
Redesigning PAPI’s High-Level API

Frank Winkler

Innovative Computing Laboratory
The University of Tennessee
Knoxville, Tennessee, USA

frank.winkler@icl.utk.edu

Abstract. PAPI (Performance Application Programming Interface) pro-
vides a portable and efficient API to access the hardware performance
counters found on modern microprocessors. With the introduction of
Component PAPI or PAPI-C in early 2010 PAPI has extended its reach
beyond the CPU and can now monitor system information across a
range of components from CPUs to network cards, graphics accelera-
tor cards, parallel file systems and more. To collect performance events,
PAPI provides two APIs, the low-level and high-level API. The legacy
high-level API was designed for simplicity, but could only handle preset
CPU events. To access events from all installed components, the pro-
grammer had to use the low-level API. This paper introduces a new
high-level API that enables the measurement of both preset and native
events. It is intended for programmers who want to perform simple event
measurements with minimal code instrumentation.

Keywords: Code Instrumentation, Performance Counter

1 Introduction

PAPI [3] [7] provides a simple interface, called the high-level (HL) API, for ap-
plication developers who wish to perform direct instrumentation of their source
code with minimal effort. The HL API that has existed in PAPI up to version
5.7, was implemented in response to demand from the community for some-
thing simpler than the low-level (LL) API. However, this original interface had
a number of significant limitations. These limitations include:

– No support for native events
– Lack of support for measurements within threads
– No metadata support for the identification of measured sections
– Missing support for reporting measurement results

The new HL API overcomes those limitations and provides application de-
velopers the ability to record performance events of instrumented code sections,
called regions, of serial, multi-processing (MPI, SHMEM) and thread (OpenMP,
Pthreads) parallel applications. It is intended for programmers who want to per-
form simple event measurements in a very convenient way as they only have

to mark code sections. The remainder of this document is organized as follows:
Section 2 compares the legacy HL API with the new HL API. In addition, sce-
narios are shown in which the use of the new HL API is more suitable than the
LL API. Section 4 discusses overhead measurements performed with both the
legacy and new HL API. Finally, this paper concludes with a summarization in
Section 5 and gives a small outlook for future work in Section 6.

2 Comparison of the legacy and new high-level API

2.1 Legacy high-level API

The legacy HL API provided eight functions as shown in Table 1. A program-
mer could start, stop, and read counters for only CPU preset events which
was a major limitation in comparison with the LL API. Figure 1 demonstrates
the functions used to start, read, and stop counters. PAPI_read_counters and
PAPI_stop_counters returned the current counts. Note that when the program
called the function PAPI_read_counters the counters would be reset after being
read. The determination of events to be recorded was part of the instrumenta-
tion procedure. If a programmer wanted to add or change events, the entire
application had to be recompiled. The legacy HL API also provided a func-
tion for summing up events. However, event summation did not work for events
from different threads. For the programmer’s convenience the legacy HL API
also offered functions for calculating derived metrics like IPC, MFlops/s, and
MFlips/s as well as real and processor time without determining the required
events. However, if a programmer wanted to record all derived metrics, he had
to call all three functions causing additional overhead. It should be noted that
these functions for derived metrics are now part of the LL API. Another major
limitation of the legacy HL API is that the programmer had to implement the
output of the measured results.

Table 1. Functions of the legacy high-level API

Function name Description
PAPI_start_counters start counting hardware events
PAPI_read_counters copy current counts to array and reset counters
PAPI_stop_counters stop counters and return current counts
PAPI_accum_counters add current counts to array and reset counters
PAPI_ipc gets instructions per cycle, real and processor time
PAPI_flops simplified call to get Mflops/s (floating point operation rate),

real and processor time
PAPI_flips simplified call to get Mflips/s (floating point instruction rate),

real and processor time
PAPI_num_counters get the number of hardware counters available on the system

