
ECP Milestone Report

FFT-ECP API and High-Performance Library Prototype for 2-D and
3-D FFTs on Large-Scale Heterogeneous Systems with GPUs

WBS 2.3.3.13, Milestone FFT-ECP STML13-27

Stanimire Tomov
Alan Ayala

Azzam Haidar1

Jack Dongarra

Innovative Computing Laboratory, University of Tennessee

January 31, 2020

1The contribution of this author was done during the author’s employment at the Innovative Computing Laboratory



This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of two
U.S. Department of Energy organizations (Office of Science and the National Nuclear Security Administration)
responsible for the planning and preparation of a capable exascale ecosystem, including software, applications,
hardware, advanced system engineering and early testbed platforms, in support of the nation’s exascale
computing imperative.

Revision Notes
01-2020 first publication

@techreport{thasd2020ECPFFT,
author={Tomov, Stanimire and Ayala, Alan and Haidar, Azzam and Dongarra, Jack},
title={{FFT-ECP API and high-performance library prototype for 2-D and 3-D FFTs on

large-scale heterogeneous systems with GPUs}},
institution={Innovative Computing Laboratory, University of Tennessee},
year={2020},
month={January},
type={ECP WBS 2.3.3.13 Milestone Report},
number={FFT-ECP STML13-27},
note={revision 01-2020}

}

i



Contents

1 Executive Summary 1

2 Background 2

3 Optimizing FFT communications on GPUs 3
3.1 Methodology and Algorithmic Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.2 Kernels implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.3 Communication design and optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4 Multi-node communication model 7

5 Scalability performance results 9
5.1 Multi-node communication model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5.2 Using heFFTe with applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

6 The heFFTe version 0.2 release 13
6.1 Application programming interface (API) for heFFTe . . . . . . . . . . . . . . . . . . . . . . 15

6.1.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6.1.2 Define datatype and FFT object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6.1.3 Creating a plan for FFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6.1.4 Setting memory type and allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6.1.5 Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

6.2 heFFTe profiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.3 Tracing heFFTe with vendor libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

7 Conclusions and future work directions 19

Acknowledgments 19

Bibliography 20

ii



List of Figures

3.1 heFFTe in the Exascale Computing Project (ECP) software stack. . . . . . . . . . . . . . . . 3
3.2 3D FFT with pencil decomposition, schematic version of Algorithm 1. . . . . . . . . . . . . . 4
3.3 Comparing heFFTe alltoall to MPI standard routines. . . . . . . . . . . . . . . . . . . . . . . 6

5.1 Strong scalability on 3D FFTs of size 10243, using 24 MPI processes (1 MPI per Power9 core)
per node (blue), and 24 MPI processes (4 MPI per GPU-V100) per node (red). . . . . . . . . 10

5.2 Weak scalability for 3D FFTs of increasing size, using 24 MPI processes (1 MPI per Power9
core) per node (blue), and 24 MPI processes (4 MPI per GPU-V100) per node (red). . . . . . 10

5.3 Profile of a 3D FFT of size 10243 on 4 CPU nodes – using 128 MPI processes, 32 MPIs per
node, 16 MPIs per socket (Left) and 4 GPU nodes – using 24 MPI processes, 6 MPIs per node,
3 MPI per socket, 1 GPU per MPI (Right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5.5 Roofline performance from Eq. 4.3 and heFFTe performance on a 3D FFT of size 10243; using
40 MPI processes, 1MPI/core, per node (blue), and 6 MPI/node, 1MPI/1GPU-Volta100, per
node (red). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5.4 Strong scalability for a 10243 FFT (left), and weak scalability comparison (right). Using 40
MPI processes, 1MPI/core, per node (blue), and 6 MPI processes with 1MPI/GPU-Volta100
per node (red). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5.6 LAMMPS Rhodopsin protein benchmark on a 1283 FFT grid, using 2 nodes, 4 MPI processes
per node. For FFTMPI we use 1 MPI per core plus 16 OpenMP threads, and for heFFTe we
use 1 MPI per GPU. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

