
Parallel Computing 86 (2019) 66–81

Contents lists available at ScienceDirect

Parallel Computing

journal homepage: www.elsevier.com/locate/parco

Performance of asynchronous optimized Schwarz with one-sided

communication

Ichitaro Yamazaki a , ∗, Edmond Chow

b , Aurelien Bouteiller a , Jack Dongarra

a

a University of Tennessee, Knoxville, TN, USA
b Georgia Institute of Technology, Atlanta, Georgia, USA

a r t i c l e i n f o

Article history:

Received 26 June 2018

Revised 19 February 2019

Accepted 14 May 2019

Available online 15 May 2019

a b s t r a c t

In asynchronous iterative methods on distributed-memory computers, processes update their local so-

lutions using data from other processes without an implicit or explicit global synchronization that cor-

responds to advancing the global iteration counter. In this work, we test the asynchronous optimized

Schwarz domain-decomposition iterative method using various one-sided (remote direct memory access)

communication schemes with passive target completion. The results show that when one-sided com-

munication is well-supported, the asynchronous version of optimized Schwarz can outperform the syn-

chronous version even for perfectly balanced partitionings of the problem on a supercomputer with uni-

form nodes.

© 2019 Published by Elsevier B.V.

m

p

i

s

o

t

a

c

t

c

s

u

d

r

o

t

t

c

r

l

m

t

e
1. Introduction

Global synchronization in a bulk-synchronous distributed-

memory parallel program can be explicit (e.g., use of barriers

or collective communications) or implicit (e.g., all processes ex-

change data with their “neighbors”). All the participating pro-

cesses must wait for the slowest process at the synchronization

point. Hence, synchronization exposes any load imbalance or non-

uniform hardware performance (e.g., non-uniform cost of commu-

nication among the processes, system noise [1]). Such imbalances

tend to grow as more processes are used on larger distributed-

memory computers. Consequently, the time needed for the explicit

or implicit global synchronizations can become a large portion of

the execution time of a distributed-memory code. The US Depart-

ment of Energy has identified the effect of synchronization as one

of the primary performance-limiting factors on anticipated exas-

cale supercomputers [2,3] .

A common solution to address synchronization issues has been

to move away from bulk-synchronous programming to task-based

parallel programming. However, task-based programming does not

fit many algorithms of interest, such as iterative methods, which

are mathematically defined to operate on data in lock-step fash-

ion. To break away from lock-step operation, asynchronous iterative

methods have been proposed. In these mathematically-different
∗ Corresponding author. The author has recently moved to Sandia National Labo-

ratories, New Mexico, U.S.A.

E-mail address: iyamaza@sandia.gov (I. Yamazaki).

i

n

e

a

https://doi.org/10.1016/j.parco.2019.05.004

0167-8191/© 2019 Published by Elsevier B.V.
ethods, processes utilize whatever data is available from other

rocesses without waiting to synchronize at every iteration. Hence,

n an asynchronous iterative method, before new data arrives from

lower processes, faster processes perform extra iterations with

ld data to improve their local solutions. The slower processes

hen iterate with more accurate data from the faster processes

nd may converge with fewer local iterations. Overall, the asyn-

hronous method may reach the global solution in less time than

he synchronous method.

Previous research on asynchronous solvers (such as [4,5]) fo-

used on using two-sided communication supported by the Mes-

age Passing Interface (MPI). To send the data to a remote process

sing two-sided communication, the process must coordinate the

ata transfer with the remote process. We feel it is more natu-

al for asynchronous solvers to use one-sided remote direct mem-

ry access (RDMA) operations. In these operations, the values in

he remote memory can be read or written without the interac-

ion of the remote process. Thus, unlike using two-sided MPI, to

omplete the communication requested by the origin process, the

emote process does not need to be involved (e.g., enter the MPI

ibrary). Communication latency may be reduced. Moreover, for

essages longer than the eager limit, the two-sided communica-

ion may not overlap with computation. However, although mod-

rn implementations of MPI provide access to the RDMA capabil-

ties of the underlying network hardware, these capabilities are

ot always well-supported by different versions of MPI for differ-

nt hardware. In this paper, we study various implementations of

synchronous communication.

https://doi.org/10.1016/j.parco.2019.05.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/parco
http://crossmark.crossref.org/dialog/?doi=10.1016/j.parco.2019.05.004&domain=pdf
mailto:iyamaza@sandia.gov
https://doi.org/10.1016/j.parco.2019.05.004

I. Yamazaki, E. Chow and A. Bouteiller et al. / Parallel Computing 86 (2019) 66–81 67

i

s

t

S

o

S

“

a

c

f

S

g

o

c

s

e

t

o

c

f

a

t

c

e

i

c

a

m

m

u

t

g

i

a

g

d

g

l

s

t

t

a

t

2

a

e

g

c

p

t

u

I

c

t

t

s

t

u

w

w

a

o

t

c

w

t

f

t

w

s

t

S

h

c

t

t

S

e

l

o

m

c

c

i

s

c

c

b

a

t

c

p

c

m

a

M

s

n

p

t

t

p

c

t

u

a

e

3

l

L

w

m

t

w

b
For comparison, we also test asynchronous communication us-

ng Symmetric Hierarchical MEMory (SHMEM), which provides

imilar functionality as MPI one-sided communication. In contrast

o MPI, however, SHMEM follows the Partitioned Global Address

pace (PGAS) programming model, which assumes a global mem-

ry address space that is logically partitioned across processes. In

HMEM, therefore, a process can access remote data through the

symmetric” memory that has the same size and address space on

ll the processes. SHMEM was previously used to implement Ja-

obi’s method [4] .

Our study is based on the asynchronous version of a

ast-converging domain decomposition solver called optimized

chwarz [6–8] . Compared with classical Schwarz (whose conver-

ence rate is similar to those of other fixed-point iterative meth-

ds like block Jacobi or block Gauss-Seidel), optimized Schwarz can

onverge significantly faster when its parameters are properly cho-

en. The results in this paper, however, are applicable to other it-

rative methods.

Previous work on asynchronous Schwarz methods, in addition

o using two-sided MPI as mentioned above, only tested the meth-

ds using irregular meshes partitioned across distributed-memory

omputers with non-uniform nodes, i.e., the nodes can have dif-

erent CPU types [5,9] . In this scenario, it is easy to show that

synchronous methods will outperform synchronous versions of

he method. In our study, we study the performance of the asyn-

hronous method for problems on 2-D regular meshes that are

venly distributed among the processes running on theoretically

dentical nodes (that are relevant to current and future super-

omputers, including exascale supercomputers). We find that the

synchronous method converges, and when asynchronous com-

unication is well-supported, it can outperform the synchronous

ethod even for balanced partitioning due to performance non-

niformities.

An additional issue with asynchronous iterative methods is how

o detect convergence of the iterations. In synchronous methods, a

lobal residual norm computation is performed, usually at every

teration. This corresponds to an explicit global synchronization. In

synchronous methods, no global iteration count is available, so a

lobal residual norm while iterations are progressing is difficult to

efine. Not being the focus of this paper, we use a simple conver-

ence detection technique for our experimental tests.

The rest of the paper is organized as follows. After listing re-

ated work in Section 2 , we outline, in Section 3 , the algorithms

tudied in this paper. We then describe our implementations of

he algorithms in Section 4 . Finally, we list our experimental se-

ups in Section 5 , and benchmark the communication subroutines

nd present the solver performance in Sections 6 and 7 , respec-

ively. Final remarks are made in Section 8 .

