 5 4
thermall 17880 | 1.60e+03 3 4 4 3 4 3 8.0e+01 | 3 3 4 3 3 3
Zhaol 33861 | 4.45e+02 3 4 4 3 4 3 1.6e+01 | 3 4 4 3 4 3
nd6k 18000 | 3.82e+02 3 4 4 3 4 3 1.0e+02 | 2 2 3 2 2 2
nd12k 36000 | 3.51e+02 3 4 4 3 4 3 1.0e+02 | 1 1 2 1 1 2
epbl 14734 | 2.62e+04 3 4 4 3 4 3 4.4e+04 | 3 4 4 4 4 3
appu 14000 | 1.02e+04 4 4 5 3 4 3 5.8e+03 | 4 4 5 3 4 3
ns3Da 20414 | 3.79e+03 3 4 4 3 4 3 3.4e+03 | 3 4 4 - - -
mixtank new | 29957 | 4.69e+11 - 36 31 13 11 10 || 2.1e4+05 | 8 9 8 - - -
e40r0100 17281 | 2.23e+08 || 44 9 11 - 9 8 1.1e+04 | 5 6 6 - - -
besstk25 15439 | 1.02e+10 - - - 1 2 4 6.2e+02 | 3 4 4 3 4 3
besstk37 25503 | 2.27e+09 - - 2 2 4 1.5e+02 | 3 4 4 3 4 3
raefsky3 21200 | 5.18e+11 - - - 4 4 11 1.2e+04 | 7 6 8 6 6 5
thread 29736 | 1.78e+08 - - - 2 2 3 1.3e+03 | 3 4 4 3 3 3
sme3Db 29067 | 1.05e+08 - 15 9 74 13 10 || 3.8¢+07 | - 20 11 - 18 9
mult dcop 01 | 25187 | 9.55e+11 - - - - 108 | 62 || 1.5e+08 | - 47 34 - 63 26
ramage02 16830 | 4.52¢+08 - - - - - - 4.5e+07 | - 179 | 83 - -

15 Performance

This section presents the performance results of our two proposed iterative refinement solvers with the
FP32 or the FP16-TC as lower precision—dhgesv-TC, dsgesv and zkgesv-TC, zcgesv for real
and complex cases, respectively—using the GM (GMRES) refinement method, and comparing it to the
full precision reference dgesv and zgesv solvers, respectively. In all the performance figures below, we
illustrate the performance in teraFLOP/s of three linear solvers for both real and complex cases:

ﬂ
-
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(1) the FP64 standard solver (dgesv and zgesv for real and complex, respectively), displayed in
orange color with “x",

(2) the iterative refinement solver having the FP32 precision as lower precision (i.e., uf=FpP32)
and using the GM refinement method (dsgesv and zcgesv for real and complex matrices,
respectively) displayed in purple color with “A",

(3) the Tensor Cores Accelerated Iterative Refinement Solver using having the FP16-TC precision
as lower precision (e.g., uf=FP16-TC) and using the GM refinement method (dhgesv-TC and
zkgesv-TC for real and complex matrices, respectively) displayed in cyan color with “o".

We mention that the teraFLOP/s are computed using the same formula for all solvers and all plots, P = %
where ¢ is the total elapsed time of the computation, which means performance reflects the time to solution.
Thus, a performance that is two times higher means the computation is twice as fast. We also note that the
time of the iterative refinement solver includes all the conversion required and the iterations, meaning the
solver takes a full precision A,x,b (e.g., FP64 A,b), and returns the solution x in full precision (FP64 in
our experiments). The study was done for both real and complex matrices and for different matrix sizes and
for different matrix types. For the two iterative refinement solvers, we also depict the required number of
iterations to achieve the FP 64 arithmetic solution. To make the figures fully informative of all the possible
information that the reader might find interesting, we show in the right “y" axis of the graph the condition
number K..(A), corresponding to the gray dotted line.