6.1 Strong scalability and performance comparison of 3-D FFTs of size 10243 on up to 512 nodes
of Summit supercomputer: FFTMPI using 40 cores per node and heFFTe using 6 V100 GPUs
per node. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

6.2 Local brick at input (left) and output (right) for processor P1. . . . . . . . . . . . . . . . . . 16
6.3 Tracing with heFFTe’s default profiler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.4 Tracing heFFTe using Vampir. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

iii



List of Tables

3.1 MPI routines required by parallel FFT libraries. . . . . . . . . . . . . . . . . . . . . . . . . . 6

4.1 Parameters for communication model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

iv



CHAPTER 1

Executive Summary

The goal of this milestone was the development of API and high-performance library prototype for 2-D
and 3-D FFTs on large-scale heterogeneous systems with GPUs.

In this milestone we de�ned consistent FFT-ECP APIs for FFTs on Exascale systems that are suitable
to ECP applications. We developed MPI communication optimizations to support CPU-based FFTs
and GPU-accelerated FFTs using for CUDA-aware MPI. Speci�cally, this milestone delivered on the
following sub-tasks:

• Study FFT use in applications;

• Generalize FFT APIs to �t application use;

• Add to FFT-ECP the new interfaces;

• Develop a benchmarking framework for MPI FFT communications;

• Develop MPI based optimizations for Summit.

The artifacts delivered include the performance optimizations, new features added to the solvers,
auxiliary wrappers for use in applications of interest, and a tuned FFT-ECP so�ware, freely available on
the FFT-ECP’s Git repository hosted on Bitbucket, https://bitbucket.org/icl/heffte/, under the name of
Highly E�cient FFTs for Exascale (heFFTe). We released heFFTe version 0.2.

See also the FFT-ECP website, http://icl.utk.edu/fft/ for more details on the FFT-ECP project.
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CHAPTER 2

Background

Considered one of the top 10 algorithms of the 20th century, the Fast Fourier transform (FFT) is widely
used by applications in science and engineering. Such is the case of applications targeting exascale, e.g.
LAMMPS (EXAALT-ECP) [14], and diverse so�ware ranging from particle applications [20] and molecular
dynamics, e.g. HACC [7], to applications in machine learning, e.g., [16]. For all these applications, it is
critical to have access to a heterogeneous, fast and scalable parallel FFT library, with an implementation
that can take advantage of novel hardware components and e�ciently use them.

Highly e�cient implementations to compute FFT on a single node have been developed for a long
time. One of the most widely used libraries is FFTW [10], which has been tuned to optimally perform in
several architectures. Vendor libraries for this purpose have also been highly optimized, e.g., as in the
case of MKL (Intel) [13], ESSL (IBM) [8], clFFT (AMD) [1], and CUFFT (NVIDIA) [17]. Novel libraries are
also being developed to further optimize single node FFT computation, e.g., FFTX [9] and Spiral [21].
Most of the previous libraries have been extended to distributed memory versions, some by the original
developers, and others by di�erent authors.

FFT-ECP leverages existing FFT capabilities by design, such as third-party 1-D FFTs from vendors
or open-source libraries. This is also the approach in the SWFFT [22] and FFTMPI [19] FFT libraries,
which are currently used in the HACC and the LAMMPS ECP application projects, respectively. FFTMPI
and SWFFT have very good weak and strong scalability on CPU-based systems. The ECP-FFT project
for this period developed a number of new features, extended APIs, and added communication and
scalability optimizations for 2-D and 3-D FFTs. The supported features cover the FFTMPI and SWFFT
functionalities for 2-D and 3-D FFTs on GPU-accelerated Exascale platforms. The so�ware is released
under the heFFTe version 0.2 library, freely available on the FFT-ECP’s Git repository hosted on
Bitbucket, https://bitbucket.org/icl/heffte/.
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CHAPTER 3

Optimizing FFT communications on GPUs

Even though the fast development of GPUs has enabled great speedups on local/single GPU computations,
the cost of communication between CPUs and/or GPUs in large-scale computations remains as a main
bottleneck. This is a major challenge supercomputing has been facing over the last decade [6]. Large
parallel FFT is well-known to be communication bounded. Experiments and models have shown that
for large node counts the impact of communication needs to be e�ciently managed to properly target
exascale systems [5, 15].

