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CHAPTER 1

Introduction

SLATE (Software for Linear Algebra Targeting Exascale)1 has been developed as part of the
Exascale Computing Project (ECP)2, which is a joint project of the U.S. Department of Energy’s
Office of Science and National Nuclear Security Administration (NNSA). The objective of SLATE
is to provide fundamental dense linear algebra capabilities to the U.S. Department of Energy
and to the high-performance computing (HPC) community at large.

SLATE provides coverage of existing LAPACK and ScaLAPACK functionality, including parallel
implementations of basic linear algebra subprograms (BLAS), matrix norms, linear systems
solvers, least squares solvers, and singular value and eigenvalue solvers. In this respect, SLATE
will serve as a replacement for ScaLAPACK, which, after two decades of operation, cannot be
adequately retrofitted for modern, GPU-accelerated architectures.

This Developers’ Guide is intended to describe the internal workings of SLATE, to be of use for
SLATE developers and contributors. A companion SLATE Users’ Guide [1] is available for
application end users, which focuses on the public SLATE API. These guides will be periodically
revised as SLATE develops, with the revisions noted in the front matter notes and BibTeX.

1http://icl.utk.edu/slate/
2https://www.exascaleproject.org

1
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CHAPTER 2

API Layers

SLATE’s API is composed of several layers, depicted in Figure 2.1. The drivers and computational
routines are the primary public API; the internal task and tile routines implement major (thread
parallel) and minor (sequential) tasks, respectively. The LAPACK++ and BLAS++ packages,
including Batched BLAS++, are independent packages developed for SLATE that provide a
portability layer over vendor-optimized CPU and GPU LAPACK and BLAS routines.

SLATE’s routine names are derived from traditional BLAS and LAPACK names, minus the
traditional initial letter denoting the precision (s, d, c, z). We also developed simplified
names using overloaded functions, using the Matrix types to identify the operation to be
performed. For instance, multiply( A, B, C ) maps to a general, symmetric, or Hermitian
matrix-matrix multiply (gemm, symm, or hemm) depending on whether the type of A is a general
Matrix, SymmetricMatrix, or HermitianMatrix, respectively. For more information on the SLATE
API, see the SLATE Users’ Guide, chapter 6: SLATE API.

2.1 Drivers

As in LAPACK and ScaLAPACK, driver routines solve an entire problem, such as a linear
system 𝐴𝑥 = 𝑏 (routines gesv, posv), a least squares problem 𝐴𝑥 � 𝑏 (gels), or a singular-
value decomposition 𝐴 = 𝑈Σ𝑉𝐻 (svd). Drivers in turn call computational routines to solve
sub-problems. Drivers are typically independent of the target (CPU or device), delegating those
details to lower level routines. Algorithm 2.1 gives an example of the Cholesky driver, posv,
which relies on computational routines potrf and potrs to factor the matrix 𝐴 and solve the
system 𝐴𝑥 = 𝑏.

Note that since it is independent of the target, we do not need to template it based on the target,

2



Chapter 2. API Layers 2.2. Computational Routines

Vendor libraries

Driver Routines

Computational Routines

Internal Task Routines

Tile Routines

CPU & GPU 
BLAS

CPU & GPU 
LAPACK

BLAS++ LAPACK++

MPI OpenMP

Work Routines (optional)

cuBLAS, rocBLAS, oneMKL, 
LibSci, ESSL, OpenBLAS, etc.

public
private

SLATE

public

Figure 2.1: Software layers in SLATE.

as the computational routines will be. Nor do we need to unpack the opts argument; simply
pass it along to the computational routines.

2.2 Computational Routines

As in LAPACK and ScaLAPACK, computational routines solve a sub-problem, such as computing
an LU factorization (getrf), or solving a linear system given an LU factorization (getrs). In
SLATE, these are templated on target (CPU or device), with the code typically independent of
the device. If needed, code can be optimized for a specific target by providing an overloaded
version, but this is discouraged. Communication between processes and dependencies between
tasks are managed at this level. SLATE’s Parallel Basic Linear Algebra Subprograms (PBLAS)
exists at this level.

Algorithm 2.2 gives an example of the Cholesky factorization computational routine
(impl::potrf), used by the Cholesky driver. This routine is the implementation details;
there is a public wrapper, slate::potrf, described in Section 2.2.2.

SLATE’s potrf routine is approximately the same length as the ScaLAPACK pzpotrf and
MAGMA zpotrf code (all excluding comments). Yet SLATE’s code handles all precisions,
multiple targets, distributed-memory and shared-memory parallelism, a variable lookahead to
overlap communication and computation, and GPU acceleration. Of course, there is significant

3



2.2. Computational Routines Chapter 2. API Layers

Algorithm 2.1 Cholesky solve driver, slate::posv

2 namespace slate {
3
4 // Distributed parallel Cholesky factorization and solve.
5 // Solves AX = B.
6 // A: On input, matrix A to factor; on output, overwritten by L.
7 // B: On input, matrix B; on output, overwritten by X.
8 // opts: User options such as Target and Lookahead.
9 // scalar_t: Datatype: float, double, std::complex, etc.
10 // return: 0: success; i > 0: matrix not positive definite.
11 template <typename scalar_t >
12 int64_t posv(
13 HermitianMatrix <scalar_t >& A,
14 Matrix<scalar_t >& B,
15 Options const& opts)
16 {
17 // Factor A = LL^H.
18 int64_t info = potrf( A, opts );
19
20 // Solve AX = B using factorization.
21 if (info == 0) {
22 potrs( A, B, opts );
23 }
24 return info;
25 }
26
27 } // namespace slate

code in lower levels, but this demonstrates that writing driver and computational routines can
be simplified by delegating code complexity to lower-level abstractions. Comparing the whole
library, for similar functionality, SLATE is 61k lines in 283 files, while ScaLAPACK is 238k lines
in 1257 files, reflecting the roughly 4× code duplication for 4 precisions.

2.2.1 Comments on the code

Normally, matrices are passed by reference (Matrix<scalar_t>& A), as this avoids invoking
(shallow) copy constructors. For Cholesky, however, the matrix may get transposed to handle
the uplo = Upper case, so it must be passed by value; see Chapter 4.

Dependencies are tracked via a dummy vector—not based on the actual data—unlike in pure
dataflow implementations like PLASMA. For Cholesky, entries in the dummy vector represent
each column. The dummy vector is allocated using std::vector for exception safety (i.e., it is
destructed if an exception is thrown, avoiding memory leaks), but OpenMP needs a raw pointer
to its data.

The variable A_nt is defined instead of using A.nt() directly because some compilers complain
about using A.nt() in OpenMP pragmas.

The tile life and tile tick mechanism is deprecated, to be replaced with an explicit release task. It
has already been replaced in this Cholesky code, but TileReleaseStrategy is temporarily used
to disable the tile tick mechanism in lower internal levels.

4



Chapter 2. API Layers 2.2. Computational Routines

Algorithm 2.2 Cholesky factorization initialization. Continued in Algorithms 2.3 to 2.7.

21 namespace slate::impl {
22
23 /// Distributed parallel Cholesky factorization.
24 /// Generic implementation for any target.
25 template <Target target, typename scalar_t >
26 int64_t potrf(
27 slate::internal::TargetType <target>,
28 HermitianMatrix <scalar_t > A,
29 Options const& opts )
30 {
31 using real_t = blas::real_type <scalar_t >;
32 using BcastListTag = typename Matrix<scalar_t >::BcastListTag;
33 using lapack::device_info_int;
34
35 // Constants
36 const scalar_t one = 1.0;
37 const int priority_0 = 0;
38 const int queue_0 = 0; // panel
39 const int queue_1 = 1; // update
40 // Assumes column major
41 const Layout layout = Layout::ColMajor;
42
43 // Options
44 int64_t lookahead = get_option <int64_t >( opts, Option::Lookahead , 1 );
45
46 // Use only TileReleaseStrategy::Slate for potrf.
47 // Internal routines (trsm, herk, gemm) called in
48 // potrf won’t release any tiles. Potrf will
49 // clean up tiles.
50 Options opts2 = Options( opts );
51 opts2[ Option::TileReleaseStrategy ] = TileReleaseStrategy::Slate;
52
53 bool hold_local_workspace = get_option <bool>(
54 opts2, Option::HoldLocalWorkspace , 0 );
55
56 // if upper, change to lower
57 if (A.uplo() == Uplo::Upper) {
58 A = conj_transpose( A );
59 }
60
61 int64_t info = 0;
62 int64_t A_nt = A.nt();
63
64 // OpenMP needs pointer types, but vectors are exception safe
65 std::vector< uint8_t > column_vector(A_nt);
66 uint8_t* column = column_vector.data();
67 SLATE_UNUSED( column ); // Used only by OpenMP
70
71 std::vector< device_info_int* > device_info_array( A.num_devices(), nullptr );
72
73 if (target == Target::Devices) {
74 // Allocate queues and batch arrays for the number of simultaneous tasks.
75 const int64_t batch_size_default = 0;
76 int num_queues = 2 + lookahead;
77 A.allocateBatchArrays( batch_size_default , num_queues );
78 A.reserveDeviceWorkspace();
79
80 for (int64_t dev = 0; dev < A.num_devices(); ++dev) {
81 blas::Queue* queue = A.comm_queue(dev);
82 device_info_array[ dev ] = blas::device_malloc <device_info_int >( 1, *queue );
83 }
84 }

5



2.2. Computational Routines Chapter 2. API Layers

Algorithm 2.3 Cholesky OpenMP task structure. Continued from Algorithm 2.2.