(a) Single Right-Hand Sides

Performance of solving Ax=b to the FP64 accuracy Performance of solving Ax=b to the FP64 accuracy
22 {©-FP16-TC->64 dhgesv 3 30 4@ FP16-TC->64 zkgesv
20H FP32->64 dsgesv 1.5 27H FP32->64 zcgesv 5
=-=FPG4dgesv | e 10 ==FP64dzgesv | o o e 10
I it 24r P
6r Ll 10* 21f e 10*
o1 - ©18 :
_%12 r 10 _%15 10°
E 10t < = K
= ‘ F ool
8r 10 10
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4r 10t 61 10
2 3}
0 ol SN . . . . . . N 0 L . . . . o
2k 4k 6k 8k1Ok 14k 18k 22k 26k 30k 34k 40k 2k 4k 6k 8k 10k 14k 18k 22k 26k 30k
Matrix size Matrix size
(a) Real case (b) Complex case

Figure 15.1: Performance in teraFLOP/s of the GM refinement algorithm for the FP32 and FP16-TC

precisions studied for different matrix sizes on an NVIDIA GPU Volta GV100. Matrix of type 5: positive
i=1

eigenvalues and arithmetic distribution of its singular values o; = 1 — (;=¢

been observed for matrices of types 0, 1, 3, and 7.

)(1— ﬁ ). Similar behavior has

The performance results for the synthetic matrices of Table 13.1 are summarized in Figures 15.1-15.3. In
Figure 15.1, the matrix is of type 5, and—as shown in Section 14—the two precisions variants (FP32 and
FP16-TC) of the iterative refinement solver require two to four iterations to converge. Thus, one can expect
that the iterative refinement solver will bring a large speedup compared to its full-precision counterpart
solver. Since the number of iterations is small, we presume that the speedup ratio will be similar to the one
observed in Figure 12.1b for the LU factorization. Our expectation is confirmed by the experimental results
presented in Figure 15.1. The Tensor Cores Accelerated Iterative Refinement Solver using the FP16-TC
as low precision (dhgesv—-TC and zkgesv—-TC) delivers a solution 4x and 5x faster than its FP64
counterpart dgesv and zgesv, respectively. Similarly, the iterative refinement solver variant using the
FP32 as lower precision (e.g., dsgesv and zcgesv for real and complex data, respectively) shows a
~1.8x speedup over their dgesv and zgesv FP64 precision counterpart. This example illustrates the
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Performance of solving Ax=b to the FP64 accuracy Performance of solving Ax=b to the FP64 accuracy,
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Figure 15.2: Performance in teraFLOP/s of the GM refinement algorithm for the FP32 and FP16-TC
precisions studied for different matrix sizes on an NVIDIA GPU Volta GV100. Matrix of type 4: clustered
singular values, o;=(1, ---, 1, ﬁ). Similar behavior has been observed for matrices of type 4.

17 Performance of solving Ax=b to the FP64 accuracy Performance of solving Ax=b to the FP64 accuracy
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Figure 15.3: Performance in teraFLOP/s of the GM refinement algorithm for the FP32 and FP16-TC
precisions studied for different matrix sizes on an NVIDIA GPU Volta GV100. Matrix of type 6: arithmetic
distribution of its singular values 6; = 1 — (:l%ll )(1— ﬁ ). Similar behavior has been observed for matrices
of types 2 and 8.

importance of using the low FP16-TC precision in HPC. We note that our experiments showed that
matrices of types 0, 1, 3, and 7 exhibited the same performance behavior as the one illustrated in Figure 15.1
(e.g., matrices of type 5). Thus, we omit 8 more graphs that are going to look the same. The performance
results in Figure 15.3 for type 4 matrices are similar to those in Figure 15.1 for type 5 matrices. For the real
case (Figure 15.2a), the iterative refinement solver dhgesv-TC and dsgesv outperform the dgesv by
around 3.5x and 1.7, respectively. For the complex case (Figure 15.2b), the iterative refinement solver
zkgesv-TC and zcgesv outperform the dgesv by around 4.5 %, and 1.8 X, respectively.

In contrast to the matrices of type 5 shown in Figure 15.1, Figure 15.3 shows the performance and the
number of iterations for matrices that have the same arithmetic distribution of the singular value, but their
eigenvalues are not necessarily positive and can even be complex. This is considered a harder problem
than the one shown in Figure 15.1. For the TCAIRS using the FP16-TC precision as lower precision
(dhgesv-TC and zkgesv—-TC), the number of iterations increases compared with Figure 15.1 (15-24
iterations vs. 3-5 iterations). We also see that the iteration count increases slightly with matrix size. Thus,
one can expect the performance here to be slightly lower than in the one of Figure 15.1 (while still being
about 3 x faster). The dsgesv and the zcgesv behavior stays the same as the one shown in the previous
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graphs and requires about 2-3 iterations, resulting in a 1.7x speedup over the dgesv and the zgesv,
respectively. The observations made here are correlated with the numerical behavior shown in Section 14,
Figure 14.2. It highlights the attractive effectiveness of the FP16-TC precision and reveals the interest of
using it for HPC computing. Matrices of type 2 and type 8 have shown same performance behavior and thus
we omit their graphs.