Figure 3.1: heFFTe in the Exascale Computing Project (ECP) so�ware stack.
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3.1. METHODOLOGY AND ALGORITHMIC DESIGN CHAPTER 3. FFT COMMPUNICATIONS

We developed and released the heFFTe version 0.2 library that provides very good strong and weak
scalability for large node count. heFFTe is open-source and consists of C++ and CUDA kernels with
CUDA-aware MPI communications. It is publicly available [2] and well documented [23, 26–28]. Its
main objective is to become the standard for large FFT computations on the upcoming exascale systems.
Figure 3.1 shows how heFFTe is positioned on the ECP so�ware stack, and some of its target exascale
applications (illustrated, e.g., in the gray boxes on top).

3.1 Methodology and Algorithmic Design

Multidimensional FFTs can be performed by a sequence of low-dimensional FFTs (see, e.g., [12]). Typical
approaches used by parallel libraries are the pencil and slab decompositions. Algorithm 1 presents the
pencil decomposition approach, which computes 3D FFTs by means of three 1D FFTs. This approach is
schematically shown in Fig. 3.2. On the other hand, slab decomposition relies on computing sets of 2D
and 1D FFTs.
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Figure 3.2: 3D FFT with pencil decomposition, schematic version of Algorithm 1.

Algorithm 1 3D FFT algorithm via pencil decomposition approach

Require: Initial and �nal processor grid P0 × P1 × P2.
Data in spatial domain, N0/P0 ×N1/P1 ×N2/P2

Ensure: FFT transform in frequency domain, N̂0/P0 × N̂1/P1 × N̂2/P2.

Calculate a 2D grid Q0 and Q1 s.t. Q0 ×Q1 = P0 × P1 × P2.

N0/P0 × N1/P1 × N2/P2
Reshape−−−−−→ N0 ×N1/Q0 ×N2/Q1

N0 ×N1/Q0 ×N2/Q1
First Dimension 1D FFTs−−−−−−−−−−−−−−→ N̂0 ×N1/Q0 ×N2/Q1

N̂0 ×N1/Q0 ×N2/Q1
Reshape−−−−−→ N̂0/Q0 × N1 ×N2/Q1

N̂0/Q0 × N1 ×N2/Q1
Second Dimension 1D FFTs−−−−−−−−−−−−−−−→ N̂0/Q0 × N̂1 ×N2/Q1

N̂0/Q0 × N̂1 ×N2/Q1
Reshape−−−−−→ N̂0/Q0 × N̂1/Q1 × N2

N̂0/Q0 × N̂1/Q1 × N2
Third Dimension 1D FFTs−−−−−−−−−−−−−−−→ N̂0/Q0 × N̂1/Q1 × N̂2

N̂0/Q0 × N̂1/Q1 × N̂2
Reshape−−−−−→ N̂0/P0 × N̂1/P1 × N̂2/P2

In Algorithm 1, N̂i denotes output data obtained from applying 1D FFT of size Ni on the i-th direction.
This approach can be summarized as follows, the input data of size N0 ×N1 ×N2 is initially distributed
into a grid of P processors, P = P0 × P1 × P2, in what is known as brick decomposition. Then, a reshape
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3.2. KERNELS IMPLEMENTATION CHAPTER 3. FFT COMMPUNICATIONS

(transposition) puts data into pencils on the �rst direction where the �rst set of 1D FFTs are performed.
These two steps are repeated for the second and third direction. Observe that intermediate reshaped data
is handled in new processor grids which must be appropriately created to ensure load-balancing. For
simplicity, a single Q0 ×Q1 grid is used in Algorithm 1. Finally, a last data-reshape takes pencils on the
third direction into the output brick decomposition. Note that the input and output grid of processors
can be di�erent, and that data marked by the orange boxes in Fig. 3.2 belongs to a same processor.