88 // set min number for omp nested active parallel regions
89 slate::OmpSetMaxActiveLevels set_active_levels( MinOmpActiveLevels );
90
91 #pragma omp parallel
92 #pragma omp master
93 {
94 int64_t kk = 0; // column index (not block-column)
95 for (int64_t k = 0; k < A_nt; ++k) {
96 // Panel, normal priority
97 #pragma omp task depend( inout:column[ k ] ) priority( priority_0 ) \
98 shared( info )
99 {
100 // ... panel task, see Algorithm 2.4 ...
145 }
146
147 // update trailing submatrix , normal priority
148 if (k+1+lookahead < A_nt) {
149 #pragma omp task depend( in:column[ k ] ) \
150 depend( inout:column[ k+1+lookahead ] ) \
151 depend( inout:column[ A_nt-1 ] )
152 {
153 // ... trailing matrix update task, see Algorithm 2.5 ...
165 }
166 }
167
168 // update lookahead column(s), normal priority
169 // the batch_arrays_index_la must be initialized to the
170 // lookahead base index (i.e, number of kernels without lookahead),
171 // which is equal to "2" for slate::potrf, and then the variable is
172 // incremented with every lookahead column "j" ( j-k+1 = 2+j-(k+1) )
173 for (int64_t j = k+1; j < k+1+lookahead && j < A_nt; ++j) {
174 #pragma omp task depend( in:column[ k ] ) \
175 depend( inout:column[ j ] )
176 {
177 // ... lookahead update task, see Algorithm 2.6 ...
198 }
199 }
200
201 #pragma omp task depend( inout:column[ k ] )
202 {
203 // ... release task, see Algorithm 2.7 ...
219 }
220 kk += A.tileNb( k );
221 }
222 }
223 A.tileUpdateAllOrigin();
224
225 if (hold_local_workspace == false) {
226 A.releaseWorkspace();
227 }
228 if (target == Target::Devices) {
229 for (int64_t dev = 0; dev < A.num_devices(); ++dev) {
230 blas::Queue* queue = A.comm_queue(dev);
231 blas::device_free( device_info_array[ dev ], *queue );
232 }
233 }
234
235 internal::reduce_info( &info, A.mpiComm() );
236 return info;
237 }
238
239 } // namespace slate::impl

6



Chapter 2. API Layers 2.2. Computational Routines

Algorithm 2.4 Cholesky panel task in Algorithm 2.3.

103 // factor A(k, k)
104 int64_t iinfo;
105 if (target == Target::Devices) {
106 iinfo = internal::potrf<target >(
107 A.sub(k, k), priority_0 , queue_0,
108 device_info_array[ A.tileDevice( k, k ) ] );
109 }
110 else {
111 iinfo = internal::potrf<target >(
112 A.sub(k, k), priority_0 , queue_0 );
113 }
114 if (iinfo != 0 && info == 0)
115 info = kk + iinfo;
116
117 // send A(k, k) down col A(k+1:nt-1, k)
118 if (k+1 <= A_nt-1)
119 A.tileBcast(k, k, A.sub(k+1, A_nt-1, k, k), layout);
120
121 // A(k+1:nt-1, k) * A(k, k)^{-H}
122 if (k+1 <= A_nt-1) {
123 auto Akk = A.sub(k, k);
124 auto Tkk = TriangularMatrix < scalar_t >(Diag::NonUnit, Akk);
125 internal::trsm<target >(
126 Side::Right,
127 one, conj_transpose( Tkk ),
128 A.sub(k+1, A_nt-1, k, k),
129 priority_0 , layout, queue_0, opts2 );
130 }
131
132 BcastListTag bcast_list_A;
133 for (int64_t i = k+1; i < A_nt; ++i) {
134 // send A(i, k) across row A(i, k+1:i) and
135 // down col A(i:nt-1, i) with msg tag i
136 bcast_list_A.push_back({i, k, {A.sub(i, i, k+1, i),
137 A.sub(i, A_nt-1, i, i)},
138 i});
139 }
140
141 A.template listBcastMT <target >(
142 bcast_list_A , layout);

7



2.2. Computational Routines Chapter 2. API Layers

Algorithm 2.5 Cholesky trailing matrix update task in Algorithm 2.3.

156 // A(kl+1:nt-1, kl+1:nt-1) -=
157 // A(kl+1:nt-1, k) * A(kl+1:nt-1, k)^H
158 // where kl = k + lookahead
159 internal::herk<target >(
160 real_t(-1.0), A.sub(k+1+lookahead , A_nt-1, k, k),
161 real_t( 1.0), A.sub(k+1+lookahead , A_nt-1),
162 priority_0 , queue_1, layout, opts2 );

Algorithm 2.6 Cholesky lookahead update task in Algorithm 2.3.

180 // A(j, j) -= A(j, k) * A(j, k)^H
181 int queue_jk1 = j - k + 1;
182 internal::herk<target >(
183 real_t(-1.0), A.sub(j, j, k, k),
184 real_t( 1.0), A.sub(j, j),
185 priority_0 , queue_jk1 , layout, opts2 );
186
187 // A(j+1:nt, j) -= A(j+1:nt-1, k) * A(j, k)^H
188 if (j+1 <= A_nt-1) {
189 auto Ajk = A.sub(j, j, k, k);
190 internal::gemm<target >(
191 -one, A.sub(j+1, A_nt-1, k, k),
192 conj_transpose( Ajk ),
193 one, A.sub(j+1, A_nt-1, j, j),
194 layout, priority_0 , queue_jk1 , opts2 );
195 }

Algorithm 2.7 Cholesky release task in Algorithm 2.3.

206 auto panel = A.sub( k, A_nt-1, k, k );
207
208 // Erase remote tiles on all devices including host
209 panel.releaseRemoteWorkspace();
210
211 // Update the origin tiles before their
212 // workspace copies on devices are erased.
213 panel.tileUpdateAllOrigin();
214
215 // Erase local workspace on devices.
216 panel.releaseLocalWorkspace();

8



Chapter 2. API Layers 2.2. Computational Routines

2.2.2 Template dispatch

The public routine that the user actually calls (e.g., slate::potrf) dispatches to the target-specific
versions, as shown in Algorithm 2.8. The user can specify the target as HostTask, HostNest,
HostBatch, or Devices via the opts parameter. Note in this routine the matrix 𝐴 is passed by
reference, unlike the internal implementation where it is passed by value (Algorithm 2.2).

In this case, HostNest and HostBatch are dispatched to HostTask because they lack implemen-
tations of some lower level internal routines. We may consider removing them altogether.

Previous implementations unpacked the opts in the dispatch routine or another intermediate
wrapper, but it’s easier to just pass opts and unpack it in impl::potrf.

Algorithm 2.8 Dispatch to target implementations.

313 namespace slate {
314
315 template <typename scalar_t >
316 int64_t potrf(
317 HermitianMatrix <scalar_t >& A,
318 Options const& opts)
319 {
320 using internal::TargetType;
321
322 Target target = get_option( opts, Option::Target, Target::HostTask );
323
324 switch (target) {
325 case Target::Host:
326 case Target::HostNest:
327 case Target::HostBatch:
328 case Target::HostTask:
329 return impl::potrf( TargetType <Target::HostTask >(), A, opts );
330
331 case Target::Devices:
332 return impl::potrf( TargetType <Target::Devices >(), A, opts );
333 }
334 return -2; // shouldn’t happen
335 }
336
337 } // namespace slate

The routine in Algorithm 2.2 is the target-specific implementation in the impl namespace,
templated on the target. It takes a dummy TargetType argument, which is the C++ idiom for
partial specialization of a function. In Algorithm 2.2 it is templated on the target, whereas in
Algorithm 2.9 it is not templated on the target but is specialized for a specific target.

Not recommended: An overload can be given for a specific target type, as shown in Algo-
rithm 2.9; however, this is discouraged as it creates divergent implementations. Previously,
Cholesky (impl::potrf) had two implementations, the generic one for any target and a specializa-
tion for Devices, which diverged over time. These two were merged into a single implementation
with appropriate if (target == Target::Devices) blocks in Algorithm 2.2.
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Algorithm 2.9 (Old) Cholesky overload specialization for Target::Devices.

249 namespace slate::impl {
250
251 /// Distributed parallel Cholesky factorization , for Target = Devices.
252 template <typename scalar_t >
253 int64_t potrf(
254 slate::internal::TargetType <Target::Devices>,
255 HermitianMatrix <scalar_t > A,
256 Options const& opts )
257 {
258 // ... code specific to GPU Devices implementation ...
259 }
260
261 } // namespace slate::impl

2.2.3 Executing multiple internal routines on devices

Care must be taken when executing multiple internal routines simultaneously on a GPU to
avoid data hazards and race conditions. Data hazards occur when two routines write to the
same memory buffer, for instance the GPU batch array. To avoid data hazards in SLATE, we
allocate multiple GPU queues and batch arrays, one for each task that will run simultaneously
on the GPU. Each task is assigned a different queue, and each queue has its own batch array.
In Cholesky, this is the panel task (queue 0), trailing matrix update (queue 1), and lookahead
updates (queues 2, . . . , 2 + lookahead − 1), for a total of num_queues = 2 + lookahead. Every
internal routine takes a queue index. They don’t take a queue itself is because in a multi-GPU
setting, each GPU device has its own set of queues and batch arrays.