. Related work

Previous work studied asynchronous variants of the classical

nd optimized Schwarz methods on distributed-memory comput-

rs; see [5,9–12] , respectively. Previous work also proved conver-

ence of the asynchronous optimized Schwarz method in certain

onditions (there is no convergence proof for the case of 2-D grid

artitioning used in this paper), and demonstrated the potential of

he method over standard (synchronous) optimized Schwarz when

sing unbalanced partitions on nodes with different CPU types [5] .

n contrast, we are interested in asynchronous performance in the

ase of balanced partitions on a current supercomputer with iden-

ical nodes and a high-bandwidth interconnect. Further, we use

rue asynchronous remote memory access rather than attempt to

imulate asynchronous remote memory access with non-blocking

wo-sided communication. In recent years, one-sided MPI was

sed for other types of iterative solvers such as Jacobi or South-
ell [13–16] , including in the asynchronous case. While previous

ork focused on showing the potential of the asynchronous iter-

tion to improve performance, our focus, in addition to focusing

n balanced partitions and a more powerful domain decomposi-

ion iterative solver, is to study the effects of various asynchronous

ommunication schemes on solver performance. In [4] , SHMEM

as also tested for the asynchronous Jacobi method, while only

wo-sided communication was utilized for MPI. In [17] , a few dif-

erent ways of using two-sided and one-sided MPI to implement

he asynchronous communication for a general iterative algorithm

ere proposed, but without performance results. We extend this

tudy by testing several options (e.g., different ways of flushing

he local data in Section 4.2) and provide benchmark results (in

ection 6).

A number of asynchronous termination detection algorithms

ave been proposed for asynchronous solvers to detect global

onvergence without synchronization [18,19] . In our implementa-

ion, global convergence is reached when all the processes detect

hat their local solutions satisfy a local convergence criteria (see

ection 4.3). While waiting for notification of global convergence,

ach process continues to iterate, potentially updating its local so-

ution using new data from neighboring processes. The challenge

f detecting global convergence is that, although local convergence

ay have been achieved using old data from a neighboring pro-

ess, the process may need to perform additional iterations to re-

over local convergence once new data arrives from the neighbor-

ng processes. The previously-proposed algorithms [18,19] integrate

everal mechanisms to ensure that all the processes achieve lo-

al convergence at the same time. In this paper, to detect global

onvergence, we rely on a simple algorithm that is based on the

inary-tree arrangement of the processes (see Section 4.3).

High-level communication libraries have been developed for

synchronous solvers [20,21] . These, however, use non-blocking

wo-sided communication primitives and do not use truly asyn-

hronous communication. (These libraries are also not currently

ublicly available.) In this work, we use the one-sided communi-

ation routines of MPI, which are readily available on distributed-

emory computers and whose vendor-optimized implementations

re often available on many supercomputers. In the context of

PICH, a plugin called Casper has been developed to help en-

ure asynchronous progress of one-sided “accumulate” commu-

ication using a progress process [22] (in contrast to using a

rogress thread). There is also an MPI-3 based PGAS runtime sys-

em, called DART [23] , which uses the progress process to ensure

he asynchronous progress of the communication. In [24,25] , the

rogrammability of different programming environments for asyn-

hronous iterative algorithms was discussed in the context of mul-

ithreaded and grid computing.

Although we experimentally show the effect of the parameters

sed in optimized Schwarz on solver performance, there have been

nalytical studies for selecting the optimal values for these param-

ters on several model problems [5,7] .

. Optimized Schwarz method

The optimized Schwarz method solves a boundary value prob-

em of the form

 (x) = b in �

C(x) = c on ∂�, (1)

here L and C are partial differential operators defined on the do-

ain � and its boundary ∂�, respectively. In the Schwarz method,

he domain � is partitioned into multiple subdomains �p either

ith or without overlap (for p = 1 , 2 , . . . , n p where n p is the num-

er of subdomains and equivalently the number of processes).

68 I. Yamazaki, E. Chow and A. Bouteiller et al. / Parallel Computing 86 (2019) 66–81

T

t

i

a

h

o

o

d

l

A

w

t

s

D

(

t

∞

S

s

s

t

H

v

t

e

n

f

d

t

i

b

p

w

s

t
Then, at each iteration, the approximation to the solution x is up-

dated by solving the restriction of the problem onto each subdo-

main, using a certain interface condition between subdomains. In

the classical Schwarz method, a Dirichlet condition is used on the

interface between the subdomains. The independent subdomain

problems can be solved in parallel.

To improve the convergence of the classical Schwarz, optimized

Schwarz uses a Robin boundary condition. In this paper, we use

the OO0 condition

∂x

(a)

∂n

+ αx

(a) =

∂x

(b)

∂n

+ αx

(b) on ∂�p \ ∂�, (2)

on the interface involving subdomains a and b , where n is a direc-

tion normal to the interface, and where α is a tuning parameter

chosen to optimize the convergence of the method. The optimized

Schwarz method has been successfully applied to many models

and applications, including Maxwell equations [26,27] , Helmholtz

equations [28–30] , fluid dynamics [31] , convection-diffusion [32] ,

and reaction-diffusion problems [33] .

4. Implementation of optimized Schwarz

For our experiments, we focus on solving the 2-D Poisson equa-

tion with Dirichlet boundary conditions on a square domain. We

use a 5-point finite difference discretization, leading to the linear

algebraic equations L x = b . On a distributed-memory computer, we

assume that the processes are organized on a q -by- q processor grid

such that the p th process is the (i, j)th process on the grid with

i := � p / q � and j := p mod q . The global finite difference mesh is

partitioned into non-overlapping subdomains, one subdomain per

process. Let m -by- m denote the size of the local mesh for each of

these subdomains. Fig. 1 shows an example partitioning with q = 3

and m = 2 .

To form a set of overlapping subdomains, each non-overlapping

subdomain is extended in each direction (except at the bound-

aries of the global domain) by γ grid points. Fig. 1 highlights one

of these overlapping subdomains. In the figure, the interface of

this subdomain corresponds to the blue points, which are called

local interface points. The non-local grid points that are directly

connected to the local interface points are called external inter-

face points, shown in red. The points corresponding to the non-

overlapping subdomain, shown in green, are called interior points .
Fig. 1. Example finite difference mesh. Orange dashed lines show the partitioning

of the 2-D mesh with q = 3 and m = 2 . One non-overlapping subdomain is shown

in green. Its corresponding overlapping subdomain (with γ = 1) is the union of

the green and the blue points. For this subdomain, its interface corresponds to the

blue points, which are called local interface points. The red points connected to the

blue points are called external interface points. The green points are called interior

points. (For interpretation of the references to color in this figure legend, the reader

is referred to the web version of this article.)

i

r

t

4

n

t

i

a

c

e

i

n

o

p

c

c

c

m

l

w
he solution and right-hand-side vectors are distributed according

o this domain decomposition scheme.

The local matrix corresponding to the overlapping subdomain

n this example has size 16-by-16. The matrix is ordered using

 natural, row-major numbering of the grid points Each process

as a local right-hand-side vector (both the non-overlapped and

verlapped portions), and is responsible for computing the non-

verlapped part of the global solution vector.

For the Robin interface condition (2) , we approximate the

erivative with a one-sided finite difference formula. Thus, our p th

ocal submatrix A p is given by

 p = L p − D p ,

here L p is the sparse Laplacian matrix and D p is the diagonal ma-

rix that arises from the interface condition. For our example, as-

uming a unit mesh spacing, D p is the 16-by-16 diagonal matrix

 p = diag (2 β, β, β, 2 β, β, 0 , 0 , β, β, 0 , 0 , β, 2 β, β, β, 2 β)

spacing is used to help identify how the elements of this ma-

rix are mapped to mesh points) where β =

1
1+ α . Thus, when α =

 (or equivalently β = 0), the method is equivalent to classical

chwarz (with Dirichlet interface conditions), i.e., A p = L p .

For our implementation used in this paper, we store the local

ubmatrix A p in compressed sparse row (CSR) format. We use a

parse direct method for solving the local problems, in particular,

he multifrontal symmetric indefinite linear solver MA57 from the

SL mathematical software library [34] .

To update the local interface elements of the right-hand-side

ector, each process sends elements of the current solution vec-

or to its neighboring process (which correspond to the local and

xternal interface elements of the neighboring process). Then, the

eighboring process computes the derivatives normal to the inter-

ace. It is also possible for each process to compute and send the

erivatives to neighboring processes. This halves the communica-

ion volume. However, as we describe in Section 4.3 , with the min-

mum overlap (γ = 1), these local interface elements are also used

y the neighboring process for the local convergence test (to com-

ute the local residual norm). Thus, in our current implementation,

e let the neighboring process compute the derivatives.