Several applications, e.g., in molecular dynamics, typically provide data on brick shape and require
output on brick shape as well. Hence, four data reshapes, as shown in Fig. 3.2, are performed. This is what
the FFTMPI [18] and heFFTe libraries support by default. On the other hand, several applications have
their input distributed on pencils on the �rst direction and require the FFT output written as pencils on
the third direction. This approach only requires two data-reshapes, and is the default for SWFFT, FFTE
[25] and AccFFT [11] libraries. heFFTe also supports these options as they are used in many applications,
e.g., HACC.

3.2 Kernels implementation

Two main sets of kernels interleave into a parallel FFT computation:

1. Computation of low dimensional FFTs, which can be obtained by optimized libraries for single node
FFT, as those described in Chapter 2.

2. Data reshape, which essentially consists of a tensor transposition, and takes a great part of the
computation time on CPUs, in particular.

To compute low-dimensional FFTs, heFFTe supports the use of several open-source as well as vendor
libraries for single node, e.g., as those described in Chapter 2. heFFTe also provides templates for
data-types and functions that help users to easily add new libraries for this purpose.

Data reshape is essentially built with two sets of routines. The �rst one consists of data packing and data
unpacking kernels which, respectively, manage data to be sent and to be received among processors.
Generally, these sets of kernels account for less than 10% of the reshaping time. Several options for
packing and unpacking data are available in heFFTe, and there is an option to tune and �nd the best one
for a given problem on a given architecture. The second set of routines corresponds to communication
kernels. heFFTe supports binary and collective communications as presented in Table 3.1, with tuning
tools and an improved all-to-all communication kernel, c.f. Fig. 3.3.

3.3 Communication design and optimization

Parallel FFT libraries typically handle communication by moving data structures in the shape of pencils,
bricks, or slabs of data. For each of these options the total amount of data communicated is always the
same. Hence, decreasing the number of messages between processors yields to increasing the size of the
messages they send. On the other hand, for modern hardware architectures, it is well-known that latency
and bandwidth improvements do not grow as quickly as the arithmetic computation power [6]. Therefore,
it is important to choose the appropriate communication scheme. For instance, reshaping bricks to
pencils data requires O(P 1/3) messages; this can be veri�ed by overlapping both grids. Analogously, the
number of messages for reshaping pencils in one directions to pencils in another direction is O(P 1/2),
while O(P 2/3) for bricks to slabs, and O(P ) for slabs to pencils.

5



3.3. COMMUNICATION DESIGN AND OPTIMIZATION CHAPTER 3. FFT COMMPUNICATIONS

Choosing the right communication scheme highly depends on the problem size and hardware features.
heFFTe support these options, and performing them using MPI Alltoallv within subgroups generally
yields to better performance. However, optimizations of all-to-all routines on heterogeneous clusters
are still not available (e.g., in the NVIDIA Collective Communications Library [3]), even though, as can be
seen from Fig. 5.3, improvements to all-to-all communication are critical. For this reason, we developed
a routine called heFFTe Alltoallv which includes several all-to-all communication kernels and can be
used for tuning and selecting the best one for a given architecture. This routine includes a non-blocking
MPI scheme mixed with CUDA IPC memory handlers which shows faster communication (up to 32
nodes) compared to classical MPI calls, as shown in Fig. 3.3.

Table 3.1: MPI routines required by parallel FFT libraries.

Libraries
Point-to-point routines Collective routines

Process Topology
Blocking Non-blocking Blocking Non-blocking

FFTMPI MPI Send MPI Irecv
MPI Allreduce

None
MPI Group

MPI Allttoallv MPI Comm create

SWFFT MPI Sendrecv
MPI Isend MPI Allreduce

None
MPI Cart create

MPI Irecv MPI Barrier MPI Cart sub

AccFFT MPI Sendrecv
MPI Isend MPI Alltoallv

None MPI Cart create
MPI Irecv MPI Bcast

FFTE None None
MPI Alltoallv

None None
MPI Bcast

MPI Send MPI Isend MPI Allttoallv MPI Comm create
heFFTe MPI Recv MPI Irecv MPI Allreduce heFFTe Alltoallv MPI Group

MPI Sendrecv MPI Barrier MPI Cart sub
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Figure 3.3: Comparing heFFTe alltoall to MPI standard routines.