Deprecated: We are working to remove the implicit tile release, as it is error prone, in favor of an
explicit release task. Cholesky no longer uses it. In SLATE, race conditions occur when internal
routines do tileRelease to release local workspace tiles. The trailing matrix update task and
the lookahead update task can both release the same tile. Whichever does so first removes the
tile from memory, so the other routine is no longer able to access it. Setting the OnHold status in
MOSI will disable tileRelease, then the tile must be manually released later on.

2.3 Internal routines for major, parallel tasks

SLATE adds a third layer of internal routines that generally perform one step or major task of a
computational routine. These are typically executed in parallel across multiple CPU cores, or as
a batch routine on the GPU. (See Chapter 6 for how algorithms are implemented as tasks.) For
instance, in the outer 𝑘 loop, slate::gemmC calls a sequence of slate::internal::gemm, each of
which performs one block outer product. Most internal routines consist of a set of independent
tile operations that can be issued as a batched operation or an OpenMP parallel-for loop, with
no task dependencies to track. Internal routines provide device-specific implementations such
as OpenMP nested tasks, parallel for-loops, or batched BLAS operations. In many linear algebra
algorithms, these internal routines implement the trailing matrix update.

Algorithm 2.10 gives an example of the internal gemm routine, CPU HostTask implementation,

10



Chapter 2. API Layers 2.3. Internal routines for major, parallel tasks

used in the PBLAS gemm routine and for the update in the Cholesky factorization routine. This
code reveals several features of SLATE. Currently, routines loop over all tiles in the matrix 𝐶,
and select just the local tiles to operate on. By filtering for local tiles via the tileIsLocal call,
SLATE is agnostic to the actual distribution.

There is a potential to reduce overheads by developing 2D iterators that are aware of the
distribution, enabling iteration over just the local tiles without needing to check if tiles are local,
while the code can still be agnostic to the distribution. However, we have not yet implemented
this.

In impl::potrf, the internal::gemm call is an OpenMP task. Within internal::gemm, each
individual tile gemm call is a nested OpenMP task, with no dependencies. Before each tile
gemm, tileGetForReading and tileGetForWriting ensure that the tiles are in CPU memory,
initiating a transfer from accelerator memory if necessary.

Deprecated: We are working to remove tile life, as it is error prone, in favor of an explicit release task.
Cholesky no longer uses it. Remote tiles are given a life counter to track the number of tiles they
update. After each tile gemm, the 𝐴 and 𝐵 tiles have their lives decremented by tileTick; once
all local tiles in row 𝑖 of 𝐶 are updated, the life of tile 𝐴(𝑖 , 0) reaches zero and the tile is deleted if
it is a workspace tile (i.e., not an origin tile). Similarly, when all local tiles in column 𝑗 of 𝐶 are
updated, the life of tile 𝐵(0, 𝑗) reaches zero and the tile is deleted, if it is workspace.

LU and QR panel operations also exist as internal routines. However, unlike trailing matrix
updates that have independent tasks, multi-threaded panel operations for Host targets create a
set of interdependent tasks. This is problematic since OpenMP has no effective way to express
such multi-threaded tasks. For CALU and CAQR with target Devices, we push the panel to the
GPU, eliminating issues with the multi-threaded panel.

11
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Algorithm 2.10 Host task implementation of internal matrix multiply routine,
slate::internal::gemm, corresponding to a single block outer product.

67 namespace slate::internal {
68
69 template <typename scalar_t >
70 void gemm(
71 internal::TargetType <Target::HostTask >,
72 scalar_t alpha, Matrix<scalar_t >& A,
73 Matrix<scalar_t >& B,
74 scalar_t beta, Matrix<scalar_t >& C,
75 Layout layout, int priority , int64_t queue_index ,
76 Options const& opts )
77 {
78 using ij_tuple = typename BaseMatrix <scalar_t >::ij_tuple;
79
80 // tile life, release, and tick are deprecated.
81 TileReleaseStrategy tile_release_strategy = get_option(
82 opts, Option::TileReleaseStrategy , TileReleaseStrategy::All );
83 bool call_tile_tick = tile_release_strategy == TileReleaseStrategy::Internal
84 || tile_release_strategy == TileReleaseStrategy::All;
85
86 std::set<ij_tuple > A_tiles_set , B_tiles_set;
87 for (int64_t i = 0; i < C.mt(); ++i) {
88 for (int64_t j = 0; j < C.nt(); ++j) {
89 if (C.tileIsLocal( i, j )) {
90 A_tiles_set.insert( { i, 0 } );
91 B_tiles_set.insert( { 0, j } );
92 }
93 }
94 }
95 A.tileGetForReading( A_tiles_set , LayoutConvert( layout ) );
96 B.tileGetForReading( B_tiles_set , LayoutConvert( layout ) );
97
98 #pragma omp taskgroup
99 for (int64_t i = 0; i < C.mt(); ++i) {
100 for (int64_t j = 0; j < C.nt(); ++j) {
101 if (C.tileIsLocal( i, j )) {
102 #pragma omp task slate_omp_default_none \
103 shared( A, B, C ) \
104 firstprivate( i, j, layout, alpha, beta, call_tile_tick ) \
105 priority( priority )
106 {
107 C.tileGetForWriting( i, j, LayoutConvert( layout ) );
108 tile::gemm(
109 alpha, A( i, 0 ), B( 0, j ),
110 beta, C( i, j ) );
111
112 // tile life, release, and tick are deprecated.
113 if (call_tile_tick) {
114 A.tileTick( i, 0 );
115 B.tileTick( 0, j );
116 }
117 }
118 }
119 }
120 }
121 }
122
123 } // namespace slate::internal
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2.3.1 Batched GPU tasks

Compared to the CPU implementation in Algorithm 2.10, the batched GPU implementation
is significantly more complicated. Each device is handled by a separate task in parallel
(Algorithm 2.11). After some initialization to deal with transposed and conjugate-transposed
matrices (Algorithm 2.12), it loops over all the relevant tiles to copy them to the GPU device if
they aren’t already resident (Algorithm 2.13). This uses the MOSI tile coherency API (Chapter 8)
to determine which tiles need to be transferred, then transfers them with a single call. Copying
of the sets is launched as nested tasks for increased parallelism.

Then it constructs the batch arrays of pointers to tiles on the GPU and calls a batched BLAS++
routine (Algorithm 2.14). Each region with a different tile size is handled by a separate batch
call. Originally, 4 regions were used: the bulk of the tiles in the top-left area, and cleanup in the
top-right column, bottom-left row, and bottom-right tile. This was generalized for an arbitrary
number of regions, to handle sliced arrays that may require 9 regions ({ top, middle, bottom } × {
left, center, right }), and non-uniform tile sizes that may require an arbitrary number of regions.

The deprecated tile release and tile tick mechanism is omitted here, and will be removed in the
future.

Past work [2] investigated splitting this internal::gemm into two pieces: a prep step to copy
tiles to the GPU and prepare the batch arrays, and an exec step to execute the batched gemm.
This was helpful on single node, multi-GPU machines like an NVIDIA DGX, but didn’t show
benefits on distributed machines like Summit. It was incompatible with the BLAS++ batched
implementation, which takes std::vector on host, so was removed to slate/old/src/gemm.cc
and slate/old/src/internal/internal_gemm_split.cc. However, the idea could be revisited,
for instance if BLAS++ could take device arrays instead of std::vector.

13
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Algorithm 2.11 Batched GPU device implementation of internal matrix multiply routine,
slate::internal::gemm, corresponding to a single block outer product. Handling transposed 𝐶

and row-major support is omitted here; see SLATE code for details. Continued in Algorithms 2.12
to 2.14.

381 namespace slate::internal {
382
383 template <typename scalar_t >
384 void gemm(
385 internal::TargetType <Target::Devices>,
386 scalar_t alpha, Matrix< scalar_t >& A,
387 Matrix< scalar_t >& B,
388 scalar_t beta, Matrix< scalar_t >& C,
389 Layout layout, int priority , int64_t queue_index ,
390 Options const& opts )
391 {
392 using blas::conj;
393 using std::swap;
394 using ij_tuple = typename BaseMatrix <scalar_t >::ij_tuple;
395
396 // tile life, release, tick are deprecated.
397 TileReleaseStrategy tile_release_strategy = get_option(
398 opts, Option::TileReleaseStrategy , TileReleaseStrategy::All );
399
400 #pragma omp taskgroup
401 for (int device = 0; device < C.num_devices(); ++device) {
402 #pragma omp task shared( A, B, C ) priority( priority ) \
403 firstprivate( alpha, beta, layout, queue_index , device, tile_release_strategy )
404 {
405 // ... gemm task on each device, see Algorithms 2.12 to 2.14 ...
567 }
568 }
569 }
570
571 } // namespace slate::internal
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Algorithm 2.12 gemm task on one device in Algorithm 2.11, step 1, initialization.

409 // if op(C) is NoTrans, invert opA, opB if possible
410 Op opA = A.op();
411 if (C.op() != Op::NoTrans) {
412 if (opA == Op::NoTrans)
413 opA = C.op();
414 else if (A.op() == C.op() || C.is_real) {
415 // A and C are both Trans or both ConjTrans;
416 // Trans == ConjTrans if real
417 opA = Op::NoTrans;
418 }
419 else {
420 throw; // ConjNoTrans not supported
421 }
422 }
423
424 Op opB = B.op();
425 if (C.op() != Op::NoTrans) {
426 if (opB == Op::NoTrans)
427 opB = C.op();
428 else if (opB == C.op() || C.is_real) {
429 // B and C are both Trans or both ConjTrans;
430 // Trans == ConjTrans if real
431 opB = Op::NoTrans;
432 }
433 else {
434 throw; // ConjNoTrans not supported
435 }
436 }
437
438 if (C.op() == Op::ConjTrans) {
439 alpha = conj( alpha );
440 beta = conj( beta );
441 }
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Algorithm 2.13 gemm task on one device in Algorithm 2.11, step 2, copying tiles.