Table 15.1: Performance for real life matrices from the SuiteSparse Collection and from dense matrices
arising from radar design simulations.

Name Description Size Koo (A) dgesv dsgesv dhgesv-TC
FP64 FP32 — FP64 FP16-TC — FP64
time(s) | #iter | time (s) | speedup | #iter | time (s) | speedup

crystk03 Materials problem | 24696 | 2.09e+02 1.95 2 1.16 1.68 2 0.69 2.82
crystm03 Materials problem | 24696 | 8.24e+01 1.95 2 1.16 1.68 2 0.69 2.82
TEM27623 3D electromagnetic | 27623 | 4.70e+03 2.68 2 1.54 1.74 2 0.87 3.08
mixtank new CFD problem 29957 | 4.69e+11 3.56 4 2.07 1.71 8 1.16 3.06
e40r0100 2D/3D problem 17281 | 2.23e+08 | 0.81 3 0.53 1.52 6 0.39 2.07
sme3Db Structural mechanics | 29067 | 1.05e+08 3.33 12 2.09 1.59 11 1.13 2.94
Goodwin 054 Navier-Stokes 32510 | 4.49¢+06 | 4.17 3 2.33 1.78 6 1.30 3.20
ns3Da 3D Navier Stokes 20414 | 3.79¢+03 1.29 3 0.81 1.59 4 0.48 2.68
Thermall Thermal Problem 17880 | 1.60e+03 0.85 3 0.55 1.54 4 0.38 2.23

Zhaol Electromagnetics 33861 | 4.45e+02 4.76 2 2.60 1.83 4 1.40 3.40

nd6k 2D/3D problem 18000 | 3.82e+02 | 0.86 2 0.55 1.56 3 0.38 2.26

nd12k 2D/3D problem 36000 | 3.51e+02 | 5.57 2 3.04 1.83 2 1.58 3.52

epbl Thermal problem 14734 | 2.62e+04 | 0.53 3 0.36 1.47 4 0.27 1.96

appu Graph problem 14000 | 1.02e+04 | 0.50 3 0.35 1.42 5 0.24 2.08

besstk25 Structural problem | 15439 | 1.02e+10 0.59 2 0.39 1.51 4 0.29 2.03
besstk37 Structural problem | 25503 | 2.27e+09 2.15 2 1.27 1.69 4 0.75 2.86
raefsky3 CFD problem 21200 | 5.18e+11 1.33 3 0.82 1.62 8 0.57 2.33
thread Threaded connector | 29736 | 1.78e+08 3.30 2 1.85 1.78 4 1.05 3.14
mult decop 01 Circuit simulation | 25187 | 9.55e+11 2.09 5 1.27 1.64 34 1.16 1.80
ramage02 Navier-Stokes 16830 | 4.52e+08 | 0.76 15 0.58 1.31 83 0.96 0.79
Poisson 2D Poisson problem | 32000 | 2.1e+06 4.01 2 2.15 1.81 10 1.23 3188
Vlasov 2D Vlasov problem | 22000 | 8.3e+03 1.70 2 0.95 1.78 3 0.50 3.40

The goal of this paper is to show that the proposed iterative refinement solver can be of great benefit
for a wide range of matrices with different characteristics. In practice, the real world matrices tend to be
easier to deal with than our specially constructed synthetic ones. To illustrate this, we show results for
real world matrices arising from different problems. We show in Table 15.1 the results from experiments
obtained when running three linear solvers (the standard solver dgesv and our two iterative refinement

10000000 “108 Usdo 905 Y Bio"BuiysigNdAIBIo0s|eAo. SOS!



solvers using the FP32 and the FP16—-TC precision, respectively) for different real world matrices from
the SuiteSparse Matrix Collection.

As can be seen, the behavior of the proposed iterative refinement solver is similar to that of the synthetic
matrices described above. For most of these problems, the iterative refinement solver using the FP16-TC as
lower precision converges within fewer than 12 iterations, except for only 2 hard problems. For these hard
problems, the iterative refinement solver using the FP32 as lower precision also had trouble converging
within 2-3 iterations as usual. Overall, our proposed iterative refinement solver showed attractive speedup
for these problems. By studying the results in the table we found that the proposed TCAIRS using the
FP16-TC precision (e.g., the dhgesv-TC routine) can provide in average a speedup of about 2.5x—
3.5x for a wide range of real world matrices and it shows about 1.7 x speedup when using the FP32 as
lower precision (e.g., the dsgesv routine). These results match the analysis performed in the numerical
Section 14 and in the performance model Section 12.