2

Fig. 1. Code snippet of the legacy high-level API in C
#include <papi.h>
#define NUM_EVENTS 2

main()
{

int Events[NUM_EVENTS]={ PAPI_TOT_INS ,PAPI_TOT_CYC };
long_long values[NUM_EVENTS];
int retval;

retval = PAPI_start_counters(Events , NUM_EVENTS);
if (retval != PAPI_OK)

handle_error (1);
/* Do some computation here */
retval = PAPI_read_counters(values , NUM_EVENTS);
if (retval != PAPI_OK)

handle_error (1);
/* Print results of values and continue computation */
retval = PAPI_stop_counters(values , NUM_EVENTS);
if (retval != PAPI_OK)

handle_error (1);
/* Print results of values here */

}

Fig. 2. Code snippet of the new high-level API in C
#include <papi.h>

int main()
{

int retval;

retval = PAPI_hl_region_begin("computation");
if (retval != PAPI_OK)

handle_error (1);
/* Do some computation here */
retval = PAPI_hl_read("computation");
if (retval != PAPI_OK)

handle_error (1);
/* Continue computation here */
retval = PAPI_hl_region_end("computation");
if (retval != PAPI_OK)

handle_error (1);
}

3

2.2 New high-level API

The main goal of the new HL API is to make it easier to use. This means
fewer functions but more functionality than the legacy HL API. The new HL
API contains only four functions, as shown in Table 2. Using those functions
a programmer can mark a code section as a “measurement region” and assign
a name to this region. PAPI will automatically make measurements during the
execution of that code section, and the measurements will be associated with
the name given to the region. This is supported for both C and Fortran.

Table 2. Functions of the new high-level API

Function name Description
PAPI_hl_region_begin(const char*) read performance events at the beginning

of a region (the first call also starts
counting the events)

PAPI_hl_read(const char*) read performance events inside of a region
and store the difference to the
corresponding beginning of the region

PAPI_hl_region_end(const char*) read performance events at the end of a
region and store the difference to the
corresponding beginning of the region

PAPI_hl_stop() stop a running high-level event set

A code section is identified by a unique region name and starts with
PAPI_hl_region_begin and ends with PAPI_hl_region_end, as seen in Fig-
ure 2. The first call to PAPI_hl_region_begin starts counting the performance
events. Those are read at the beginning and end of a code section, the latter
stores the difference between the end and begin values. To get more detailed
measurements, a programmer can insert several PAPI_hl_read calls inside a
code section. Each read call stores the difference from the corresponding begin
call. It should be noted that, unlike the legacy HL API, the PAPI_hl_read call
of the new API does not reset the counters. Furthermore, PAPI_hl_region_end
does not stop counting the performance events. Counting continues until the ap-
plication terminates. Therefore, the programmer can also create nested regions
if required. It is also possible to use the same region name for different code sec-
tions. In this case, the individual measurement results are added up. An example
would be the use of a code section within a loop.

Contrary to the legacy HL API, events are not specified explicitly in the
source code. Users specify the events to be counted (as a comma separated list)
via an environment variable, as seen in Figure 3. PAPI automatically detects the
corresponding components and also checks the availability of events and com-
binations. This is done in the first call of PAPI_hl_region_begin. If there are

4

events that are not supported due to hardware restrictions or typos they are
ignored and PAPI only performs the measurements with the working events. If
programmers want to measure instantaneous events like temperature or power
consumption, they can specify this with the instant flag as seen in Figure 3. In-
stantaneous values are stored at PAPI_hl_read and PAPI_hl_region_end with-
out computing the difference from the beginning of the region. Another benefit
of the environment variable is that events can be changed without recompiling
the entire application.

Fig. 3. Setting events via environment variable: PAPI_TOT_INS is specified as
a delta event meaning that the difference between PAPI_hl_region_begin and
PAPI_hl_[read|region_end] is stored. coretemp:::hwmon=instant is specified as an
instantaneous event meaning that the current counter value is stored.

export PAPI_EVENTS="PAPI_TOT_INS, coretemp : : : hwmon=in s t an t "

Table 3. Default events of the new high-level API

Performance event
perf::TASK-CLOCK

PAPI_TOT_INS

PAPI_TOT_CYC

PAPI_FP_INS or PAPI_VEC_SP or PAPI_VEC_DP

PAPI_FP_OPS or PAPI_SP_OPS or PAPI_DP_OPS

If no events are specified by the programmer, PAPI will use a set of default
events as seen in Table 3. Default events that are not available on the current
machine, e.g. PAPI_FP_OPS, are automatically skipped. In the latter case PAPI
tries to use PAPI_SP_OPS or PAPI_DP_OPS. If PAPI_EVENTS is set, default events
are not recorded unless they are added to PAPI_EVENTS. Another special fea-
ture of the new HL API is the automatic library initialization. The first region
call of PAPI_hl_region_begin takes care of the library initialization, even if
it is a thread-parallel application. An output of the measured events is created
automatically after the application exits. In the case of a serial, or a thread-
parallel application there is only one output file. The output is generated in the
current directory by default. However, it is recommended to specify an output
directory for larger measurements, especially for MPI applications via the en-
vironment variable PAPI_OUTPUT_DIRECTORY. The output example in Figure 4
was generated with default events and shows performance events for the region
"computation" (see code snipped in Figure 2) in JSON format. As it is a serial
application there is only one thread containing performance events. In case of a
thread-parallel application there would be JSON objects for each thread. MPI
applications would be saved in multiple files, one per MPI rank. In the case