Finally, we investigated how to optimize the communication on multi-GPU and multi-lane systems
like Summit [4]. We propose a modi�cation to MPI routines for a better management of multi-rail
communication. Although this approach could be very useful, we observed that the cost of such
management negatively impacts the performance, degrading the potential bene�t of the multi-rail
optimization.
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CHAPTER 4

Multi-node communication model

To describe the bottlenecks that FFT computations face while targeting exascale, communication
models for di�erent type of cluster architectures can be deduced and experimentally veri�ed [5]. These
models can be built for speci�c communication frameworks, e.g., as for pencil and slab data exchanges
[24]; or they could be oriented to the hardware architecture [11].

In this section, we propose an inter-node communication model for large FFTs. We focus on inter-
node e�ects since faster interconnection is typically available for intra-node communications, e.g.,
through NVLINK. Furthermore, properly scheduling intra-node communications can overlap their cost
with the inter-node communications. In Table 4.1, we summarize the parameters to be used for the
communication model.

To create a communication model, we analyze the computational intensity (ϕ) in Flops/Byte. For the case
of FFT, we have that the number of FLOPS is 5N log(N) and the volume of data moved at each reshape
is αN . Then, for the total FFT computation using n nodes, we get,

ϕ := n
C

M
=

5n log(N)

αr
, (4.1)

Table 4.1: Parameters for communication model

Symbol Description
N Size of FFT
n Number of Nodes
r Number of reshapes (tensor transpose)
α Size of datatype (Bytes)
M Message size per node (Bytes)
W Inter-node bandwidth (GB/s)

7



CHAPTER 4. MULTI-NODE COMMUNICATION MODEL

and the peak performance (in GFlops) is de�ned as,

Ψ := ϕB =
5n log(N)B

αr
. (4.2)

For the case of Summit supercomputer, we have a node interconnection of B = 25 GB/s, considering
r = 4 (c.f. Fig. 3.2) and data-type as double-precision complex (i.e. α = 16). Then,

ΨSummit =
5n log(N) ∗ 25

16 ∗ 4
= 1.953 n log(N). (4.3)

Fig. 5.5 shows heFFTe’s performance for a typical FFT of size N = 10243, and compares it to the roo�ine
peak for increasing the number of nodes used. The results show that heFFTe is getting about 90% of the
roo�ine peak performance.

We note that CPU-based FFT libraries still not get close to the performance of the roo�ine model
presented because local CPU computations and data movements still take a large portion of the total FFT
execution time. On the other hand, heFFTe uses GPUs, where the local computations and data movements
are accelerated about 43× (see Fig. 5.3), compared to CPU nodes, which renders local computations and
data reshu�es insigni�cant to the total FFT execution time.
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CHAPTER 5

Scalability performance results

In this section we present numerical experiments on the Summit supercomputer at ORNL, which has
4,608 nodes, each composed by 2 IBM Power9 CPUs and 6 Nvidia V100 GPUs. For our experiments,
we use the pencil decomposition approach, which is commonly available in classical libraries and
can be shown to be faster than the slab approach for large node count [24]. In Fig. 6.1, we �rst show
strong scalability comparison between heFFTe GPU and CPU implementations, where the former being
∼ 2× faster than the latter. We observe very good linear scalability in both curves. Also, since heFFTe
CPU version was based on improved versions of kernels from FFTMPI and SWFFT libraries [26], its
performance is at least as good as them. heFFTe CPU improved packing and unpacking kernels by
blocking transpositions similar to the GPU versions, as pro�ling showed that FFTMPI and SWFFT
counterparts can be improved. Therefore, heFFTe GPU is also ∼ 2× faster than FFTMPI and SWFFT
libraries.

Next, Fig. 5.2 shows weak scalability comparison of heFFTe GPU and CPU implementations for di�erent
3D FFT sizes, showing over 2× speedup and very good scaling.

In order to show the impact of local kernels acceleration, Fig. 5.3 shows a pro�le of a single 3D FFT
using both CPU and GPU versions of heFFTe, where over 40× speedup acceleration of local kernels, and
the great impact of communication are clearly displayed.