In the following two sections, we describe our design of the

ynchronous and asynchronous point-to-point communication of

he interface elements (Sections 4.1 and 4.2). We also describe our

mplementation of the asynchronous termination detection algo-

ithm for checking for global convergence without synchroniza-

ion (Section 4.3).

.1. Synchronous communication

For synchronous iterations, we implement the point-to-point

eighborhood communication using MPI two-sided communica-

ion subroutines. More specifically, each process first packs the

nterior elements to be sent to each neighboring process into

 communication buffer and calls MPI_Isend . Similarly, to re-

eive the interface’s elements, each process calls MPI_Irecv for

ach of the neighboring processes, and then unpacks the elements

nto the local vector after calling MPI_Wait for MPI_Irecv . Fi-

ally, each process calls MPI_Wait to wait for the completion

f MPI_Isend . This leads to synchronizations among neighboring

rocesses.

When load imbalance exists between a pair of neighboring pro-

esses, it may be possible to overlap the point-to-point communi-

ation behind the local computation. Namely, we can delay syn-

hronizing MPI_Isend until we start packing the interface ele-

ents into the communication buffer at the next iteration. Simi-

arly, after unpacking the interface elements into the local vector,

e can call MPI_Irecv to prepare to receive the message from

I. Yamazaki, E. Chow and A. Bouteiller et al. / Parallel Computing 86 (2019) 66–81 69

Fig. 2. Implementation illustrations. In (a), boxes represent local computation,

while arrows show point-to-point communication of the interface elements. In (b),

processes are arranged in a binary tree for asynchronous termination detection.

t

t

p

i

d

t

t

b

4

a

t

l

w

n

o

a

t

(

a

t

m

p

c

i

t

p

a

i

n

i

a

i

f

e

t

a

n

t

m

t

i

a

t

o

f

f

m

c

w

c

c

t

s

g

t

t

c

o

t

4

c

s

t

s

fi

g

e

s

n

a

w

m

t

t

o

o

r

b

t

e

c

c

t

a

t

a

c

a

o

s

t

O

d

s

r

c

fi

e

m

c

n
he next iteration (we used MPI_Wait , instead of MPI_Waitall ,
o overlap the communication with other local tasks such as un-

acking or packing the message). Unfortunately, when the load

s balanced (e.g., between a pair of the slowest processes), this

oes not overlap the communication because the processes need

o wait for the MPI_Recv message before starting the next itera-

ion. Fig. 2 (a) illustrates the communication with imbalanced and

alanced load.

.2. Asynchronous communication

MPI-2 introduced one-sided communication between “origin”

nd “target” processes (e.g., MPI_Put and MPI_Get). In con-

rast to two-sided communication, one-sided communication al-

ows an origin process to access the target’s remote memory

ithout synchronizing with the target process, making it a more

atural communication scheme for asynchronous iterative meth-

ds. Each process can designate part of its local memory as

 remotely-accessible memory called a “window object” created

hrough a collective MPI call among the participating processes

e.g., MPI_Win_create). We can then open a time frame, called

n “epoch,” within which the participating processes can access

he window. For instance, in the “passive” data synchronization

ode, an origin process can open an epoch with a specific target

rocess using the target’s MPI rank. We used this passive data ac-

ess mode to implement our asynchronous communication, which

s all point-to-point. There are two other access modes called “ac-

ive,” and “generalized active,” that open the epoch with all the

articipating processes or with the subset of the processes using

n MPI sub-communicator, respectively.

For our asynchronous implementation, like our synchronous

mplementation, interior elements are first packed into a commu-

ication buffer before calling MPI_Put to push all these elements

nto the remotely-accessible memory of the neighboring processes

t once. A separate window object is created for each neighbor-

ng process to potentially perform the communication with dif-

erent processes in parallel. After each call to MPI_Put , we call

ither MPI_Win_flush or MPI_Win_flush_local such that

he origin process waits for the completion of the data transfer

t the target or origin process, respectively (the target process is

ot involved). To compute the derivatives, each process unpacks

he locally-available interface elements in its remotely-accessible

emory into the local solution vector at each iteration. Compared

o two-sided communication, the execution of MPI_Put does not

nvolve the target process. This not only avoids synchronization

mong the neighboring processes, but also allows communication

o be overlapped with the local computation or pipelined with
ther communication. To overlap the communication, we place

lush or flush_local to flush the data in the message buffer

or the previous put just before using the buffer for the next com-

unication.

As a comparison, we also used SHMEM to implement asyn-

hronous communication in a similar manner. In particular, since

e focus on the balanced problem, we allocate a fixed-size

ommunication buffer in the symmetric memory on each pro-

ess for receiving the interface data. At each step, each process

hen packs the interface elements into the local buffer and uses

hmem_double_put to send the local buffer’s data into the tar-

et process’s remote buffer; shmem_double_put returns when

he data is copied out of the local buffer, and hence, when it re-

urns, the data may not be delivered at the target yet. Finally, we

all shmem_quiet to locally wait for the completion of the put
perations issued by the origin process and to ensure ordering of

he remote write operations.

.3. Termination detection

Our solver terminates the asynchronous iterations when the lo-

al convergence criterion, ‖ ̄r p ‖ 2 2
< τ 2 ‖ ̄b p ‖ 2 2

, on all the processes is

atisfied. Here, r̄ p and b̄ p are the residual and right-hand-side vec-

ors on the interior points of the p th subdomain, and τ is a user-

pecified threshold. When the local convergence criterion is satis-

ed on all the processes, then ‖ r ‖ 2 < τ‖ b ‖ 2 , i.e., the global conver-

ence criterion is also satisfied.

To compute the local residual norm on the interior points at

ach step, each process uses the current interior elements of the

olution vector (which are computed by this process), and the

on-local elements directly connected to the interior points (which

re received from the neighboring process). The interior submatrix

ith the edges to the neighboring subdomains is stored in CSR for-

at for the process to locally apply the sparse matrix-vector mul-

iply and compute the residual vector. Our detection is based on

he minimum residual norm in order to avoid the process coming

ut of the local convergence state.

Our asynchronous termination detection procedure uses MPI

ne-sided communication. We implemented an asynchronous all-

educe of the local convergence notifications and an asynchronous

roadcast of the global termination notification based on a binary-

ree arrangement of the processes (see Fig. 2 (b)). At each iteration,

ach process, except the root process, checks whether the local

onvergence criterion has been satisfied and if the process has re-

eived convergence notifications from both of its child processes. If

hese two conditions are met, the process uses MPI_Put to send

n integer flag indicating convergence to its parent process. Once

he root process receives the notification from its child processes

nd satisfies its own local convergence criterion, it then sends its

hildren the global termination notification, which is sent down

long the binary tree. We note that processes continue iterating

nly until they receive the global termination notification. Fig. 3

hows our implementation of the asynchronous termination detec-

ion procedure using MPI one-sided communication subroutines.

ur SHMEM implementation of the termination detection proce-

ure is identical to the MPI implementation, except that it uses

hmem_int_put instead of MPI_Put .
After the local convergence criterion is satisfied, as a process

eceives new interface elements, its local residual norm could in-

rease such that the local convergence criterion is no longer satis-

ed. Nevertheless, we found that this algorithm is sufficient in our

xperiments, i.e., by the time the process receives the global ter-

ination notification, its residual norm generally satisfies the local

onvergence criterion. After the asynchronous iterations are termi-

ated on all the processes, the global residual norm was explicitly

70 I. Yamazaki, E. Chow and A. Bouteiller et al. / Parallel Computing 86 (2019) 66–81

Fig. 3. The binary-tree based asynchronous termination detection (‘ ip ’ and ‘ np ’ are the process id and the number of processes, respectively). When the first or second

entry of the array converged is one, it indicates that the left or right child has locally converged, while the third entry of the array indicates that global convergence is

achieved.

M

v

M

A

p

A

b

c

I

t

t

I

o

(

t

u

c

p

p

n

c

l
computed and was of the same order of magnitude as that speci-

fied by the global convergence criterion.