5

where measurements are performed, while there are old measurements in the
same directory, the HL library will not overwrite or delete the old measurement
directories. Instead, timestamps are added to the old directories. For more con-
venience, the output can also be printed to stdout by setting PAPI_REPORT=1.
This is not recommended for MPI applications as each MPI rank tries to print
the output concurrently.

Another pratical feature of the new hl API is the support of multiplexing.
Multiplexing allows a user to count more events than total physical counters
by time sharing the existing counters at some loss in precision. This occurs
only for CPU core events and can be enabled via the environment variable
PAPI_MULTIPLEX. However, the programmer can only activate multiplexing for
the entire application run and not only for a specific code section. Beyond that,
it is not possible to select specific event groupings for multiplexing. Figure 4
shows an overview of environment variables that are used by the new HL API.

Table 4. Environment variables of the new high-level API

Environment variable Description
PAPI_EVENTS Performance events to measure
PAPI_MULTIPLEX Enable Multiplexing
PAPI_REPORT Print performance report to stdout
PAPI_OUTPUT_DIRECTORY Path of the measurement directory
PAPI_HL_VERBOSE Enables warnings and info
PAPI_DEBUG=HIGHLEVEL Enable debugging of high-level routines

Similar to the legacy HL API, the new HL API also provides measure-
ment results for derived metrics like IPC, MFlops/s, and MFlips/s as well as
real and processor time when using default events or the required events for
a derived metric. In order to obtain those derived results, the python script
papi_hl_output_writer.py has to be used with the generated output (see Fig-
ure 4). The legacy HL API provided a function PAPI_accum_counters that ac-
cumulated the current value to the last stored value. Using this function, a user
were able to sum up all events recorded within the same thread. The new HL API
can summarize performance events over all threads and MPI ranks when using
the option "accumulate" for the python script papi_hl_output_writer.py as
seen in Figure 5.

The new HL API is not only characterized by its very simple usability, but
also by its robustness. Several strategies have been considered to ensure that the
application is disturbed as little as possible when measuring performance data.
No faults should occur in an application due to improper use of the HL functions
by the programmer. If a region is not completely marked, e.g. the beginning or
the end of a region is missing, the application will continue. The programmer
gets a warning and PAPI cleans up all internal data structures in order not to

6

disturb the remaining runtime of the application. The latter can happen if the
programmer marks a region where the begin part is inside and the end part is
outside of a parallel region. It is therefore the responsibility of the programmer
to make sure that a matching region is in the same thread.

In order to mix the HL and LL API, the programmer must call PAPI_hl_stop
when LL calls are used after a marked region. Also note that the PAPI_hl_stop
call must be in the same thread as the marked region. In case the LL and HL
API is using an event set where one event is the same, the programmer must
stop the LL running event set before continuing with the HL API.

Fig. 4. JSON output of the new high-level API for a serial application
{

"cpu␣in␣mhz":"1995",
"threads":[

{
"id":"0",
"regions":[

{
"computation":{

"region_count":"1",
"cycles":"2080863768",
"perf::TASK -CLOCK":"1042308865",
"PAPI_TOT_INS":"2917520595",
"PAPI_TOT_CYC":"2064112930",
"PAPI_FP_INS":"375785927",
"PAPI_FP_OPS":"375787554"

...
}

Fig. 5. Accumulated JSON output of the new high-level API for a serial application
with derived metrics

python papi_hl_output_writer.py --type=accumulate
{

"computation": {
"Region␣count": 1,
"Real␣time␣in␣s": 0.97,
"CPU␣time␣in␣s": 0.98,
"IPC": 1.41,
"MFLIPS/s": 386.28 ,
"MFLOPS/s": 386.28 ,
"Number␣of␣ranks": 1,
"Number␣of␣threads": 1,
"Number␣of␣processes": 1