Next, in Fig. 5.4, we compare the strong and weak scalability of the heFFTe and FFTE libraries. We
conclude that heFFTe overcomes FFTE in performance (by a factor> 2) and has better scalability. We do
not include comparison results with the AccFFT library since its GPU version did not verify correctness
on several experiments performed in Summit. However, AccFFT reported a fairly constant speedup of
∼ 1.5 compared with FFTE, while having very similar scalability [11].

9



5.1. MULTI-NODE COMMUNICATION MODEL CHAPTER 5. SCALABILITY
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per node (blue), and 24 MPI processes (4 MPI per GPU-V100) per node (red).

0

5

10

15

20

25

30

8 16 32 64 128 256 512 1024

heFFTe (GPU)

heFFTe (CPU)

643 1283 2563 5123
10243

20483

40963

81923

te
ra

Fl
op

s/s

Number of Summit nodes

Figure 5.2: Weak scalability for 3D FFTs of increasing size, using 24 MPI processes (1 MPI per Power9
core) per node (blue), and 24 MPI processes (4 MPI per GPU-V100) per node (red).

5.1 Multi-node communication model

In Fig. 5.5, we numerically analyze how we approach to the roo�ine peak performance as described
in Chapter 4. We observe that by appropriately choosing the transform size and the number of nodes,
we approach to the proposed peak, and hence a correlation could be established between these two
parameters to ensure that maximum resources are being used, while still leaving GPU resources to
simultaneously run other computations needed by applications.
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5.2. USING HEFFTE WITH APPLICATIONS CHAPTER 5. SCALABILITY
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socket, 1 GPU per MPI (Right)
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Figure 5.5: Roo�ine performance from Eq. 4.3 and heFFTe performance on a 3D FFT of size 10243; using
40 MPI processes, 1MPI/core, per node (blue), and 6 MPI/node, 1MPI/1GPU-Volta100, per node (red).

5.2 Using heFFTe with applications

Diverse applications targeting exascale make use of FFT within their models. In this section, we consider
LAMMPS [14], part of the EXAALT ECP project. Its KSPACE package provides a variety of long-range
Coulombic solvers, as well as pair styles which compute the corresponding pairwise Coulombic interac-
tions. This package heavily rely on e�cient FFT computations, with the purpose to compute the energy
of a molecular system.
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Figure 5.4: Strong scalability for a 10243 FFT (le�), and weak scalability comparison (right). Using 40 MPI
processes, 1MPI/core, per node (blue), and 6 MPI processes with 1MPI/GPU-Volta100 per node (red).
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Figure 5.6: LAMMPS Rhodopsin protein benchmark on a 1283 FFT grid, using 2 nodes, 4 MPI processes
per node. For FFTMPI we use 1 MPI per core plus 16 OpenMP threads, and for heFFTe we use 1 MPI per
GPU.

In Fig. 5.6 we present an experiment obtained using a LAMMPS benchmark experiment, where we
compare the performance when using its built-in FFTMPI library, and then using the GPU version of
heFFTe library. As shown in Fig. 6.1, it is expected that even for large runs, using LAMMPS with heFFTe
would provide a 2× speedup of its KSPACE routine.
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CHAPTER 6

The heFFTe version 0.2 release

We released heFFTe version 0.2. heFFTe relies on MPI for communications, OpenMP for multithreading,
CUDA and HIP for GPU acceleration, and also laverages existing FFT capabilities, including options from
�MPI and SWFFT, and 1-D FFTs from vendors or open sorce e�orts, etc. For NVIDIA GPUs, heFFTe
uses the CUDA runtime, the cuFFT library, MAGMA, and hand-coded CUDA kernels.

heFFTe supports di�erent precisions and uses MAGMA to accelerate various linear algebra and auxiliary
kernels. This includes matrix transpositions, data reshu�es for packing/unpacking of data for MPI
communications, and casting routines for the development of mixed-precision algorithms. heFFTe
supports all options from �MPI and SWFFT, e.g., input data can be bricks or pencils, output data can be
bricks or pencils. All operations in heFFTe are done on GPUs when using GPUs, and communications
use CUDA-Aware MPI with GPU-Direct communication technologies.