We could implement a synchronous termination detection al-

gorithm in the same fashion. However, we used MPI_Allreduce
on an integer flag of which the value of one or zero indicates lo-

cal convergence or nonconvergence, respectively. Therefore, when

the resulting value of the all-reduce is n p , this indicates that

global convergence was achieved. Many supercomputers have the

vendor-optimized version of MPI_Allreduce , which should per-

form better than a user-implemented binary-tree based algorithm.

5. Experimental setup

We conducted all of our experiments on either the Haswell or

Knights Landing (KNL) nodes of the Cori supercomputer at NERSC.

Each of the Haswell nodes has two 16-core Intel Xeon E5-2698

v3 Haswell CPUs and 128 GB of main memory, while each of the

KNL nodes has 68-core Intel Xeon Phi 7250 KNL CPUs on a sin-

gle socket, and 16 GB of MCDRAM and 96 GB of DDR4 memo-

ries. These nodes are connected through the Cray Aries intercon-

nect with Dragonfly topology.

We loaded the latest version (7.7.0) of the Cray

MPI (a derivative of MPICH), which is system installed

on Cori. The C solver calls MPI_Init_thread with the
PI_THREAD_MULTIPLE mode, and with the following en-

ironment values: MPICH_MAX_THREAD_SAFETY = multiple ,
PICH_NEMESIS_ASYNC_PROGRESS = 1 , and MV2_ENABLE_
FFINITY = 0 . We then compiled the code using Cori’s com-

iler wrapper cc for the Intel compiler version 2018.0.1.163 .
lthough Cray MPI is the default on Cori, Intel MPI can also

e used. Thus, to test Intel MPI on the Haswell nodes, we

ompiled our code using the Intel C compiler mpiicc from

ntel library version 2018.0.1.163 with the -O3 optimiza-

ion flag. For these experiments with Intel MPI, we used

he environment values I_MPI_ASYNC_PROGRESS = 1 and

_MPI_PROGRESS_PIN = yes . To perform the dense vector

perations, we linked our solver with Intel’s Math Kernel Library

MKL) on the Haswell nodes; on the KNL nodes, we linked it with

he Cray Scientific Libraries package, LibSci.

For our experiments with SHMEM on the Haswell CPUs, we

sed the default Cray SHMEM version 7.6.2. We then compiled the

ode using Cori’s compiler wrapper cc for the default Intel com-

iler and linked it with MKL.

Since we focus on square processor grids, we launched eight

rocesses per socket, and thus 16 processes per node, on Haswell

odes, while we used 36 processes per node on KNL nodes. We

onsider the computed local solution had converged when the

ocal residual � 2 -norm is reduced by at least seven orders of

I. Yamazaki, E. Chow and A. Bouteiller et al. / Parallel Computing 86 (2019) 66–81 71

m

r

6

t

p

6

m

c

m

d

c

(

g

a

t

t

i

c

m

c

t

M

W

u

v

d

p

v

t

a

s

f

f

a

n

i

t

s

n

m

F

b

agnitude. To show the variation in performance, we report the

esults of 3–5 independent runs.

. Communication benchmark results

Before investigating the performance of the solver, we profile

he performance of MPI in various modes on the Cori supercom-

uter.

.1. Benchmark results on Haswell

Fig. 4 (a) shows benchmark results for different modes of com-

unication using Cray MPI across two Haswell nodes. Data was ex-

hanged 10 0 0 times for different data lengths, N . Two-sided com-

unication (i.e., MPI_Send and MPI_Recv) is compared to three

ifferent ways of performing one-sided communication:

• Use MPI_Win_lock_all and MPI_Win_unlock_all . Send

all data (length N) with a single MPI_Put .
• Use MPI_Win_lock and MPI_Win_unlock with

MPI_LOCK_SHARED . Send all data (length N) with a sin-

gle MPI_Put .
• Use MPI_Win_lock and MPI_Win_unlock with

MPI_LOCK_SHARED . Send each double precision element

with a separate MPI_Put .
In all cases, the epoch is opened once before the first put and

losed after the last put .
We used MPI_Win_flush_local after putting all the data

length N), which ensures that the data is flushed from the ori-

in process; note however that this does not enforce an immedi-

te update at the target. We see that sending one element at a
ig. 4. Performance of Cray MPI. In (a)–(c), the markers show the median bandwidths

andwidths.
ime leads to significantly lower bandwidth utilization compared

o sending one accumulated message at once. We also see that us-

ng lock_all or lock did not affect the performance. In these

ases, one-sided communication obtained about the same perfor-

ance as two-sided communication.

Fig. 4 (b) shows results for the same cases as Fig. 4 (a), ex-

ept that MPI_Win_flush is used to make sure the data

ransfer is completed at the target process, in contrast with

PI_Win_flush_local which enforces only origin completion.

e did not see significant differences in the average performance

sing either flush or flush_local . However, some runs gave

ery low bandwidth, as shown by the error bars in the figure, in-

icating how the tighter synchronization with the target in flush
ropagate delays to the origin process and increase performance

ariability.

Fig. 4 (c) shows the performance where we now open and close

he epoch for each one-sided communication. We also tested the

lternative of opening an epoch using MPI_Win_lock for exclu-

ive data access. We clearly see that although opening the epoch

or shared data access was slightly cheaper than opening the epoch

or exclusive data access, opening and closing the epoch each time

dded significant overhead to one-sided communication.

All these benchmark results show that, here, one-sided inter-

ode communication is not faster than two-sided communication—

.e., any performance benefit of the asynchronous solver is not due

o faster data transfer. The results also suggest aggregating mes-

ages if possible, and avoiding opening and closing the epoch if

ot necessary.

In Fig. 4 (d), we used the Intel MPI Benchmark (IMB) for bench-

arking the performance of all-reduce (since our synchronous
of the five separate runs, while the error bars show the maximum and minimum

72 I. Yamazaki, E. Chow and A. Bouteiller et al. / Parallel Computing 86 (2019) 66–81

Fig. 5. Performance of Intel MPI using the same configurations as in Fig. 4 (a) and (d).

Fig. 6. Effective bandwidth between two processes on the same node.

t

t

6

s

b

n

i

K

c

n

e

7

c

7

c

u

p

t
termination detection algorithm sums a single integer value among

all the processes). The figure shows the increasing cost of all-

reduce as the number of MPI processes increases.

Fig. 5 (a) and 5 (b) show results for Intel MPI corresponding to

Fig. 4 (a) and 4 (d), respectively. Intel MPI is not officially supported

on Cori, and we clearly see the lower performance of Intel MPI for

short messages compared to the vendor-optimized Cray MPI. We

will exploit this performance difference between these two imple-

mentations, giving different relative communication vs. computa-

tion cost, when testing solver performance.

Fig. 6 shows performance of Cray MPI for processes on the same

node. Notably, significantly higher bandwidth can be utilized in

this case compared to those on two different nodes, as shown ear-

lier in Fig. 4 (a). Even with the balanced partitioning of the prob-

lem, these different costs of inter/intra-node communication could

lead to a load imbalance among the processes—where the syn-

chronous iteration with two-sided communication will block at

the global or neighborhood synchronization points until the com-

munication with all the participating processes are completed. On

the other hand, asynchronous communication avoids these syn-

chronization points. Furthermore, using Cray MPI between the two

processes on the same node, one-sided communication was faster

than two-sided communication.

Finally, to study how well MPI_Put overlaps with local compu-

tation, we modified the non-blocking collective benchmark in IMB.

The results in Table 1 show that although Intel MPI asynchronous

communication was slower than that of Cray MPI, it provided bet-
er overlap of between 50 ∼ 57%, compared with the overlap of be-

ween 16 ∼ 35% obtained by Cray MPI.

.2. Benchmark results on knights landing

Fig. 7 shows the benchmark results of using one-sided or two-

ided MPI on the KNL nodes of Cori. Communication is slower

etween a pair of processes on KNL nodes than on the Haswell

odes; multiple KNL processes may need to utilize the network

nterface to saturate the bandwidth available. We also see, in the

NL case, that data transfer is significantly faster between pro-

esses on the same node. These non-uniform costs of inter/intra-

ode communication again lead to imbalance among the processes

ven when work is partitioned evenly.