}
}

7

2.3 Additional experimental functions of the new high-level API

The new HL API also offers optional functions (see Figure 5) that allow the
programmer to control initialization and finalization, determine events in the
source code, and trigger the performance report. It is useful for very complex
applications where performance measurements are only required for a small code
section. However, the new HL API was designed with simplicity in mind. For
this reason, all advanced functions are only available in a feature branch. It
should be noted that the feature branch is in an experimental state. Using the
optional functions may cause unwanted side effects. PAPI_hl_init initializes
the PAPI library and some HL specific features. As mentioned in section 2.2
the first call of PAPI_hl_region_begin automatically calls PAPI_hl_init if not
already called. PAPI_hl_set_events offers the programmer the possibility to de-
termine events in the source code as an alternative to the environment variable
PAPI_EVENTS. The content of PAPI_EVENTS is ignored if PAPI_hl_set_events
was successfully executed. It should also be noted that PAPI_hl_set_events
has to be called before the first PAPI_hl_region_begin call. It is also pos-
sible to disable the performance measurement of an instrumented application
by setting PAPI_EVENTS=NONE. This feature is very useful when the measure-
ment overhead is to be determined. PAPI_hl_finalize stops all running event
sets, destroys them, and cleans up internal data structures. All subsequent
HL function calls are ignored after PAPI_hl_finalize has been called. How-
ever, this only works for serial applications (or SMP applications that do not
use threads), since the thread that calls PAPI_hl_finalize does not have ac-
cess to other threads that still have running event sets. One solution is the
function PAPI_hl_cleanup_thread that has to be called at the end of each
thread. But this only works for Pthreads or parallel OpenMP regions without
the “parallel for” pragma. In the latter case, PAPI_hl_cleanup_thread can
be called at the end of the last parallel region. When using “parallel for” prag-
mas, the clean up call only works if the number of threads equals the number of
loop iterations.

Table 5. Experimental functions of the new high-level API

Function name Description
PAPI_hl_init() initialize the high-level interface
PAPI_hl_cleanup_thread() stop running events of a thread and

clean up all local data structures
PAPI_hl_finalize() stop running events of the master thread,

clean up all global data structures and
shut down the high-level interface

PAPI_hl_set_events(const char* events) set specific events to be recorded
PAPI_hl_print_output() generate performance report

8

3 Low-level versus high-level API

The LL API manages performance events in user-defined groups, called event
sets. It is aimed at experienced application programmers and tool developers
who require fine-grained measurement and control of the PAPI interface. It pro-
vides access to both PAPI presets and native events and supports all installed
components. Several performance tools like Score-P [5], Vampir [2], TAU [6], and
HPCToolkit [1] support PAPI and in fact use the LL API. In order to support
all installed components, each performance tool has to create the required event
sets for each component.

Figure 6 shows a small example of measuring events from different compo-
nents. First the PAPI library must be initialized. In this example two events
from different components are to be measured. Each component requires a sep-
arate event set, so two event sets must be created. After that, events have to
be added to the corresponding event set. The first event PAPI_TOT_INS is preset
and can be added to the event set easily using the function PAPI_add_event.
To save space, the return check is omitted for all subsequent PAPI functions.
The second event appio:::READ_BYTES is provided by the component appio.
Here, the event name must first be converted into an event code. The event code
can then be added to the second event set. Similar to the legacy HL API, the
measurement can now be started with PAPI_start. However, each event set has
to be started separately. This also applies to reading and stopping the event
sets. The example from Figure 2 can produce the same results with the new
HL API as event sets are generated automatically. Using the new HL API, the
events PAPI_TOT_INS and appio:::READ_BYTES can both be added to the en-
vironment variable PAPI_EVENTS, although they belong to different PAPI com-
ponents. Handling multiple components and multiple event sets is taken care
implicitly by PAPI. This shows the added value of the new HL API over the
low-level API, as it greatly simplifies performance measurements with different
components.

Performance tools that provide a simple tools interface for code sections
instrumentation can easily use the new HL API. Those tools do not have to
worry about the actual performance measurement and performance report as
everything is done by PAPI’s HL functions. The programming model Kokkos [4]
provides a callback based tools interface1 which is very well suited for the new
HL API. A PAPI connector for Kokkos has already been implemented and can
be found in the official Kokkos-tools repository2.