New additions include:

• Algorithmic and optimizations work for reduced communication;

• Application-speci�c FFT optimizations;

• Multiprecision algorithms;

• R2C transforms.

heFFTe has very good strong scalability, which is essential in order to scale the solution time down of
relatively small problems by increasing the amount of computational resources used. We ran scalability
tests on up to 512 nodes (3,072 V100 GPUs) on Summit for 3-D FFT problems of size 10243. Results are
summarized in Figure 6.1.

Note that even with that amount of GPUs used heFFTe scales very well, while the corresponding CPU
solution reaches the limits of its strong scalability, and even shows some slowdown. The GFlop/s reported
are for double complex precision calculations, starting from bricks/cubes data distribution and ending
with the original bricks/cubes data distribution. Flops are counted as 15 ∗ 10243 ∗ log21024.
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Figure 6.1: Strong scalability and performance comparison of 3-D FFTs of size 10243 on up to 512 nodes
of Summit supercomputer: FFTMPI using 40 cores per node and heFFTe using 6 V100 GPUs per node.
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6.1. APPLICATION PROGRAMMING INTERFACE (API) FORHEFFTE CHAPTER 6. HEFFTE 0.2

6.1 Application programming interface (API) for heFFTe

The so�ware design of heFFTe aims to be portable among several architectures, and once it is built,
applications can easily link to it and start calling the heFFTe kernels.

6.1.1 Initialization

For using heFFTe, one needs to run �rst a standard initialization kernel. This can be done while starting
MPI. We support FFT computations within a sub-communicator, fft_comm, which must be provided by
the user. The initialization API is illustrated with the following code:

1 #include <heffte.h>
2

3 int main(int argc, char *argv[]) {
4

5 MPI_Init(&argc, &argv);
6 MPI_Comm fft_comm = MPI_COMM_WORLD;
7

8 heffte_init();
9

10 ...
11

12 }

6.1.2 De�ne datatype and FFT object

Data can be of type real or complex, and heFFTe supports these types either in single (32 bits) or double
(64 bits) precision. De�ning an input/output array is essential and an FFT object is created to handle FFT
operations on data:

9

10 float *work; /* Single precision input */
11 FFT3d <float> *fft = new FFT3d <float> (fft_comm);

6.1.3 Creating a plan for FFT

One of its main kernels allows heFFTe to create FFT plans, which determine the sequence of steps to
follow to go from input through output.

A plan can be created for a processor grid where each of the processors has been assigned a brick of the
input data, c.f., 3.2. If the user only provides input data and number of computational resources, then
heFFTe provides kernels to create the processors and the data grids, as follows:

13

14 /* Create grid of processors */
15 heffte_proc_setup(N, proc_i, nprocs);
16 heffte_proc_setup(N, proc_o, nprocs);
17

18 /* Create grid of data (local bricks) */

15
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19 heffte_grid_setup(N, i_lo, i_hi, o_lo, o_hi,
20 proc_i, proc_o, me, nfft_in, nfft_out);
21

22 /* Create FFT plan */
23 heffte_plan_create(dim, work, fft, N, i_lo, i_hi, o_lo, o_hi, permute, workspace);

To create the processor grid, the user only needs to provide the number of MPI processors to use (nprocs).
To create the data grid, the user must de�ne the 6 vertices of the local brick data at input (i_lo, i_hi) and
output (o_lo, o_hi), as showed on Fig. 6.2. The user then receives the local FFT size at input (nfft_in)
and output (nfft_out).

i_lo[3]

o_hi[3]
o_lo[3]

o_hi[3]
P1 P1

Figure 6.2: Local brick at input (le�) and output (right) for processor P1.

Then, once grids are de�ned, user can create an FFT plan by simply providing:

- dim: Problem dimension, e.g., dim=3

- N : Array size, e.g., N=[nx,ny,nz]

- permute : Permutation storage of output array

A�er creating a plan, user is ready to execute FFTs, and memory requirements are returned in workspace
array.

6.1.4 Setting memory type and allocation

Memory allocation must carefully be chosen, according to where the data must be processed (CPUs/GPUs).
heFFTe provides 7 types of memory that user can choose. We provide e�cient kernels for safe allocation.
If input array has not been de�ned, then it must be allocated and initialized.