. Solver performance results

We now compare the performance of synchronous and asyn-

hronous versions of the optimized Schwarz solver.

.1. Convergence behavior with MATLAB

Since it is challenging to analyze solver behavior once asyn-

hronicity is enabled, we first study solver performance by sim-

lating the asynchronous iterations using MATLAB. We use a 2 × 2

rocessor grid, and these four processes, or subdomains, are iden-

ified by (1,1), (1,2), (2,1), and (2,2). Fig. 8 shows the convergence

I. Yamazaki, E. Chow and A. Bouteiller et al. / Parallel Computing 86 (2019) 66–81 73

Table 1

Communication and computation overlap; (1) pure communication time t pure : the time between a call to

MPI_Put immediately followed by a call to MPI_Win_flush_local , (2) computation time t CPU : the time

taken by a repeated computation of a small in-cache dense matrix-vector multiply that is supposed to take as

long as t pure , (3) total time t ovrl : the time to finish the simultaneous communication and computation, and (4)

overlap: the percentage computed as (t pure + t CPU − t ovrl) / min (t pure , t CPU) . The time is in microseconds.

Cray MPI Intel MPI

bytes t ovrl t pure t CPU overlap % t ovrl t pure t CPU overlap %

4 4.28 2.30 2.37 16.59 155.94 98.78 123.24 53.62

8 4.22 2.28 2.32 16.23 160.53 99.14 128.57 52.26

16 4.10 2.22 2.24 15.80 155.23 95.66 125.15 52.40

32 4.16 2.27 2.30 18.05 160.60 98.20 128.68 51.51

64 4.05 2.17 2.22 15.28 159.99 96.07 128.11 50.10

128 4.18 2.29 2.34 19.12 160.20 98.69 127.80 51.87

256 4.40 2.61 2.66 32.75 158.63 98.71 125.78 52.36

512 4.33 2.62 2.62 34.87 152.51 99.99 120.96 56.58

1024 4.37 2.66 2.66 35.61 153.46 100.81 122.56 57.04

Fig. 7. Performance of Cray MPI on KNL nodes using flush_local .

Fig. 8. Convergence of synchronous and asynchronous iterations, where “8 asynch, (1,1)” and “8 asynch” show the (1,1)th process’ local residual norm and the global residual

norm, respectively, when one of the processes runs 8 × slower than the others (m = 64 , p = 2 , α = 0 . 055) (For interpretation of the references to color in this figure, the

reader is referred to the web version of this article.).

74 I. Yamazaki, E. Chow and A. Bouteiller et al. / Parallel Computing 86 (2019) 66–81

Table 2

One-sided communication schemes for asynchronous solver using MPI or SHMEM.

Notation Description

flush call MPI_Win_flush right after MPI_Put to complete data copy at target

flush-local call MPI_Win_flush_local right after MPI_Put to complete data copy at origin

overlap call MPI_Win_flush before next MPI_Put to overlap data copy with computation

overlap-local call MPI_Win_flush_local before next MPI_Put to overlap data copy with computation

put call shmem_fence right after shmem_double_put
put-overlap call shmem_fence before next shmem_double_put

Fig. 9. Breakdown of average synchronous iteration time (Cray MPI), where “Reduce” is the global collective needed for the convergence check, “P2P” is the neighborhood

communication of the interface elements, “SpMV” is the sparse-matrix vector multiply needed for computing the local residual norm, “Update” is for updating the interface

elements of the right-hand-side, and “Solve” is the local subdomain solve.

T

a

t

p

c

s

s

c

W

b

s

e

N

t

p

g

c

p

f

c

t

c

c

c

i

t

w

w

c

s

a

i

b
of the residual norms where we assumed that the communication

is instantaneous and hence it cannot be overlapped with the com-

putation, but process (1,1) is running 8 × slower than the others.

The plot on the left shows the convergence of the local resid-

ual norms with respect to the local iteration step. We see that the

residual norm for the slower process (denoted by the red cross

mark ‘+’) converges faster than those obtained when all the pro-

cesses are progressing at the same speed (shown as the dotted

blue lines). This is because the slower process updates its local so-

lution using more accurate boundary information from the faster

neighboring processes.

The plot in the middle then shows the local residual norm with

respect to the time step, where the unit time is considered to be

the one iteration step of the faster processes. We see that the con-

vergence of the neighboring process is slowed down by the slow

process because they do not receive the update on the boundary

from the (1,1)th process for a fixed number of iterations. Since the

(2,2)th process has a smaller overlap with the (1,1)th process its lo-

cal convergence (denoted by the black circle markers ‘o’) is affected

less by the slow process. However, the slowdown of the conver-

gence eventually propagates from the (1,1)th process to all the pro-

cesses. In addition, especially in the beginning, the local residual

norm of the (2,2)th process spikes up when the new information

arrives from the slow process, and a couple iterations are needed

to bring the residual norm back down.

Finally, the figure on the right shows the global residual norm

and demonstrates that, compared with the synchronous iteration,

the asynchronous iteration may reduce the time to solution, even

without hiding the communication, because the slower process

converges with fewer local iterations.

7.2. Solver performance on Haswell

We now compare the performance of synchronous and asyn-

chronous optimized Schwarz on the Cori supercomputer. In
able 2 , we list the one-sided communication schemes used by our

synchronous solver in our experiments.

Fig. 9 shows the breakdown of the average synchronous itera-

ion time using Cray MPI on the Haswell CPUs. We fixed the local

roblem size but varied the number of subdomains. Since the lo-

al problem size is fixed, the time needed for the local subdomain

olve and for the point-to-point communication are expected to

tay constant, while the time for the all-reduce is expected to in-

rease with the increasing number of subdomains (e.g., O (log (n p))).

e observed that as we increase the process count, a small num-

er of processes spend more time solving the local problem at

ome iterations (due to hardware noises). This increased the av-

rage solve time slightly with the increasing number of processes.

evertheless, we see that on a large enough number of processes,

he communication becomes significant in the iteration time. In

articular, the all-reduce needed to check for the global conver-

ence is often more expensive than the point-to-point communi-

ation for exchanging the overlap elements with the neighboring

rocesses. This may be because the communication latency cost

or the global collective is greater than that for the neighborhood

ommunication. In addition, however, the all-reduce time includes

he faster processes’ idling time while waiting for the slowest pro-

esses due to the load imbalance introduced by the neighborhood

ommunication. Without termination detection, this idling time

ould appear at the neighborhood synchronization points (i.e., the

mplicit global synchronization).

Fig. 10 (a) shows the breakdown of the iteration time using In-

el MPI. We observed that compared with using the Cray compiler

rapper, the local solve time was longer using the Intel compiler

ithout the Cray compiler wrapper. However, using Intel MPI, the

ommunication becomes significant even on a smaller number of

ubdomains. Fig. 10 (b) shows the breakdown of the average iter-

tion time where we fixed the number of subdomains but var-

ed the local problem size, again using Intel MPI. Since the num-

er of subdomains is fixed, the time needed for the all-reduce

I. Yamazaki, E. Chow and A. Bouteiller et al. / Parallel Computing 86 (2019) 66–81 75

Fig. 10. Breakdown of average synchronous iteration time (Intel MPI). On top of each bar, we show the total solution time/the number of iterations.

Fig. 11. Performance of asynchronous solver using Cray MPI with m = 32 on 32-by-32 grid. The asynchronous communication did not seem to overlap with the local

computation, and the asynchronous solver did not obtain significant performance gain.

c

w

c

l

A

i

c

p

s

c

t

i

a

m

F

f

a

o

c

t

t

t

a

t

b

c

a

a

S

d

s

n
ommunication is expected to stay the same. On the other hand,

e expected the time for the point-to-point communication to in-

rease linearly with the problem size m , while the time for the

ocal subdomain solve is expected to increase cubically with m .

gain, we see that the communication can be significant in the

teration time.