It should also be noted that the new HL API can be used in conjunction with
the LL API as long as they do not use the same event sets or components at the
same time. One possible scenario could be a complex parallel application with
offloading using CUDA. The HL API could be used to measure performance
events of host functions using perf events. For a more in-depth analysis such
as starting and stopping events to identify a problematic section of a CUDA

1 https://github.com/kokkos/kokkos-tools/wiki/Profiling-Hooks
2 https://github.com/kokkos/kokkos-tools

9

https://github.com/kokkos/kokkos-tools/wiki/Profiling-Hooks
https://github.com/kokkos/kokkos-tools

function, the low-level API together with the CUDA component would be the
better choice.

Fig. 6. Code snippet of the low-level API in C: This example is measuring the events
PAPI_TOT_INS and appio:::READ_BYTES from two components (perf, appio). For
readability, the return check for the most PAPI functions and the output implementa-
tion for the measurement results are omitted. It should be noted that the new high-level
example from Figure 2 can produce the same measurement results.

#include <papi.h>
#define NUM_EVENTS 2

main()
{

int i;
int retval;
unsigned int native = 0x0;
int EventSet[NUM_EVENTS];
long_long values[NUM_EVENTS][1];

retval = PAPI_library_init(PAPI_VER_CURRENT);
if (retval != PAPI_VER_CURRENT)

handle_error (1);

for (i = 0; i < NUM_EVENTS; i++) {
EventSet[i] = PAPI_NULL;
PAPI_create_eventset (& EventSet[i]);

}

PAPI_add_event(EventSet [0], PAPI_TOT_INS);
PAPI_event_name_to_code("appio ::: READ_BYTES", &native);
PAPI_add_event(EventSet [1], native);

for (i = 0; i < NUM_EVENTS; i++)
PAPI_start(EventSet[i]);

/* Do some computation here */

for (i = 0; i < NUM_EVENTS; i++)
PAPI_read(EventSet[i], values[i][0]);

/* Print results of values and continue computation */

for (i = 0; i < NUM_EVENTS; i++)
PAPI_stop(EventSet[i], values[i][0]);

/* Print results of values here */

}

10

4 Overhead measurements

To compare the overhead of the new HL API with the legacy one, start/begin,
read, and stop/end routines were measured, as seen in Figure 7. The measure-
ments were performed with one hardware event on a Xeon(R) CPU3. Since the
overhead of the routines is extremely low, CPU cycles were counted. With a
CPU speed of 2 GHz, one can consider about 2 ∗ 109 ticks per second. The first
call of the start/begin routine uses the most cycles, 9.7 ∗ 106 ticks (4,85 ms) for
PAPI_start_counters and 2∗107 ticks (10 ms) for PAPI_hl_region_begin. Be-
sides initializing the HL interface, creating and starting the event sets and read-
ing the counters, the first call of PAPI_hl_region_begin also reads and tests all
events to be recorded from the environment variable, creates event sets for the
corresponding components and stores the read values in the internal data struc-
ture. This explains the overhead of 5ms compared to PAPI_start_counters.
Figure 7 also clearly shows that recurring calls of PAPI_hl_region_begin are
slightly faster (about 80000 cycles) than recurring calls of PAPI_start_counters.
In contrast to PAPI_start_counters that must restart the event set on each call,
the second call of PAPI_hl_region_begin only reads the counters and stores
them. The read and end routines of the new HL API also consume more cycles
than the read and stop routines of the legacy HL API as they need to store the
difference to the corresponding begin values.

Fig. 7. Overhead comparison of legacy and new high-level API: The graphic on the
left compares the start/begin, read, and stop/end routines for the legacy and new
high-level API. The new API has a slightly higher overhead (about 5ms), which is
mainly due to the automatic storage of the counters. The graphic on the right shows
successive calls of the start/begin routines. While the first PAPI_hl_region_begin call
takes much more time due to creation and starting of the event sets, the following calls
are significantly faster as they only read counters and store them.