445 std::set<ij_tuple > A_tiles_set , B_tiles_set , C_tiles_set;
446 for (int64_t i = 0; i < C.mt(); ++i) {
447 for (int64_t j = 0; j < C.nt(); ++j) {
448 if (C.tileIsLocal( i, j )) {
449 if (device == C.tileDevice( i, j )) {
450 A_tiles_set.insert( { i, 0 } );
451 B_tiles_set.insert( { 0, j } );
452 C_tiles_set.insert( { i, j } );
453 }
454 }
455 }
456 }
457
458 #pragma omp taskgroup
459 {
460 #pragma omp task slate_omp_default_none \
461 shared( A, A_tiles_set ) firstprivate( layout, device )
462 {
463 A.tileGetForReading( A_tiles_set , device, LayoutConvert( layout ) );
464 }
465 #pragma omp task slate_omp_default_none \
466 shared( B, B_tiles_set ) firstprivate( layout, device )
467 {
468 B.tileGetForReading( B_tiles_set , device, LayoutConvert( layout ) );
469 }
470 #pragma omp task slate_omp_default_none \
471 shared( C, C_tiles_set ) firstprivate( layout, device )
472 {
473 C.tileGetForWriting( C_tiles_set , device, LayoutConvert( layout ) );
474 }
475 }
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Algorithm 2.14 gemm task on one device in Algorithm 2.11, step 3, batched gemm calls.

479 int64_t batch_size = C_tiles_set.size();
480
481 scalar_t** a_array_host = C.array_host( device, queue_index );
482 scalar_t** b_array_host = a_array_host + batch_size;
483 scalar_t** c_array_host = b_array_host + batch_size;
484
485 // C comes first since we do computation for a local C
486 auto group_params = device_regions_build <false, 3, scalar_t >(
487 {C, A, B},
488 {c_array_host , a_array_host , b_array_host},
489 device );
490
491 if (C.op() != Op::NoTrans) {
492 swap( opA, opB );
493 }
494
495 {
496 trace::Block trace_block( "blas::batch::gemm" );
497
498 std::vector<Op> opA_( 1, opA );
499 std::vector<Op> opB_( 1, opB );
500 std::vector<scalar_t > alpha_( 1, alpha );
501 std::vector<scalar_t > beta_( 1, beta );
502 std::vector<int64_t> k( 1, A.tileNb( 0 ) );
503 // info size 0 disables slow checks in batched BLAS++.
504 std::vector<int64_t> info;
505
506 blas::Queue* queue = C.compute_queue( device, queue_index );
507 assert( queue != nullptr );
508
509 for (size_t g = 0; g < group_params.size(); ++g) {
510
511 int64_t group_count = group_params[ g ].count;
512
513 std::vector<int64_t> m( 1, group_params[ g ].mb );
514 std::vector<int64_t> n( 1, group_params[ g ].nb );
515 std::vector<int64_t> ldda( 1, group_params[ g ].ld[1] );
516 std::vector<int64_t> lddb( 1, group_params[ g ].ld[2] );
517 std::vector<int64_t> lddc( 1, group_params[ g ].ld[0] );
518
519 std::vector<scalar_t*> a_array( a_array_host , a_array_host+group_count );
520 std::vector<scalar_t*> b_array( b_array_host , b_array_host+group_count );
521 std::vector<scalar_t*> c_array( c_array_host , c_array_host+group_count );
522
523 if (C.op() != Op::NoTrans) {
524 swap( m, n );
525 swap( a_array, b_array );
526 swap( ldda, lddb );
527 }
528
529 blas::batch::gemm(
530 layout, opA_, opB_,
531 m, n, k,
532 alpha_, a_array, ldda,
533 b_array, lddb,
534 beta_, c_array, lddc,
535 group_count , info, *queue);
536
537 a_array_host += group_count;
538 b_array_host += group_count;
539 c_array_host += group_count;
540 }
541
542 queue->sync();
543 }
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2.4 Tile operations for small, sequential tasks

Tile routines update one or a small number of individual tiles, generally sequentially on a single
CPU core. For instance, a tile gemm takes three tiles, 𝐴, 𝐵, and 𝐶, and updates 𝐶. Transposition
of individual tiles is resolved at this level when calling optimized BLAS. This allows higher-level
operations to ignore whether a matrix is transposed or not. Currently, all tile operations are
CPU-only, since accelerators use only batch operations. Algorithm 2.15 gives an example of the
tile gemm routine, which is used in the internal gemm routine (Algorithm 2.10).

Algorithm 2.15 Tile matrix multiply routine, slate::tile::gemm. Cases for transposed 𝐶 (𝐶𝑇

and 𝐶𝐻) are omitted.

30 namespace slate::tile {
31
32 // C = alpha AB + beta C
33 template <typename scalar_t >
34 void gemm(
35 scalar_t alpha, Tile<scalar_t > const& A,
36 Tile<scalar_t > const& B,
37 scalar_t beta, Tile<scalar_t >& C )
38 {
39 using blas::conj;
40
41 if (C.op() == Op::NoTrans) {
42 // C = opA( A ) opB( B ) + C
43 blas::gemm( C.layout(),
44 A.op(), B.op(),
45 C.mb(), C.nb(), A.nb(),
46 alpha, A.data(), A.stride(),
47 B.data(), B.stride(),
48 beta, C.data(), C.stride() );
49 }
50 else {
51 // ... C^T and C^H case ...
92 }
93 }
94
95 } // namespace slate::tile

2.5 BLAS++, Batched BLAS++, and LAPACK++

At the lowest level, the BLAS++ and LAPACK++ packages provide thin, precision-independent,
overloaded C++ wrappers around traditional BLAS, batched BLAS, and LAPACK routines, as
discussed in Chapter 5. They use C++ calling conventions and enum values instead of character
constants, but otherwise the calling sequence is similar to the standard BLAS and LAPACK
routines. BLAS++ also includes batched BLAS, on both CPUs and GPUs.

Future work: A slightly higher-level interface taking arrays as mdspan objects may be developed
as mdspan becomes standardized [3] and widespread in C++ standard library implementations.
That would eliminate the separate dimension arguments, yielding, for instance:
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blas::gemm( transA, transB, alpha, A, B, beta, C );
or

blas::gemm( alpha, A, B, beta, C );
or

blas::gemm( A, B, C );

where A, B, and C are mdspan objects encapsulating their dimensions and column or row strides.
The trans and alpha or beta scaling may also be encapsulated in mdspan,

2.6 Work routines for actual OpenMP work

In a couple instances, SLATE implements a middle “work” layer between the computational
routines and the internal routines, which is called from within an OpenMP parallel region. This
layer was introduced in early 2020, based on the needs of the generalized eigenvalue routine
slate::hegst. Outside this context, it has not been widely used in SLATE. Some computational
routines, e.g., slate::hegst, need to work on problem sizes larger than what internal routines
can handle inside their parallel region. For instance, slate::hegst calls slate::trsm and
slate::trmm that take a large triangular matrix, instead of a single tile triangular matrix.
The internal::trsm and internal::trmm handle only the single tile triangular matrix case.
Therefore, slate::work layer can allow slate::hegst to invoke a big triangular matrix solve
and triangular matrix-matrix multiplication within slate::hegst, without having multiple
OpenMP parallel regions. Having the slate::work layer avoids nested parallel regions (e.g.,
one computational routine calling another computational routine). In addition to the issues
with nesting, there are also potential correctness and performance issues with initializing and
cleaning up memory. Note that to avoid a segmentation fault with #pragma omp taskwait at the
end of a slate::work routine, it must be invoked inside a #pragma omp task; we encountered
this issue when running on the Summit supercomputer.

Algorithm 2.16 gives an example of the triangular matrix solve computational routine, and
Algorithm 2.17 gives an example of a triangular matrix solve work routine. Algorithm 2.18
gives an example of the computational routine for the reduction of a complex Hermitian
positive-definite generalized eigenvalue problem to the standard form.
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Algorithm 2.16 Triangular matrix solve computational routine, slate::impl::trsmB.

12 namespace slate::impl {
13
14 template <Target target, typename scalar_t >
15 void trsmB(
16 Side side,
17 scalar_t alpha, TriangularMatrix <scalar_t >& A,
18 Matrix<scalar_t >& B,
19 Options const& opts )
20 {
21 // Options
22 int64_t lookahead = get_option <int64_t >( opts, Option::Lookahead , 1 );
23
24 if (target == Target::Devices) {
25 // Allocate batch arrays = number of kernels without
26 const int64_t batch_size_default = 0;
27 int num_queues = 2 + lookahead;
28 B.allocateBatchArrays( batch_size_default , num_queues );
29 B.reserveDeviceWorkspace();
30 }
31
32 // OpenMP needs pointer types, but vectors are exception safe
33 std::vector<uint8_t> row_vector( A.nt() );
34 uint8_t* row = row_vector.data();
35
36 // set min number for omp nested active parallel regions
37 slate::OmpSetMaxActiveLevels set_active_levels( MinOmpActiveLevels );
38
39 #pragma omp parallel
40 #pragma omp master
41 {
42 #pragma omp task
43 {
44 work::trsm<target, scalar_t >( side, alpha, A, B, row, opts );
45 B.tileUpdateAllOrigin();
46 }
47 }
48 B.releaseWorkspace();
49 }
50
51 } // namespace slate::impl

Algorithm 2.17 Triangular matrix solve work routine, slate::work::trsm.