Fig. 11 (a) then compares the average asynchronous and syn-

hronous iteration time using Cray MPI. Even with the balanced

artition on the homogeneous nodes, the error bars in the figure

how significant variations in the iteration time among the pro-

esses. The asynchronous termination detection algorithm avoids

he global all-reduce needed by the synchronous algorithm, mak-

ng the asynchronous iteration faster than the synchronous iter-

tion. In all the cases using Cray MPI, the asynchronous com-

unication seems not to overlap with the local computation.

ig. 11 (b) shows the corresponding time-to-solution using the dif-

erent asynchronous communication schemes. Using Cray MPI, the
synchronous iterations obtained a solution time similar to that

f the synchronous iteration. The primary reason is that the asyn-

hronous communication did not progress behind the local compu-

ation. This led not only to the sub-optimal asynchronous iteration

ime, but also to the processes iterating with old information on

he boundary, and an afferent increase in the iteration count for

ll the processes. Overall, compared to the synchronous iteration,

he asynchronous iteration could not reduce the time-to-solution

ecause its reduction in the iteration time could not offset the in-

rease in the iteration count.

Fig. 12 shows similar breakdowns for the asynchronous iter-

tion using Cray SHMEM and Intel MPI. We now see that the

verage asynchronous iteration time is much shorter using Cray

HMEM’s put-overlap or Intel MPI’s overlap-local that is

esigned to overlap the communication. Fig. 13 shows the corre-

ponding time-to-solution using the different one-sided commu-

ication configurations. We achieved the best solver performance

76 I. Yamazaki, E. Chow and A. Bouteiller et al. / Parallel Computing 86 (2019) 66–81

Fig. 12. Breakdown of average asynchronous iteration time. The error bars show the maximum, mean, and minimum average iteration times among the processes.

Fig. 13. Effect of parameter α on asynchronous solver performance.

i

e

c

c

i

g

t

a

t

v

p

t

o

u

t

t

t

o

g

fi

e
using the communication scheme that allows good overlapping of

the communication and local computation.

To show the benefits of the asynchronous iteration, we provide

more detailed performance results using Intel MPI. Fig. 14 shows

the effects of the parameter α on the performance of the syn-

chronous and asynchronous solvers for three different local prob-

lem sizes. We use flush_local for the asynchronous commu-

nication to overlap with the computation (i.e., overlap-local).
As a larger value of α is used, the Robin transmission condition

(used by the optimized Schwarz on the interface) becomes closer

to the Dirichlet condition used by the classical Schwarz method,

leading to a larger iteration count. Optimal performance is ob-

tained using a smaller α for a larger local problem, and the figures

show optimized Schwarz’s superior performance over the classical

Schwarz. We also see that the asynchronous method tends to pre-

fer a smaller α compared to the synchronous method. When the

local problem is smaller, communication becomes more expensive

than the local computation. Therefore, each process is likely to per-

form more iterations with the older values of the solution vector

on the interfaces. The arrival of the new interface values could re-

sult in a significant increase in the local residual norm. As a result,

there is a wider variation in the iteration counts needed by the

asynchronous methods on a smaller m .
We now compare the convergence of the residual norm us-

ng synchronous and asynchronous iterations. At each iteration,

ach MPI process locally checks for the solution convergence by

omputing its local residual norm on its interior points. The pro-

ess saves this local residual norm, along with the time stamp,

n its local data structure. To plot the convergence history of the

lobal residual norm, after the iteration terminates, we estimate

he global residual norm by accumulating the local residual norms

long with the time stamp. With the asynchronous communica-

ion, the local residual norm may be computed using the solution

ector’s interface elements that may not be most recent. We ex-

licitly computed the global residual norm after the iteration was

erminated by the asynchronous algorithm, and it was on the same

rder as the specified tolerance.

Fig. 15 (a) and 15 (b) show the convergence of the global resid-

al norm with respect to time when termination detection is

urned off and on, respectively. We clearly see that synchronous

ermination detection adds significant overhead to the iteration

ime, while asynchronous termination detection only has a small

verhead. In both cases, the asynchronous iteration reached the

lobal convergence faster than the synchronous iteration. In the

gures, we also show the convergence of the synchronous it-

ration when we delay synchronizing MPI_Isend to hide the

I. Yamazaki, E. Chow and A. Bouteiller et al. / Parallel Computing 86 (2019) 66–81 77

Fig. 14. Effect of the parameter α on the performance of synchronous and asynchronous solvers using 16-by-16 processor grid. Using the optimal value of α, both the median

and minimum time to solution is faster using the asynchronous iteration with the speedup of about 1.2 × , 1.8 × , or 1.3 × with m = 32 , 64, or 96, respectively, compared

with using the synchronous iteration. However, for a small local problem (e.g., m = 32) where the iteration time is dominated by the communication, the performance of

the asynchronous solver can become unstable due to the irregular convergence.

Fig. 15. Global residual norm convergence history (m = 64 and α = 0 . 0065 on 16-by-16 processor grid).

78 I. Yamazaki, E. Chow and A. Bouteiller et al. / Parallel Computing 86 (2019) 66–81

Fig. 16. Local residual norm convergence history (m = 64 and α = 0 . 0065 on 16-by-16 processor grid). The synchronous method converged with 141 iterations.

Fig. 17. Breakdown of average synchronous iteration time on KNL, with m = 64 and 24-by-24 processor grid. Using the optimal value of α, both the median and minimum

time to solution was faster using the asynchronous iteration with the speedup of about 1.2 × , compared with using the synchronous iteration (For interpretation of the

references to color in this figure, the reader is referred to the web version of this article.).

7

o

C

f

t

t

c

t

t
communication (as described in Section 4.1). Unfortunately, the

communication may not overlap between the processes without

load imbalance (e.g., a pair of the slowest neighboring processes

on different nodes), and we see that the iteration time was not

reduced by trying to overlap the communication.

Fig. 16 then shows the variation in the convergence of the local

residual norms across the different processes that used the asyn-

chronous iterations. Although there are some spikes in the local

residual norm convergence, they are small enough to validate our

global convergence detection based on the minimum local residual

norm.
.3. Solver performance on knights landing

To study the performance of asynchronous optimized Schwarz

n a different hardware architecture, we show its performance on

ori’s KNL nodes in Fig. 17 . The main difference from the results

or the Haswell nodes is that, using Cray MPI on the KNL nodes,

he average asynchronous iteration time was shorter relative to

he synchronous iteration time (e.g., more processes per node). Be-

ause of this, the asynchronous method was able to outperform

he synchronous method. To summarize the results, Fig. 18 shows

he convergence of the global residual norm with and without

I. Yamazaki, E. Chow and A. Bouteiller et al. / Parallel Computing 86 (2019) 66–81 79

Fig. 18. Global residual norm convergence history (m = 64 and α = 0 . 004 on 24-by-24 processor grid).

Fig. 19. Effect of parameter α on synchronous optimized Schwarz iteration counts, using a q -by- q processor grid and m x -by- m x local mesh size.

Table 3

Parallel scaling of synchronous and asynchronous iterations with termination detection. In the synchronous case,

two variants are tested, one using MPI_Wait (standard variant) and one using MPI_Waitall . In the asynchronous

case, the range given by “iters” is the fewest and largest number of local iterations that were executed across all

processes. The label “rel. rnorm” denotes the relative residual norm reduction that was measured after completion of

the iterations.