24 /* Allocate memory */
25 heffte_allocate(HEFFTE_MEM_CPU, &work, workspace[0], nbytes);
26 fft-> mem_type = HEFFTE_MEM_CPU;
27

28 /* Initialize vector, with random numbers using a seed value */
29 heffte_initialize_host(work, nfft_in, seed, HEFFTE_COMPLEX_DATA);
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6.2. HEFFTE PROFILER CHAPTER 6. HEFFTE 0.2

6.1.5 Execution

One of most important kernels available in heFFTe is the one in charge of the FFT computation. This
kernel has the same syntax for any type of data and its usage follows APIs from CUFFT and FFTW3.

30 /* Compute an inplace C2C forward FFT */
31 heffte_execute(fft, work, work, FORWARD);

Similar execution function is available for the case of the R2C transforms, heffte_execute_r2c, which is
available with the heFFTe 0.2 release.

6.2 heFFTe pro�ler

For users that require a detailed trace of the FFT computation, heFFTe provides a default pro�ler kernel
that can trace the heFFTe kernels as presented below.

32 heffte_tracing("start");
33

34 /* Compute an inplace C2C forward and backward FFT */
35 heffte_execute(fft, work, work, BACKWARD);
36 heffte_execute(fft, work, work, BACKWARD);
37

38 heffte_tracing("stop"));
39

40 /* Finalize code */
41 delete fft;
42 heffte_deallocate(HEFFTE_MEM_CPU, work);
43 MPI_Finalize();

When heffte_tracing is called, it will produce a svg �le containing a detailed timing for the section of
code, e.g., see Fig. 6.3.

Figure 6.3: Tracing with heFFTe’s default pro�ler.
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6.3 Tracing heFFTe with vendor libraries

Detailed pro�ling of heFFTe functions can be obtained also using vendor libraries such as the NVIDIA
Visual Pro�ler, TAU, ScoreP and Vampir.

The version 0.2 of heFFTe includes a Vampir �lter, heFFTe_filter.filt, which together with a pro�ler
script, vampir_heFFTe.sh can trace kernels by simply adding a pre�x to heFFTe execution, e.g.,

mpirun -np 2 ./vampir_trace.sh ./heffte_exec -my_options ...

Once this pro�ler is called, it will produce .otf2 �les, which provide detailed information and several
graphs using Vampir interface, e.g., see Fig. 6.4.

Unpacking
Packing

5.1%

4.7%
4.2%

1.1%

84.9%

FFT computation
MPI communication

Scale

Figure 6.4: Tracing heFFTe using Vampir.
.

18



CHAPTER 7

Conclusions and future work directions

In this milestone, we implementated a high-performance prototype for multidimensional FFTs, opti-
mized performance on GPUs, and presented performance and scalability results. heFFTe version 0.2
was released. We provided experiments showing considerable speedups compared to state-of-the-art
libraries, and that linear scalability is achievable. We have greatly accelerated local kernels using GPUs
and are currently getting very close to the experimental roo�ine peak on the Summit supercomputer.
Our results show that further optimizations would require better hardware interconnection and/or new
communication-avoiding algorithmic approaches.

Future work will concentrate on MPI optimizations for strong scaling on many nodes, optimizations for
a single node for cross-socket communications, and algorithmic optimizations based on slab partitions,
or other reductions of the computational resources used that can lead to reduced communications.
More versions and support for di�erent FFT features are being added in FFT-ECP. Currently, local
nodal computations and data reshu�es (packing and unpacking) are accelerated about 43× using GPUs,
compared to CPUs. This makes the MPI communications the main bottleneck, as now 96% of the time
is in MPI. Thus, the GPU is not used 96% of the time, opening possibilities for application developers to
know that this is available to them and develop new algorithms that use the GPUs. Therefore, future
e�orts will also be on application-speci�c optimizations. Furthermore, the use of mixed-precision
calculations [? ] is also becoming of increased interest, especially for GPUs, where for example the GPUs
can be used to compress data for additional acceleration coming from the reduced communications
(with compressed data). We have started investigating the use of various data compressions for reduced
communications (including lossy compression).
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