13 namespace slate::work {
14
15 template <Target target, typename scalar_t >
16 void trsm(
17 Side side, scalar_t alpha,
18 TriangularMatrix <scalar_t > A,
19 Matrix<scalar_t > B,
20 uint8_t* row,
21 Options const& opts )
22 {
23 // ... call internal routines to implement trsm ...
241
242 #pragma omp taskwait
243 }
244
245 } // namespace slate::work
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Algorithm 2.18 Computational routine for the reduction of a generalized positive-definite
Hermitian eigenvalue problem to standard form, slate::hegst, showing setup and call to
work::trsm.

13 namespace slate::impl {
14
15 template <Target target, typename scalar_t >
16 void hegst(
17 int64_t itype, HermitianMatrix <scalar_t > A,
18 HermitianMatrix <scalar_t > B,
19 Options const& opts )
20 {
50 // OpenMP needs pointer types, but vectors are exception safe
51 std::vector<uint8_t> column_vector(nt);
52 uint8_t* column = column_vector.data();
53
54 if (target == Target::Devices) {
55 // Allocate batch arrays = number of kernels without
56 const int64_t batch_size_default = 0;
57 int num_queues = 2 + lookahead;
58 A.allocateBatchArrays( batch_size_default , num_queues );
59 A.reserveDeviceWorkspace();
60 }
139 // ...
140
141 work::trsm<target >(
142 Side::Left, one, TBk1, Asub, column, opts );
143
144 // ...
218 }
219
220 } // namespace slate::impl
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CHAPTER 3

Matrix Storage

SLATE makes tiles first-class objects that can be individually allocated and passed to low-level tile
routines. The matrix consists of a collection of individual tiles, with no correlation between their
positions in the matrix and their memory locations. At the same time, SLATE also supports tiles
pointing to data in a traditional ScaLAPACK matrix storage, easing an application’s transition
from ScaLAPACK to SLATE. Compared to other distributed dense linear algebra formats,
SLATE’s matrix structure offers numerous advantages:

First, the same structure can be used for holding many different matrix types: general, symmetric,
triangular, band, symmetric band, etc., as shown in Figure 3.1. Little memory is wasted for storing
parts of the matrix that hold no useful data (e.g., the upper triangle of a lower triangular matrix).
Instead of wasting 𝑂(𝑛2) memory as ScaLAPACK does, only 𝑂(𝑛𝑛𝑏) memory is wasted in the
diagonal tiles for a block size 𝑛𝑏 ; all unused off-diagonal tiles are simply never allocated. There is
no need for using complex matrix storage schemes such as the Recursive Packed Format (RPF) [4]
or Rectangular Full Packed (RFP) [5] in order to save space.

Second, the matrix can be easily converted, in parallel, from one layout to another with 𝑂(𝑃)
memory overhead for 𝑃 processors (cores/threads). Possible conversions include: changing
tile layout from column-major to row-major, “packing” of tiles for efficient BLAS execution [6],
and low-rank compression of tiles. Notably, transposition of the matrix can be accomplished by
transposition of each tile and remapping of the indices. There is no need for complex in-place
layout translation and transposition algorithms [7].

Also, tiles can be easily allocated and copied among different memory spaces. Both inter-node
communication and intra-node communication are vastly simplified. Tiles can be easily and
efficiently transferred between nodes using MPI. Tiles can be easily moved in and out of fast
memory, such as the MCDRAM in Xeon Phi processors. Tiles can also be copied to one or more
device memories in the case of GPU acceleration.
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Figure 3.1: General, symmetric, band, and symmetric band matrices. Only shaded tiles are stored;
blank tiles are implicitly zero or known by symmetry, so are not stored.

Figure 3.2: View of symmetric matrix on process (0, 0) in 2 × 2 process grid. Darker blue tiles are
local to process (0, 0); lighter yellow tiles are temporary workspace tiles copied from remote process
(0, 1).

Figure 3.3: Block sizes can vary. Most algorithms require square diagonal tiles.
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In practical terms, a SLATE matrix is implemented using the std::map container from the C++
standard library as:

std::map< std::tuple< int64_t, int64_t >,
TileNode <scalar_t >* >

The map’s key is a tuple consisting of the tile’s (𝑖 , 𝑗) block row and column indices in the
matrix. The TileNode can then be indexed by the host or accelerator device ID to retrieve the
corresponding Tile instance. SLATE relies on global indexing of tiles, meaning that each tile is
identified by the same unique tuple across all processes. The lightweight Tile object stores a
tile’s data and properties such as MOSI state, dimensions, uplo, and transposition operation.
Note that to prevent SLATE from getting into an invalid state, the canonical Tile instances held
by the TileNode’s should never be directly accessible to users. Instead, modifications to a tile’s
properties should be done through the matrix object, and only copies should be returned.

In addition to facilitating the storage of different types of matrices, this structure also readily
accommodates partitioning of the matrix to the nodes of a distributed-memory system. Each
node stores only its local subset of tiles, as shown in Figure 3.2. Mapping of tiles to nodes is
defined by a C++ lambda function, and set to 2D block cyclic mapping by default, but the user
can supply an arbitrary mapping function. Similarly, distribution to accelerators within each
node is 1D block cyclic by default, but the user can substitute an arbitrary function.

Remote access is realized by replicating remote tiles in the local matrix for the duration of the
operation. This is shown in Figure 3.2 for the trailing matrix update in Cholesky, where portions
of the remote panel (yellow) have been copied locally.

Finally, SLATE can support non-uniform tile sizes (Figure 3.3). Most factorizations require
that the diagonal tiles are square, but the block row heights and block column widths can, in
principle, be arbitrary. This will facilitate applications where the block structure is significant,
for instance in Adaptive Cross Approximation (ACA) linear solvers [8].

3.0.1 Tile management

A Tile can be one of three types, as denoted by the enum TileKind:
enum class TileKind
{

Workspace ,
SlateOwned ,
UserOwned ,

};

defined by:

UserOwned: User allocated origin tile. This is the original instance of a tile initialized upon
matrix creation. The tile’s memory is managed by the user, not by SLATE. The tile has
been initialized with a pre-existing data buffer. The tile’s memory should not be freed by
SLATE.

SlateOwned: SLATE-allocated origin tile. This is the original instance of the tile received upon
matrix creation or by tileInsert(). The tile’s memory is managed by SLATE, and is freed
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when the matrix is destructed.

Workspace: SLATE-allocated workspace tile. This is an instance of the tile that is used as
temporary workspace in a memory space different from that of the corresponding origin
tile. The tile is created with tileInsertWorkspace() for receiving a remote tile copy or
for computation on a different device (CPU or accelerator) than the origin. It should be
released back to the matrix’s memory pool after being used.

It is important to note that at most one instance of a tile per memory space (i.e., per CPU or
accelerator device) is allowed.

An operation computing on a device needs to create copies of the involved tiles on the device as
workspace tiles and purge them after usage in order to minimize memory consumption. On the
other hand, certain algorithms may need to hold a set of tiles on the device for the duration of
the algorithm to allow multiple accesses to these tiles and minimize the data traffic from/to host
memory to/from device memory. These requirements necessitate the adoption of a coherency
protocol that seamlessly manages the tile copies on various memory spaces, as described in
Chapter 8.
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CHAPTER 4

Handling of Side, Uplo, Trans, etc.

The classical BLAS take parameters such as side, uplo, trans (named “op” in SLATE), and
diag to specify operation variants. Traditionally, this has meant that implementations have
numerous cases. The reference BLAS has nine cases in zgemm and eight cases in ztrmm (times
several sub-cases). ScaLAPACK and PLASMA [9] likewise have eight cases in ztrmm. In contrast,
by storing both uplo and op within the matrix object itself, and supporting inexpensive shallow
copy transposition, SLATE can implement just one or two cases and map all the other cases to
that implementation by appropriate transpositions.

For instance, at the high level, gemm can ignore the operations on 𝐴 and 𝐵. If transposed, the
matrix object itself handles swapping indices to obtain the correct tiles during the algorithm. At
the low level, the transposition operation is set on the tiles, and is passed on to the underlying
node-level BLAS gemm routine.

Similarly, the Cholesky factorization shown in Algorithm 2.2 implements only the lower case;
the upper case is handled by a shallow copy transposition to map it to the lower case. The data
is not physically transposed in memory; only the transpose op flag is set so that the matrix is
logically lower.

Note that for the shallow copy to work correctly, matrices must be passed by value, rather than
by reference. For instance, if potrf used pass-by-reference (Algorithm 4.1), a user calling potrf
would have the unintended side effect of transposing the matrix 𝐴 in the user’s code:
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Code:
A = slate::HermitianMatrix( Uplo::Upper, n, ... );
printf( "before: op %s, uplo %s\n", op2str( A.op() ), uplo2str( A.uplo() ) );
slate::potrf( A );
printf( "after: op %s, uplo %s\n", op2str( A.op() ), uplo2str( A.uplo() ) );

Incorrect output:
before: op notrans, uplo upper
after: op conj, uplo lower

Correct output:
before: op notrans, uplo upper
after: op notrans, uplo upper

Instead, the matrix A is passed by value into potrf (Algorithm 4.2), so transposition within the
computational routine doesn’t affect transposition in the user’s code. (Though some wrappers
may pass it by reference.) This results in the correct output with no unintended side effects.