(a) Weak scaling (m = 64).

q 12 18 24 30 36 42

α 0.0090 0.0055 0.0043 0.0035 0.0027 0.0023

time synch wait (s) 0.616 0.738 0.800 0.982 1.13 1.28

time synch waitall (s) 0.646 0.670 0.990 1.120 1.10 1.51

α 0.0086 0.0051 0.0038 0.0031 0.0026 0.0023

time asynch (s) 0.586 0.611 0.741 0.883 1.06 1.28

iters synch 105 161 196 249 274 284

iters asynch 154 ∼ 229 138 ∼ 228 206 ∼ 278 273 ∼ 331 294 ∼ 371 345 ∼ 449

rel. rnorm synch 4 . 5 × 10 −8 4 . 9 × 10 −8 5 . 1 × 10 −8 6 . 4 × 10 −8 5 . 0 × 10 −8 5 . 4 × 10 −8

rel. rnorm asynch 6 . 6 × 10 −10 4 . 0 × 10 −9 3 . 0 × 10 −9 3 . 7 × 10 −9 7 . 6 × 10 −9 3 . 0 × 10 −10

(b) Strong scaling (m · q = 1440).

q 12 18 24 30 36 48

α 0.0050 0.0048 0.0045 0.0042 0.0041 0.0041

time synch wait (s) 1.75 0.994 1.150 0.631 0.512 0.463

time synch waitall (s) 1.82 0.879 0.851 0.992 0.477 0.647

α 0.0044 0.0041 0.0041 0.0041 0.0041 0.0041

time asynch (s) 1.89 0.992 0.669 0.543 0.505 0.413

iters synch 126 166 193 203 213 273

iters asynch 127 ∼ 169 176 ∼ 229 155 ∼ 275 280 ∼ 366 338 ∼ 462 414 ∼ 635

rel. rnorm synch 5 . 1 × 10 −8 1 . 0 × 10 −7 7 . 2 × 10 −8 5 . 7 × 10 −8 6 . 3 × 10 −8 6 . 5 × 10 −8

rel. rnorm asynch 3 . 4 × 10 −8 8 . 3 × 10 −9 3 . 8 × 10 −9 6 . 1 × 10 −10 9 . 2 × 10 −10 7 . 3 × 10 −10

80 I. Yamazaki, E. Chow and A. Bouteiller et al. / Parallel Computing 86 (2019) 66–81

Table 4

Parallel scaling of synchronous and asynchronous iterations with timer.

(a) Weak scaling (m = 64 for 0.5 s).

q 12 18 24 30 36 42

α 0.0090 0.0055 0.0043 0.0035 0.0027 0.0023

rel. rnorm synch 3 . 9 × 10 −5 1 . 3 × 10 −7 4 . 1 × 10 −4 2 . 5 × 10 −3 2 . 6 × 10 −2 3 . 6 × 10 −2

α 0.0086 0.0051 0.0038 0.0031 0.0026 0.0023

rel. rnorm asynch 8 . 1 × 10 −9 5 . 8 × 10 −6 7 . 4 × 10 −6 2 . 0 × 10 −4 5 . 7 × 10 −4 2 . 3 × 10 −3

(b) Strong scaling (m · q = 1440 for 0.3 s).

q 12 18 24 30 36 48

α 0.0050 0.0048 0.0045 0.0042 0.0041 0.0041

rel. rnorm synch 7 . 4 × 10 −1 3 . 6 × 10 −2 5 . 4 × 10 −2 1 . 1 × 10 −2 9 . 2 × 10 −5 1 . 7 × 10 −5

α 0.0044 0.0041 0.0041 0.0041 0.0041 0.0041

rel. rnorm asynch 3 . 3 × 10 −1 2 . 6 × 10 −2 7 . 9 × 10 −4 5 . 7 × 10 −7 9 . 1 × 10 −7 5 . 9 × 10 −9

c

o

h

s

a

f

s

t

o

t

s

t

m

A

p

C

N

r

C

F

R

termination detection. In this case, the performance of the syn-

chronous iteration was not significantly improved by removing

the global synchronization needed for the convergence check. In

Fig. 17 (a), the time needed for the global synchronization (colored

in blue) is the combination of the time needed for the collective

communication and the idling time needed to wait for the slowest

process. Avoiding the global synchronization reduces the collective

communication cost, while the load imbalance is eventually ex-

posed at the neighborhood synchronization points to exchange the

interface data. Cray MPI had a greater difference in the inter and

intra communication costs, compared to Intel MPI used in Fig. 15 ,

where removing the global synchronization had more significant

effects.

Finally, we compare the synchronous and asynchronous opti-

mized Schwarz methods in terms of their weak and strong parallel

scaling behavior. In these tests, we selected values of α that ob-

tain the fastest convergence of the synchronous method for each

combination of local grid size m -by- m and processor grid size q -

by- q (see Fig. 19). We then adjusted these values of α for the

asynchronous method. The asynchronous method typically prefers

a smaller value of α than the synchronous method, as shown pre-

viously, for example, in Fig. 14 .

Table 3 shows the parallel scaling behavior of the methods with

termination detection activated. The time-to-solution is similar or

smaller for the asynchronous method than for the synchronous

method. We also observe that, especially with a larger number of

processes, the asynchronous method usually performs more iter-

ations before terminating. This indicates that there is a delay in

detecting global convergence in the asynchronous method. Conse-

quently, the measured residual norm after completion of the it-

erations is smaller in the asynchronous method than in the syn-

chronous method.

Table 4 shows results without termination detection. Each pro-

cess simply terminates after a specified time. Generally, as the

problem size increases (weak scaling), the convergence rate slows

down. As the number of subdomains increases while the global

problem size is fixed (strong scaling), the convergence rate im-

proves. We observe that the measured residual norm after com-

pletion of the iterations is generally smaller for the asynchronous

method than for the synchronous method. For strong scaling, the

communication to computation ratio increases as the number of

processes increases. When this ratio is larger, we observe that

the asynchronous method has a greater advantage over the syn-

chronous method.

8. Conclusion

In this paper, we used MPI one-sided communication to im-

plement asynchronous optimized Schwarz on distributed-memory
omputers. Our experimental results suggest that the performance

f the asynchronous solver depends heavily on the software and

ardware support for remote memory access communication. With

upport for overlapping communication with computation, the

synchronous solver may outperform the synchronous solver, even

or a balanced distribution of the problem on the current leader-

hip supercomputer with uniform nodes and high-bandwidth in-

erconnect.

In future work, we will study the effect of race conditions

n asynchronous iterative methods, where two processes writing

o the same buffer simultaneously may lead to an erroneous re-

ult. We plan to compare the cost of error detection and correc-

ion against the potential slow down of convergence without such

echanisms (with respect to the frequency of errors).

cknowledgments

This material is based upon work supported by the U.S. De-

artment of Energy, Office of Science, Office of Advanced Scientific

omputing Research , Applied Mathematics program under Award

umbers # DE-SC0016513 and # DE-SC-0016564 . This research used

esources of the National Energy Research Scientific Computing

enter (NERSC), a U.S. Department of Energy Office of Science User

acility operated under Contract No. DE-AC02-05CH11231.

eferences

[1] K.B. Ferreira , P. Bridges , R. Brightwell , Characterizing application sensitivity to

OS interference using kernel-level noise injection, in: Proceedings of the SC -
International Conference for High Performance Computing, Networking, Stor-

age and Analysis, 2008, pp. 1–12 .
[2] Office of Science and Office of Advanced Scientific Computing Research , Scien-

tific grand challenges: architectures and technology for extreme scale comput-

ing, Technical Report, U.S. Department of Energy, 2009 .
[3] Office of Science and Office of Advanced Scientific Computing Research , Ex-

ascale Programming Challenges, Technical Report, U.S. Department of Energy,
2011 .

[4] I. Bethune , J. Bull , N. Dingle , N. Higham , Performance analysis of asynchronous
Jacobi’s method implemented in MPI, SHMEM and openmp, Int. J. High Per-

form. Comput. Appl. 28 (2014) 97–111 .

[5] F. Magoulès , D. Szyld , C. Venet , Asynchronous optimized Schwarz methods
with and without overlap, Numer. Math. 137 (2017) 199–227 .