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

PAPI_start_counters

PAPI_hl_region_begin

PAPI_read_counters

PAPI_hl_read

PAPI_stop_counters

PAPI_hl_region_end

N
u
m

b
e
r

o
f

ti
ck

s

OLD HL-API
NEW HL-API

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

PAPI_start_counters_1

PAPI_hl_region_begin_1

PAPI_start_counters_2

PAPI_hl_region_begin_2

PAPI_start_counters_3

PAPI_hl_region_begin_3

N
u
m

b
e
r

o
f

ti
ck

s

OLD HL-API
NEW HL-API

3 Xeon(R) CPU E5-2650 v3

11

5 Conclusions

PAPI’s new HL API lets users record performance events of instrumented regions
of serial, multi-processing and thread-parallel applications. It is designed for
simplicity, while offering some flexibility. Events to be recorded are determined
via an environment variable that lists both preset and native events separated
by commas. This enables users to measure different events in successive runs
of their application without recompiling. In addition, users do not need to take
care of printing performance events since an output is generated at the end of
each measurement. Some of the benefits of using the HL API rather than the LL
API are that it is easier to use and requires less setup. For instance, the dynamic
setting of performance events via the environment variable and the automatic
detection of components makes the use of the HL API extremely simple. It
should also be noted that the new HL API can be used in conjunction with the
LL API and, in fact, does call the LL API internally.

6 Future Work

The new HL API enables a very simple code instrumentation for thread-parallel
applications. However, all measurements must be trigged from each thread. If a
programmer instruments a code section around a parallel region, PAPI will only
collect performance events from the master thread. The current HL API requires
code instrumentation inside a parallel region to record performance events from
all threads. This can be an important limitation for some users. To avoid this
limitation, mechanisms for automatic thread detection must be implemented.
This could also ensure a clean finalization of PAPI for thread-parallel applica-
tions via the function call PAPI_hl_finalize. There are different concepts to
detect thread creation and destruction, for example using library wrapping for
Pthreads or OMPT4 for OpenMP. These concepts will be investigated and pos-
sibly used in PAPI++, the successor of PAPI. Furthermore, the new HL API will
be reimplemented for PAPI++ and will then provide more user control using C++

features. For example, default function arguments could be used for the region
instrumentation to address a specific event set or all event sets per default.

List of Acronyms

HL high-level
LL low-level
API Application Programming Interface
PAPI Performance Application Programming Interface

4 OMPT: Tools interface in the OpenMP spec

12

References

1. Adhianto, L., Banerjee, S., Fagan, M., Krentel, M., Marin, G., Mellor-Crummey, J.,
Tallent, N.R.: HPCTOOLKIT: tools for performance analysis of optimized parallel
programs. Concurrency and Computation: Practice and Experience (2010)

2. Andreas Knüpfer and others: The Vampir Performance Analysis Tool-Set. In: Proc.
of the 2nd Int. Workshop on Parallel Tools for High Performance Computing (2008)

3. Browne, S., Dongarra, J., Garner, N., Ho, G., Mucci, P.: A portable program-
ming interface for performance evaluation on modern processors. The Interna-
tional Journal of High Performance Computing Applications 14(3), 189–204 (2000),
https://doi.org/10.1177/109434200001400303

4. Edwards, H.C., Trott, C.R., Sunderland, D.: Kokkos: Enabling manycore perfor-
mance portability through polymorphic memory access patterns. Journal of Parallel
and Distributed Computing 74(12), 3202 – 3216 (2014), http://www.sciencedirect
.com/science/article/pii/S0743731514001257, Domain-Specific Languages and
High-Level Frameworks for High-Performance Computing

5. Mey, D.a., Biersdorf, S., Bischof, C., Diethelm, K., Eschweiler, D., Gerndt, M.,
Knüpfer, A., Lorenz, D., Malony, A., Nagel, W.E., Oleynik, Y., Rössel, C., Sa-
viankou, P., Schmidl, D., Shende, S., Wagner, M., Wesarg, B., Wolf, F.: Score-P: A
Unified Performance Measurement System for Petascale Applications. In: Compe-
tence in High Performance Computing (2012)

6. Shende, S.S., Malony, A.D.: The Tau Parallel Performance System. Int. J. High
Perform. Comput. Appl. 20(2), 287–311 (May 2006), http://dx.doi.org/10.1177/
1094342006064482

7. Terpstra, D., Jagode, H., You, H., Dongarra, J.: Collecting performance data with
papi-c. In: Müller, M.S., Resch, M.M., Schulz, A., Nagel, W.E. (eds.) Tools for
High Performance Computing 2009. pp. 157–173. Springer Berlin Heidelberg, Berlin,
Heidelberg (2010)

13

https://doi.org/10.1177/109434200001400303
http://www.sciencedirect.com/science/article/pii/S0743731514001257
http://www.sciencedirect.com/science/article/pii/S0743731514001257
http://dx.doi.org/10.1177/1094342006064482
http://dx.doi.org/10.1177/1094342006064482

	Redesigning PAPI's High-Level API