Algorithm 4.1 Erroneous code: passing A by reference and transposing it, unintentionally
transposing it in caller’s code.

1 template <Target target, typename scalar_t >
2 int64_t potrf(
3 slate::internal::TargetType <target>,
4 HermitianMatrix <scalar_t >& A, ... )
5 {
6 // If upper, change to lower.
7 // Since A is passed by reference (HermitianMatrix <scalar_t >& A),
8 // this inadvertently transposes the matrix in the user’s code -- a bug!
9 if (A.uplo() == Uplo::Upper) {
10 A = conj_transpose( A );
11 }
12
13 // Continue with code that assumes A is logically lower...
14 }

Algorithm 4.2 Correct code: passing A by value and transposing it, without transposing it in
caller’s code.

1 template <Target target, typename scalar_t >
2 int64_t potrf(
3 slate::internal::TargetType <target>,
4 HermitianMatrix <scalar_t > A, ... )
5 {
6 // If upper, change to lower.
7 // Since A is passed by value (HermitianMatrix <scalar_t > A),
8 // with shallow-copy semantics ,
9 // this doesn’t transpose the matrix A in the user’s code.
10 if (A.uplo() == Uplo::Upper) {
11 A = conj_transpose( A );
12 }
13
14 // Continue with code that assumes A is logically lower...
15 }
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Handling of Precisions

SLATE handles multiple precisions with C++ templating, so there is only one precision-
independent version of the code, which is then instantiated for the desired precisions. Operations
are defined to apply consistently across all precisions. For instance, blas::conj extends
std::conj to apply to real precisions (float, double), where it is a no-op. Whereas std::conj
applied to a real number returns std::complexwith a zero imaginary part, which is not generally
what is desired in linear algebra algorithms. For instance, alpha = blas::conj(alpha);works
for real numbers, but std::conjwould not work. SLATE’s BLAS++ component [10] provides
overloaded, precision-independent wrappers for all the underlying node-level BLAS, which
SLATE’s PBLAS are built on top of. For instance, blas::gemm in BLAS++ maps to the classical
sgemm, dgemm, cgemm, or zgemm BLAS, depending on the precision of its arguments. For real
arithmetic, symmetric and Hermitian matrices are considered interchangeable, so hemmmaps to
symm, herk to syrk, and her2k to syr2k. This mapping aides in templating higher-level routines,
such as Cholesky, which does a herk (mapped to syrk in real) to update the trailing matrix.

Currently, the SLATE library has explicit instantiations of the four main data types: float, double,
std::complex<float>, and std::complex<double>. The SLATE code should accommodate
other data types, such as half, double-double, or quad precision, given appropriate underlying
node-level BLAS. For instance, Intel oneMKL, NVIDIA cuBLAS, and AMD rocBLAS provide
half-precision gemm operations.

SLATE also implements mixed-precision algorithms [11] that factor a matrix in low precision,
then use iterative refinement to attain a high-precision final result. These exploit the faster
processing in low precision for the 𝑂(𝑛3) factorization work, while refinement in the slower
high precision is only 𝑂(𝑛2) work. In SLATE, the low and high precisions are independently
templated; currently we use the traditional single and double combination. However, recent
interest in half precision has led to algorithms using it with either single or double [12, 13]. One
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could also go to higher precisions, using double-double [14] or quad for the high precision.
By adding the relevant underlying node-level BLAS operations in the desired precisions to
BLAS++, the templated nature of SLATE greatly simplifies instantiating different combinations
of precisions.
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CHAPTER 6

Parallelism Model

SLATE utilizes three or four levels of parallelism: distributed parallelism between nodes using
MPI, explicit thread parallelism using OpenMP, implicit thread parallelism within the vendor’s
node-level BLAS, and, at the lowest level, vector parallelism for the processor’s single instruction,
multiple data (SIMD) vector instructions. For multi core, SLATE typically uses all the threads
explicitly, and uses the vendor’s BLAS in sequential mode. For GPU accelerators, SLATE uses a
batch BLAS call, utilizing the thread block parallelism built into the accelerator’s BLAS.

The cornerstones of SLATE are (1) the SPMD programming model for productivity and
maintainability, (2) dynamic task scheduling using OpenMP for maximum node-level parallelism
and portability, (3) the lookahead technique for prioritizing the critical path, (4) primary reliance
on the 2D block cyclic distribution for scalability, (5) reliance on the gemm operation, specifically
its batch rendition, for maximum hardware utilization.

The Cholesky factorization demonstrates the basic framework, with its task graph shown in
Figure 6.1 and code shown in Algorithms 2.2 to 2.7. Dataflow tasking (omp task depend,
Algorithm 2.2 lines 97, 149, 174, 201) is used for scheduling operations with dependencies on
large blocks of the matrix. Dependencies are performed on a dummy vector, representing each
block column in the factorization, rather than on the matrix data itself. Within each large block,
either nested tasking (omp task, Algorithm 2.10 line 102) or batch operations of independent
tile operations are used for scheduling individual tile operations to individual cores, without
dependencies. For accelerators, batched BLAS calls are used for fast processing of large blocks
of the matrix, using accelerators.

Compared to pure tile-by-tile dataflow scheduling, as used by DPLASMA and Chameleon, this
approach minimizes the size of the task graph and number of dependencies to track. For a
matrix of 𝑁 × 𝑁 tiles, tile-by-tile scheduling creates 𝑂(𝑁3) tasks and dependencies, which can
lead to significant scheduling overheads. This is one of the main performance handicaps of the
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Figure 6.1: Tasks in Cholesky factorization. Arrows depict dependencies.

OpenMP version of the PLASMA library [9], in the case of many-core processors such as the
Xeon Phi family. In contrast, the SLATE approach creates 𝑂(𝑁) dependencies, eliminating the
issue of scheduling overheads. At the same time, this approach is a necessity for scheduling a
large set of independent tasks to accelerators, in order to fully occupy their massive compute
resources. It also eliminates the need to use a hierarchical task graph to satisfy the vastly different
levels of parallelism on CPUs vs. on accelerators [15].

At each step of Cholesky, one or more columns of the trailing submatrix are prioritized for
processing, using the OpenMP priority clause, to facilitate faster advancement along the
critical path, implementing a lookahead. At the same time, the lookahead depth needs to be
limited, as it is proportional to the amount of extra memory required for storing temporary tiles.
Deep lookahead translates to depth-first processing of the task graph, synonymous with left-
looking algorithms, but can also lead to catastrophic memory overheads in distributed-memory
environments [16].

Distributed-memory computing is implemented by filtering operations based on the matrix
distribution function (Algorithm 2.10 line 101); in most cases, the owner of the output tile
performs the computation to update the tile. Appropriate communication calls are issued to
send tiles to where the computation will occur. Management of multiple accelerators is handled
by a node-level memory consistency protocol.

The user can choose among various target implementations. In the case of accelerated execution,
the updates are executed as calls to batched gemm (Target::Devices). In the case of multi-core
execution, the updates can be executed as:
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Figure 6.2: Performance of square dgemm, as fraction of maximum single-core ESSL performance
(23.6 gigaFLOP/s) and cuBLAS performance (4560 gigaFLOP/s), respectively.

• a set of OpenMP tasks (Target::HostTask),

• a nested parallel for loop (Target::HostNest), or

• a call to batch gemm (Target::HostBatch).

To motivate our choices of CPU tasks on individual tiles and GPU tasks using batches of
tiles, we examine the performance of dgemm. Libraries such as DPLASMA and Chameleon
have demonstrated that doing operations on a tile-by-tile basis can achieve excellent CPU
performance. For instance, as shown in Figure 6.2, for tile sizes ≥ 160, IBM Engineering and
Scientific Subroutine Library (ESSL) dgemm achieves over 90% of its maximum performance. In
contrast, accelerators would take much larger tiles to reach their maximum performance. On an
NVIDIA P100, cuBLAS dgemm would require an unreasonably large tile size ≥ 3136 to achieve
90% of its maximum performance. DPLASMA dealt with this disparity in tile sizes between the
CPU and GPU by using a hierarchical directed acyclic graph (DAG), in which the CPU has small
tiles and the GPU has large tiles [15].

Instead, in SLATE we observe that most gemm operations are block outer products, where 𝐴

is a block column and 𝐵 is a block row (e.g., the Schur complement in LU factorization), and
that these can be implemented using a batch gemm. In Figures 6.3 and 6.4, the regular cuBLAS
dgemm uses standard LAPACK column-major layout, while the tiled / batch dgemm uses a tiled
layout with 𝑘 × 𝑘 tiles and multiplies all tiles simultaneously using cuBLAS batch dgemm. This
demonstrates that at specific sizes (192, 256, . . . ), which occur at multiples of 64, the batched
dgemm matches the performance of a regular dgemm. Thus, with an appropriately chosen,
modest block size, SLATE can achieve the maximum performance from accelerators.

SLATE intentionally relies on standards in MPI, OpenMP, and BLAS to maintain easy portability.
Any CPU platform with good implementations of these standards should work well for SLATE.
For accelerators, any platform that implements batched gemm, on which SLATE relies, is a good
target. Differences between vendors’ BLAS implementations will be abstracted at a low level
in the BLAS++ library to ease porting. There are very few accelerator (e.g., CUDA) kernels in
SLATE—currently just matrix norms and transposition—so porting should be a lightweight
task.
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Message Passing Communication

Communication in SLATE relies on explicit dataflow information. When a tile will be needed
for computation, it is broadcast to all the processes where it is required, as shown in Figure 7.1
for broadcasting a single tile from the Cholesky panel to its trailing matrix update. Rather than
explicitly listing MPI ranks, the broadcast is expressed in terms of the destination tiles to be
updated. tileBcast takes a tile’s (𝑖 , 𝑗) indices and a sub-matrix that the tile will update; the tile
is sent to all processes owning that sub-matrix (Algorithm 2.2 lines 119 and 141). To optimize
communication, listBcast aggregates a list of these tile broadcasts and pipelines the MPI and
CPU-to-accelerator communication. As the set of processes involved is dynamically determined
from the sub-matrix, using an MPI broadcast would require setting up a new MPI communicator,
which is an expensive global blocking operation. Instead, SLATE uses point-to-point MPI
communication in a hypercube tree fashion to broadcast the data.