Lesson: The speedups presented in Figures 15.1-15.3 and in Table 15.1 show that the dhgesv-TC
(FP16-TC — FP64) routine can be used for most of the matrices types to provide speedups of
about 3x—4x, and the dsgesv (FP32 — FP64) routine can be used for most of the matrix types
to provide speedups of about 1.7 x. The complex routines (zkgesv-TC and zcgesv) also showed
similar behavior as the real ones (dhgesv-TC and dsgesv) but with a slightly higher speedup over
the FP64 complex routine zgesv. This is due to the higher compute intensity of the complex data
computations.

(b) Multiple Right-Hand Sides

In this section we show the benefit of the Tensor Cores Accelerated Iterative Refinement Solver when
solving multiple right-hand sides. As discussed above, the iterative refinement solver consists of two phases:
the factorization phase, which uses lower precision to achieve a high performance, and a second phase to
refine the obtained solution down to the accuracy of the FP 64 precision. The refinement phase is memory
bound and thus it is better to converge fast (see Figure 12.2 for the expected performance as function of
the number of iterations). When multiple right-hand sides are needed, we cannot solve each right-hand side
by itself because then we multiply the number of iterations by the number of RHSs. Thus, our strategy is
to solve all the RHS together at once and to use Level 3 BLAS (t rsm and Xgemm) during the refinement
in such a way that solving for one or more RHSs will take roughly similar time (with ~10% difference).
In Figure 15.4 we illustrate the performance obtained when solving 1 or 32 RHSs for a matrix of type 5.

Performance of solving Ax=b to the FP64 accuracy Performance of solving Ax=b to the FP64 accuracy
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Figure 15.4: Performance of solving multiple right-hand sides using the three linear solvers for a matrix
of type 3, for different matrix sizes on an NVIDIA GPU Volta GV100. Results are shown for 1 and 32
right-hand sides.

As observed in Figure 15.4 that solving 32 RHSs does not significantly delay the refinement process, and
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thus the performance obtained is only less than 10% slower than the one obtained when solving 1 RHS, for
both real and complex cases. This is thanks to our proposed technique that uses Level 3 BLAS operations
and optimizes the residual checking process in such a way that minimises the amount of memory-bound
operations. Interestingly, we can see that the number of iterations required to converge the 32 RHSs is
similar to the one required to converge 1 RHS. These results give the TCAIRS an advantage even when
multiple RHSs are to be solved.

(¢) Sensitivity to FP64 Compute Throughput

Based on the discussion in Section 10, we used our iterative refinement solver to solve the same problems
studied in this paper on an NVIDIA Quadro RTX8000 (Turing TU102 GPU). As expected from the
discussion above, we found that the performance of the TCAIRS is not sensitive to the FP64 compute
throughput and maintains the same high performance behavior. Figure 15.5 depicts the performance
obtained for a matrix of type 5 using the three solvers—the FP64 solver (dgesv or zgesv for real
and complex cases, respectively), the iterative refinement solver solver with FP32 as lower precision
(dsgesv or zcgesv for real and complex cases, respectively), and the iterative refinement solver using
the FP16-TC precision as lower precision (dhgesv-TC or zkgesv-TC for real and complex cases,
respectively)—on the GV100 and the RTX8000. We can easily see that the solver maintains the same
effective FP64 performance on both GPU architectures despite their vastly different FP64 compute
throughput (7 TFLOP/S on GV100 and 500 GFLOP/s on RTX8000). Here we show only one graph of
performance, but all the other graphs show a similar performance trend.
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Figure 15.5: Performance comparison of the Tensor Cores Accelerated Iterative Refinement Solver on
two different GPUs: NVIDIA Quadro GV100 and RTX8000 shows lack of sensitivity to FP64 compute
throughput. We illustrate the iterative refinement algorithms using either the FP32 and FP16-TC
precisions as lower precision. Matrix of type 5: positive eigenvalues and arithmetic distribution of its

singular values 0; = 1 — (£=1)(1 — _L). Similar behavior has been observed for all other synthetic and

real life matrices.