[6] V. Dolean , P. Jolivet , F. Nataf , An Introduction to Domain Decomposition Meth-
ods: Algorithms, Theory, and Parallel Implementation, Society for Industrial

and Applied Mathematics, Philadelphia, 2015 .
[7] M. Gander , Optimized Schwarz methods, SIAM J. Numer. Anal. 44 (2006)

699–731 .
[8] F. Nataf , Recent Developments on Optimized Schwarz Methods, in: O.B. Wid-

lund, D.E. Keyes (Eds.), Domain Decomposition Methods in Science and Engi-

neering XVI, Springer Berlin Heidelberg, Berlin, Heidelberg, 2007, pp. 115–125 .
[9] F. Magoulès , Asynchronous Schwarz methods for peta and exascale comput-

ing, in: B. Topping, P. Iványi (Eds.), Developments in Parallel, Distributed, Grid
and Cloud Computing for Engineering, Saxe-Coburg, Stirlingshire, UK, 2013,

pp. 229–248 .

https://doi.org/10.13039/100006192
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0001
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0001
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0001
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0001
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0002
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0002
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0003
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0003
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0004
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0004
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0004
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0004
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0004
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0005
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0005
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0005
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0005
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0006
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0006
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0006
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0006
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0007
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0007
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0008
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0008
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0009
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0009

I. Yamazaki, E. Chow and A. Bouteiller et al. / Parallel Computing 86 (2019) 66–81 81

[

[

[

[

[

[

[

[

[

[

[

[
[10] M. Chau , T. Garcia , P. Spiteri , Asynchronous Schwarz methods applied to con-
strained mechanical structures in grid environment, Adv. Eng. Softw. 74 (2014)

1–15 .
[11] A. Frommer , H. Schwandt , D. Szyld , Asynchronous weighted additive Schwarz

methods, Electron. Trans. Numer. Anal. 5 (1997) 48–61 .
[12] E. Laitinen , A. Lapin , J. Pieskä, Asynchronous domain decomposition methods

for continuous casting problem, J. Comput. Appl. Math. 194 (2003) 393–413 .
[13] J. Wolfson-Pou , E. Chow , Reducing communication in distributed asynchronous

iterative methods, in: Proceedings of the ICCS Workshop on Mathematical

Methods and Algorithms for Extreme Scale, 2016, pp. 1906–1916 .
[14] J. Wolfson-Pou , E. Chow , Distributed Southwell: an iterative method with low

communication costs, in: Proceedings of the International Conference for High
Performance Computing, Networking, Storage, and Analysis (SC), 2017 .

[15] J. Wolfson-Pou , E. Chow , Convergence models and surprising results for the
asynchronous Jacobi method, in: Proceedings of the IEEE International Parallel

and Distributed Processing Symposium (IPDPS), 2018 .

[16] J. Wolfson-Pou , E. Chow , Modeling the asynchronous Jacobi method without
communication delays, J. Parallel Distrib. Comput. (2019) toappear .

[17] D. El Baz , Communication study and implementation analysis of parallel asyn-
chronous iterative algorithms on message passing architectures, in: Proceed-

ings of the EUROMICRO International Conference on Parallel, Distributed and
Network-Based Processing, 2007, pp. 77–83 .

[18] J. Bahi , S. Contassot-Vivier , R. Couturier , F. Vernier , A decentralized conver-

gence detection algorithm for asynchronous parallel iterative algorithms, IEEE
Trans. Parallel Distrib. Syst. 16 (2005) 4–13 .

[19] J. Bahi , S. Contassot-Vivier , R. Couturier , An efficient and robust decentralized
algorithm for detecting the global convergence in asynchronous iterative algo-

rithms, in: Proceedings of the International Conference on High Performance
Computing for Computational Science (VECPAR), 2008, pp. 240–254 .

20] F. Magoulès , G. Gbikpi-Benissan , JACK: An asynchronous communication kernel

library for iterative algorithms, J. Supercomput. 73 (2017) 3468 .
[21] F. Magoulès , G. Gbikpi-Benissan , JACK2: An MPI-based communication li-

brary with non-blocking synchronization for asynchronous iterations, Adv. Eng.
Softw. 119 (2018) 116–133 .

22] M. Si , A.J. Peña , J. Hammond , P. Balaji , M. Takagi , Y. Ishikawa , Casper: An asyn-
chronous progress model for MPI RMA on many-core architectures, in: Pro-

ceedings of the IEEE International Parallel and Distributed Processing Sympo-

sium (IPDPS), 2015, pp. 665–676 .
23] H. Zhou , J. Gracia , Asynchronous progress design for a MPI-based PGAS
one-sided communication system, in: Proceedings of the International Confer-

ence on Parallel and Distributed Systems (ICPADS), 2016, pp. 999–1006 .
24] J.M. Bahi , S. Contassot-Vivier , R. Couturier , Dynamic load balancing and effi-

cient load estimators for asynchronous iterative algorithms, IEEE Trans. Parallel
Distrib. Syst. 16 (2005) 289–299 .

25] J.M. Bahi , S. Contassot-Vivier , R. Couturier , Performance comparison of parallel
programming environments for implementing AIAC algorithms, J. Supercom-

put. 35 (2006) 227–244 .

26] V. Dolean , M. Gander , L. Gerardo-Giorda , Optimized Schwarz methods for
Maxwell’s equations, SIAM J. Scient. Comput. 31 (2009) 2193–2213 .

[27] Y.-X. He , L. Li , S. Lanteri , T.-Z. Huang , Optimized Schwarz algorithms for solv-
ing time-harmonic Maxwell’s equations discretized by a hybridizable discon-

tinuous Galerkin method, Comput. Phys. Commun. 200 (2016) 176–181 .
28] P. Chevalier , F. Nataf , Symmetrized method with optimized second-order con-

ditions for the Helmholtz equation, in: Domain Decomposition Methods, 10,

1997, pp. 400–407 .
29] M. Gander , F. Magoulès , F. Nataf , Optimized Schwarz methods without overlap

for the Helmholtz equation, SIAM J. Scient. Comput. 24 (2002) 38–60 .
30] M. Gander , L. Halpern , F. Magoulès , An optimized Schwarz method with

two-sided robin transmission conditions for the Helmholtz equation, Int. J. Nu-
mer. Methods Fluids 55 (2007) 163–175 .

[31] O. Dubois , M. Gander , S. Loisel , A. St-Cyr , D. Szyld , The optimized Schwarz

method with a coarse grid correction, SIAM J. Scient. Comput. 34 (2012)
A421–A458 .

32] V. Martin , An optimized Schwarz waveform relaxation method for the un-
steady convection diffusion equation in two dimensions, Appl. Numer. Math.

52 (2005) 401–428 .
33] M. Gander , L. Halpern , Optimized Schwarz waveform relaxation methods

for advection reaction diffusion problems, SIAM J. Numer. Anal. 45 (2007)

666–697 .
34] The HSL Mathematical Software Library, MA57: Sparse symmetric system:

multifrontal method, http://www.hsl.rl.ac.uk/catalogue/ma57.html .

http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0010
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0010
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0010
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0010
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0011
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0011
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0011
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0011
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0012
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0012
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0012
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0012
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0013
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0013
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0013
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0014
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0014
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0014
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0015
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0015
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0015
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0016
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0016
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0016
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0017
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0017
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0018
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0018
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0018
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0018
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0018
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0019
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0019
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0019
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0019
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0020
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0020
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0020
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0021
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0021
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0021
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0022
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0022
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0022
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0022
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0022
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0022
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0022
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0023
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0023
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0023
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0024
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0024
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0024
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0024
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0025
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0025
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0025
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0025
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0026
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0026
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0026
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0026
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0027
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0027
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0027
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0027
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0027
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0028
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0028
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0028
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0029
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0029
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0029
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0029
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0030
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0030
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0030
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0030
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0031
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0031
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0031
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0031
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0031
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0031
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0032
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0032
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0033
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0033
http://refhub.elsevier.com/S0167-8191(18)30126-1/sbref0033
http://www.hsl.rl.ac.uk/catalogue/ma57.html

	Performance of asynchronous optimized Schwarz with one-sided communication
	1 Introduction
	2 Related work
	3 Optimized Schwarz method
	4 Implementation of optimized Schwarz
	4.1 Synchronous communication
	4.2 Asynchronous communication
	4.3 Termination detection

	5 Experimental setup
	6 Communication benchmark results
	6.1 Benchmark results on Haswell
	6.2 Benchmark results on knights landing

	7 Solver performance results
	7.1 Convergence behavior with MATLAB
	7.2 Solver performance on Haswell
	7.3 Solver performance on knights landing

	8 Conclusion
	Acknowledgments
	References