Figure 7.1: Broadcast of tile and its symmetric image to nodes owning a block row and block column
in a symmetric matrix.
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MOSI Coherency Protocol

8.1 Coherency control

We describe here the protocol used in SLATE to maintain coherency of tiles’ instances among
memory spaces (host memory, device memories). The protocol described here is inspired
by known cache coherency protocols, but adapted to serve the needs of SLATE algorithms;
specifically, no other memory exists as a backing store (as is the main memory in relation to a
cache), nor auto eviction.

Concretely, this “coherency protocol” is used to maintain coherency between multiple copies
of a tile in different memory spaces within one node (CPU memory, multiple GPU memories).
Further, in this document, we will refer to this coherency protocol by the name MOSI (an
acronym of the states we assign to the tiles: Modified, OnHold, Shared, Invalid).

The governing principles and requirements in MOSI protocol, besides maintaining tiles coherency,
are:

• Tile data can originate in either CPU or GPU memory.

• Minimal memory occupation: workspace data to be purged when not in use.

• Data can be held in a memory space for multiple accesses.

• Minimal data transfers should be incurred across memory spaces.

• Coherent states are to be maintained at any time, i.e., any function would assume a coherent
state upon entry, and will maintain that coherency upon exit. Consequently, routines need
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not fix an incoherent state due to previous calls, but will make necessary and minimal
validation to ensure it is being called without violating coherency.

• The user/programmer shall be relieved, as much as possible, from thinking about tile state
management (i.e., tile state management should be implicit).

8.1.1 Tile States

<slate_Storage.h>:
enum MOSI
{

Modified = 0x0100,
OnHold = 0x1000,
Shared = 0x0010,
Invalid = 0x0001,

};

(Note this is not enum class because we do bitwise OR of states.)

A tile’s instance can be in one of three states: Modified, Shared, or Invalid. An additional
OnHold flag can be set with any state. The states have the following meanings:

Modified (M): tile’s data is modified, other instances should be I; instance cannot be purged.

Shared (S): tile’s data is up to date, other instances may be in Sharedor I; instance may be
purged unless on hold.

Invalid (I): tile’s data is obsolete, other instances may be Modified, Shared, or I; instance may
be purged unless on hold.

OnHold (O): a flag orthogonal to the three states above, indicating that a hold is set on this tile
instance, thus it cannot be purged until the hold is unset. The OnHold state is deprecated. It
disables the tile release mechanism, which is deprecated.

The state of a tile instance is associated with its pointer in the TilesMap of the MatrixStorage
class. Recall that a map entry holds a key being a tuple of the tile’s (row, col) position in the
matrix, and a value being a tileNode containing pointers to tiles on the host and GPU devices.
The MOSI state is stored in each tile itself, which allows tile routines to verify the correct MOSI
status. For instance, tile::gemm can verify that 𝐴 and 𝐵 are at least Shared(readable), and 𝐶 is
Modified(read/write).

Two instances of the same tile can be in any of (Invalid, Shared), (Invalid, Modified), (Invalid,
Invalid), or (Shared, Shared), as illustrated in Table 8.1. Coherence is maintained by enforcing
these restrictions.

Getting and setting this state, as well as copying tiles across memory spaces, is facilitated in the
MOSI API as explained next.
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M S I
M X X ✓
S X ✓ ✓
I ✓ ✓ ✓

Table 8.1: Valid state combinations of two instances of same tile.

8.1.2 MOSI API

The routines that control the tile state are the following member functions of the BaseMatrix
class:

• tileState(. . . )

• tileGetForReading(. . . )

• tileGetForWriting(. . . )

• tileModified(. . . )

• tileGetAndHold(. . . )

• tileUnsetHold(. . . )

• tileOnHold(. . . )

• tileRelease(. . . )

Here are the signatures of these routines and an explanation of their behavior:
1 class BaseMatrix {
2 ...
3
4 // Returns tile(i, j)’s state on device (defaults to host).
5 MOSI tileState(int64_t i, int64_t j, int device=host_num_);
6
7 // Returns whether tile(i, j) is on hold on device (defaults to host).
8 bool tileOnHold(int64_t i, int64_t j, int device=host_num_);
9
10 // Gets tile(i, j) for reading on device.
11 // Will copy-in the tile if it does not exist or its state is Invalid.
12 // Sets tile state to Shared if copied-in.
13 // Updates source tile’s state to shared if copied-in.
14 void tileGetForReading(int64_t i, int64_t j, int device=host_num_);
15
16 // Gets all local tiles for reading on device.
17 void tileGetAllForReading(int device=host_num_);
18
19 // Gets all local tiles for reading on corresponding devices.
20 void tileGetAllForReadingOnDevices();
21
22 // Gets tile(i, j) for writing on device.
23 // Sets state to Modified.
24 // Will copy tile in if not exists or state is Invalid.
25 // Other instances will be invalidated.
26 void tileGetForWriting(int64_t i, int64_t j, int device=host_num_);
27
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28 // Gets all local tiles for writing on device.
29 void tileGetAllForWriting(int device=host_num_);
30
31 // Gets all local tiles for writing on corresponding devices.
32 void tileGetAllForWritingOnDevices();
33
34 // Marks tile(i, j) as Modified on device.
35 // Other instances will be invalidated.
36 // Unless permissive , asserts if other instances are in Modified state.
37 void tileModified(int64_t i, int64_t j, int device=host_num_ , bool permissive=false);
38
39 // Gets tile(i, j) on device and marks it as OnHold.
40 // Will copy tile in if it does not exist or its state is Invalid.
41 // Updates the source tile’s state to Shared if copied-in.
42 void tileGetAndHold(int64_t i, int64_t j, int device=host_num_);
43
44 // Gets all local tiles on device and marks them as OnHold.
45 void tileGetAndHoldAll(int device=host_num_);
46
47 // Gets all local tiles on corresponding devices and marks them as OnHold.
48 void tileGetAndHoldAllOnDevices();
49
50 // Unsets tile(i, j)’s hold on device
51 void tileUnsetHold(int64_t i, int64_t j, int device=host_num_);
52
53 // Deletes the tile(i, j)’s instance on device if it is a workspace tile
54 // that is not modified and no hold is set on it.
55 void tileRelease(int64_t i, int64_t j, int device=host_num_);
56
57 /// Updates the origin instance of tile(i, j) if not MOSI::Shared
58 void tileUpdateOrigin(int64_t i, int64_t j);
59
60 /// Updates all origin instances of tiles if not MOSI::Shared
61 void tileUpdateAllOrigin();
62
63 // Debugging routine:
64 // Check state is coherent for all matrix tile instances
65 void checkTileStates();
66
67 ...
68 }

8.1.3 Data transfer

tileGetForReading(), tileGetForWriting(), and tileGetAndHold()may initiate a data copy
from a source memory space to the destination memory space. While the destination memory
space is identified by the device id passed in as a parameter (could be host or GPU device), the
source is automatically detected from existing instances of the same tile. SLATE searches for the
first Modifiedor Sharedinstance, searching devices first, then the host. This ordering ensures it
will prefer device-to-device copies over host-to-device copies. However, it does not yet search
for the closest instance based on the bus topology (PCIe, NVlink, Infinity Fabric, etc.). Typically
we run SLATE with one MPI rank per GPU or one MPI rank per socket, which tends to lessen
concerns about NUMA access between GPUs.
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8.1.4 State diagrams

Tile instances may change state following the operations that read or update them. Diagrams
in Figures 8.1 and 8.2 illustrate the state transitions that each routine causes, while Figure 8.3
illustrates the same state transitions from the perspective of tiles.

8.2 Developer hints

Acquiring tiles: An operation that consumes tiles for reading or writing should acquire the
tiles first. Tiles to be read-only should be acquired using the tileGetForReading() routine at the
operation start on the intended device, which will ensure that the most up-to-date tile instance is
brought into the device. Tiles to be modified should be acquired using the tileGetForWriting()
routine at the operation start on the intended device, which will ensure that the most up-to-date
tile instance is brought in, then marks it “Modified” and invalidates other instances.

Tile purging: Tiles acquired for reading, unless origin, are placed in a workspace tile instance,
and should be purged after the operation is over to make room on the device’s memory. Purging
is accomplished by calling the tileRelease() routine, which will delete a tile instance only if it
is a workspace with no hold on it and not modified. tileErase(), on the other hand, erases the
indicated tile instance unconditionally, and should therefore be used carefully.

Modified tiles: A tile instance that is acquired by tileGetForWriting() is marked Modified.
However, a newly inserted tile instance may get updated without using the slate::internal
routines, for example, by issuing lapack calls on them, or by direct editing. In addition, tiles
acquired for reading (or for writing followed by a copy to other devices) may be updated similarly.
In such cases, it is necessary to call tileModified() in order to mark a tile as Modified and
maintain coherency. tileModified()will invalidate other tile instances, thus forcing them to
update subsequently. tileModified() will check if other tile instances are already in Modified
state, as a coherency check, since two instances may not be modified concurrently. However,
in some cases, other modified instances may need to be ignored, which can be relayed to
tileModified() by setting the permissive parameter to true.