16 Energy Efficiency

Figure 16.1 shows the energy efficiency results in real (Left) and complex (Right) precision, respectively.
We report the sum of the CPU, DRAM, and GPU power measurement. The power of the CPU
(package+DRAM) is measured using the Performance Application Programming Interface (PAPI) [30],
and the power of the GPU is measured using the NVIDIA Management Library (NVML) [36]. We note that
the solver is GPU-only (i.e., does not use the CPU), but we still add the CPU’s idle power consumption,
which is about 20-30 Watts. The standard dgesv solver provides an energy efficiency of 21 gigaFLOP/s
per Watt. The FP 32 iterative refinement solver (dsgesv) doubles the energy efficiency, increasing it to 40
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Figure 16.1: Power usage of the CPU and an NVIDIA GPU Volta GV100 for the Tensor Cores Accelerated
Iterative Refinement Solver for the FP32 and FP16—-TC precisions for a real and complex matrices of size
n = 40000 and n = 30000, respectively.

gigaFLOP/s per Watt. This follows our performance analysis described above, since dsge sv is about twice
as fast and thus we can observe twice the energy efficiency using the dsge sv routine. The most pronounced
result is achieved by the FP 1 6-TCiterative refinement solver (dhgesv—-TC). It achieves an unprecedented
energy efficiency of 94 gigaFLOP/s per Watt, which is about 4.5 improvement over the standard dgesv
solver. The complex case achieves 126 gigaFLOP/s per Watt, which is more than 5x improvement over the
standard zgesv solver. These results demonstrate that the iterative refinement methods and half-precision
arithmetic will be decisive in helping mitigate the power constraints in large-scale HPC systems.

The different phases of the computation can be identified on the power graph, as we now explain. The
portion that consumes very high power (e.g., 260 Watts) corresponds to the factorization phase. 90% of
the factorization phase consists of compute intensive operations and thus the power will be at the peak.
We can also see here that this portion that correspond to the factorization in FP16 (cyan curve) is about
4 times faster than its corresponding one in FP 64 (orange curve). Once the factorization is done, the code
synchronize all streams, and performs some checking. This corresponds to the lowest quick spike down.
Then, for the standard FP64 solver (e.g., dgesv), it performs the solve phase (one solve of LUx = b)
to compute the final solution x while for the iterative refinement solver, it performs the refinement phase
(which correspond to as many solve and mat-vec as the number of iterations). The solve or refinement phase
consists of memory bound operations and we know that such operations do not consumes the peak power
but rather they consume lower power which correspond to the curves around 180 Watts. Thus we can easily
illustrate the refinement phase in these graph by the portion that consumes around 180 Watts. We can see
that the refinement portion for FP32 dsgesv is slightly shorter than the one for FP16 dhgesv-TC. This
is normal since the dsge sv required about 3 iterations while the dhgesv—-TC required about 7 iterations.

17 Conclusions and Future Directions

Designing and implementing numerical algorithms that efficiently exploit current highly parallel computer
architectures is a challenge, especially if close to peak performance is to be achieved. Nevertheless, we have
developed a new class of iterative refinement solvers and a number of computational techniques that allow
us to solve fundamental Ax = b problems not just close to peak FP64 performance, but to get multiple
times over the peak, by using the fast mixed-precision arithmetic Tensor Cores available in new GPU
architectures—all while retaining the numerical stability of an FP64 solution. In particular, we showed
that the new iterative refinement solver can accelerate the solution 4-to-5x and have 5x better energy
efficiency on NVIDIA Volta GV100 GPUs. The complex case achieves an unprecedented energy efficiency
of 126 gigaFLOP/s per Watt, which is more than 5x improvement over the standard FP 64 solver. The new
developments further improves previous efforts in this direction, including performance, energy efficiency,
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and applicability to real problems. The solvers are now released in the vendor-optimized numerical library
CUSOLVER [35] from the NVIDIA and the MAGMA [27] open-source numerical library.

The developments open up directions for future work, including further optimizations, development of
a full set of mixed-precision factorizations, linear system solvers as well as eigensolvers and singular value
decomposition (SVD), and release as open-source software through MAGMA [27]. See [23] for a mixed-
precision algorithm for symmetric positive definite systems and [9], [23] for mixed-precision algorithms
for the least square problem. Furthermore, the developments illustrate that mixed-precision techniques can
be of great interest for linear solvers in many engineering areas. Such methods can also be easily ported to
large-scale distributed or multi-GPU environments and supercomputers, where the speedups are expected
to remain the same as for a single GPU.
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