Holding tiles in a memory space: Some algorithms need to hold some tile instances with
valid states in a certain memory space, and prevent them from being purged during workspace
releasing. This can be accomplished using the tileGetAndHold(), which will put a hold on
the tile until tileUnsetHold() is called, at which time a tileRelease() should generally be
invoked (unless the algorithm requires otherwise). This use is deprecated.
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CHAPTER 9

Column Major and Row Major Layout

A tile’s data can be stored in either column-major or row-major layout. In column-major layout,
elements of a column have a memory stride of 1—that is, they are stored contiguously in memory,
and elements of a row have a memory stride of at least the number of rows in the tile. In
row-major layout, elements of a row have a memory stride of 1—that is, stored contiguously in
memory, and elements of a column have a memory stride of at least the number of columns in
the tile. Another representation where both the row and column strides are greater than one is
possible; however, this later representation is not yet considered in SLATE, and is incompatible
with the traditional BLAS.

SLATE supports converting tiles’ layout for performance considerations. Layout conversion is
mainly motivated by the fact that some algorithms perform much faster when access to a tile’s
element is contiguous in a row-major layout, or a column-major layout. The following sections
explain the API and mechanisms used to establish layout conversion, especially tiles that cannot
be transposed in-place.

9.1 Layout representation and API

The column-major or row-major layout (referred to as layout herein) is defined by the enum:
enum class Layout: char
{

ColMajor = ’C’,
RowMajor = ’R’

};

The tile’s layout is stored at the tile instance (indicating the Col/Row major storage of a tile’s
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data) in the Tile::layout_ member variable (Algorithm 9.1). Similarly, the matrix layout
(defaulting to ColMajor) is stored at the BaseMatrix::layout_member variable (Algorithm 9.2).
A MOSI operation (tileGetForReading(), tileGetForWriting(), etc...) specifies the layout of
the destination tile instance using the following enum:
enum class LayoutConvert : char
{

ColMajor = ’C’,
RowMajor = ’R’,
None = ’N’

};

Algorithms 9.1 to 9.3 show the function signatures of the API that manages tile layout conversions
at the Tile, BaseMatrix, and MatrixStorage classes. The mechanisms by which tile conversion
is established are explained in the next section.

9.2 Layout conversion

To foster high performance, algorithms in SLATE should operate in their preferred layout. For
example, in LU factorization, row swapping during pivoting performs much better on devices
when the tiles are in row-major. However, the panel factorization in the LU factorization prefers
the col-major layout. As such, a runtime conversion between row-major and col-major layout is
needed at the start of any computational or internal routine to ensure the tiles are in the needed
layout. Obviously, the computational routine must reset the tiles layout when computations are
done to the matrix original layout.

Layout conversion is implicitly handled at the MOSI calls by supplying the intended layout to
the tileGet***() routines. As such, each computational routine sets a local variable indicating
its preferred tile layout for computations, and passes this to any subroutine call. In turn, some
internal routines can operate in both row-major or col-major tile layout, and receive a parameter
to determine which layout to use, for example, internal::gemm. However, other internal
routines can operate only in one of the col-major or row-major layouts, and enforce it through
the tileGet***() call. It is a general and preferred practice in SLATE to fetch the set of tiles to
operate on at the beginning of each internal routine using the tileGet***() calls, which receive
a parameter instructing it to convert the tiles to one of the layouts (LayoutConvert::ColMajor or
LayoutConvert::RowMajor), or not to convert at all (LayoutConvert::None) because the routine
is layout indifferent.

Inside tileGet***(), the logic to copy and transpose is implemented within the
BaseMatrix::tileCopyDataLayout() routine, which is a private function called only from
the tileGet() routine. To avoid extra memory allocations, this routine checks if one if the tiles
has a back buffer that can be used as workspace. Additionally, for performance purposes, out of
place transposition is always done on device.

The routines BaseMatrix::tileLayoutConvert**() are available to convert the layout of a tile
or set of tiles into the intended layout on a certain device, possibly in batch mode. However, it is
important to note that these routines should rarely be needed and are best avoided. All layout
conversions should be achievable through the MOSI tileGet***() routines, which in turn call
the tile conversion routines.
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Algorithm 9.1 Tile’s layout member functions and member variables.

class Tile
{

...
// Returns the current layout
Layout layout() const;

// Sets the current layout, stride, and front buffer
void setLayout(Layout in_layout);

// Returns the current layout of user-provided buffer
Layout userLayout() const { return user_layout_; }

// Returns whether the front memory buffer is contiguous
bool isContiguous() const;

// Returns whether the user’s memory buffer is contiguous
bool isUserContiguous() const;

// Returns whether this tile can safely store its data in transposed form
// based on its ’TileKind’, buffer size, Layout, and stride.
bool isTransposable();

// Attaches the new_data buffer to this tile as an extended buffer
void makeTransposable(scalar_t* data);

// Resets the tile’s member fields related to being extended.
void layoutReset();

// Returns whether this tile has an extended buffer
bool extended() const;

// Returns the pointer to the user allocated buffer
scalar_t* userData();

// Returns the pointer to the extended buffer
scalar_t* extData();

// Returns the pointer to the back buffer
scalar_t* layoutBackData();

// Returns the stride of the back buffer
int64_t layoutBackStride() const;

// Convert layout of this tile
// work_data must be provided if the tile is rectangular and unextended
// queue must be provided if conversion is to happen on device
void layoutConvert( scalar_t* work_data = nullptr );
void layoutConvert( blas::Queue& queue, bool async = false );
void layoutConvert( scalar_t* work_data , blas::Queue& queue, bool async = false );

protected:
int64_t stride_;
int64_t user_stride_; // Stores user-provided-memory’s stride

scalar_t* data_;
scalar_t* user_data_; // Points to user-provided memory buffer.
scalar_t* ext_data_; // Points to auxiliary buffer.

/// layout_: The physical ordering of elements in the data buffer:
/// - ColMajor: elements of a column are 1-strided
/// - RowMajor: elements of a row are 1-strided
Layout layout_;
Layout user_layout_; // Stores user-provided-memory’s layout

...
};
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Algorithm 9.2 Matrix’s layout member functions and member variables.

class BaseMatrix
{
...
public:

// Returns the matrix layout flag
Layout layout() const;

// Returns the layout of tile(i, j, device/host)
Layout tileLayout(int64_t i, int64_t j, int device=host_num_);

// Converts tile(i, j, device) into ’layout’.
void tileLayoutConvert(int64_t i, int64_t j, int device, Layout layout,

bool reset = false, bool async = false);

// Converts a set of tiles on device into ’layout’.
void tileLayoutConvert(std::set<ij_tuple >& tile_set , int device,

Layout layout, bool reset = false);

void tileLayoutConvert(int device, Layout layout, bool reset = false);

void tileLayoutConvertOnDevices(Layout layout, bool reset = false);

void tileLayoutReset(int64_t i, int64_t j, int device, Layout layout);

void tileLayoutReset(std::set<ij_tuple >& tile_set , int device, Layout layout);

void tileLayoutReset();
...

protected:
/// intended layout of the matrix. defaults to ColMajor.
Layout layout_;

};

Algorithm 9.3 Matrix’s layout member functions and member variables.

class MatrixStorage
{
...
public:

void tileMakeTransposable(Tile<scalar_t >* tile);
void tileLayoutReset(Tile<scalar_t >* tile);

...
};
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Keep in mind that, as a tile can have instances in any of the memory spaces available at the
hardware computation node, a tile instance layout is independent of the layout of other instances
of the same tile. Additionally, conversion of a tile instance’s layout does not change its MOSI
state, i.e. a tile does not become MOSI::Modified by changing its layout since the data is still the
same, only represented differently in memory.

9.2.1 Layout conversion of extended tiles

SLATE allocates and manages memory through the Memory class. At the construction of any
matrix (Matrix, TriangularMatrix, etc..), the parent BaseMatrix constructor instantiates a
MatrixStorage object, which acts as an interface to the Memory object. Ideally, a large pool of
memory is allocated at the matrix construction through the Memory object. Shallow copies of the
matrix share the same MatrixStorage and Memory objects.

The tiles inserted at the matrix object may occupy memory provided by the user upon construction
of the matrix, or otherwise occupy memory blocks provided by the Memory object. Memory
provided by the user for a tile may be contiguous, or may be strided, while memory provided by
the Memory object is provided in square contiguous blocks.

For converting a layout into the same memory, the tile’s memory needs to be contiguous or
square. Tiles whose memory is strided and are rectangular cannot be transposed into the same
memory. To facilitate a seamless layout conversion of all tiles, a mechanism of extending the tiles
memory is used. An extended tile has an extra memory buffer attached to it, which facilitates
transposing the tiles data back and forth between the original memory buffer and the extended
memory buffer. Auxiliary member variables of the Tile class help maintain consistent flags and
memory buffer pointers of the extended tile, as shown in Algorithm 9.1. At any time, the front
buffer of an extended tile (can be the original memory buffer referred to as Tile::user_data_, or
the extended buffer referred to as Tile::ext_data_), holds the most up-to-date data and in the
current layout. The logic to manage the buffers and stride is contained in the Tile::setLayout()
routine. In order to ensure that tiles remain in consistent states, this is the only routine that
should change the front buffer and stride.
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