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Dense Linear Algebra in Applications

* Dense Linear Algebra (DLA) is needed in a wide variety of science and engineering
applications, including ML and data analytics problems:

* Linear systems: Solve Ax =b

«  Computational electromagnetics, material science, applications using
boundary integral equations, airflow past wings, fluid flow around ship
and other offshore constructions, and many more
 Least squares: Find x to minimize || Ax-b ||
«  Computational statistics (e.g., linear least squares or ordinary least squares),
econometrics, control theory, signal processing, curve fitting, and many more
 Eigenproblems: Solve Ax = A x

- Computational chemistry, quantum mechanics, material science, face recognition,
PCA, data-mining, marketing, Google Page Rank, spectral clustering, vibrational
analysis, compression, and many more

- SVD: A=UZXV*(Au=o0vandA* =qou)

«  Information retrieval, web search, signal processing, big data analytics, low rank
matrix approximation, total least squares minimization, pseudo-inverse, and many more

* Many variations depending on structure of A :
*  Acan be symmetric, positive definite, tridiagonal, Hessenberg, banded, E - e
sparse with dense blocks, etc. - © gl
 DLA is crucial to the development of sparse solvers " sUNIVERSITYor
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Leverage latest numerical

algorithms and building blocks
MAGMA, PLASMA, SLATE (DOE funded) ,
MAGMA Sparse, POMPEI project*

Polymorphic approach

Use MAGMA sub-packages for various
architectures;

Provide portability through single
templated sources using C++

Programming model
BLAS tasking + scheduling

Open standards
OpenMP4 tasking + MPI

LA for modern architectures

Use of BLAS for portability

LINPACK (70’s)

(Vector operations)

LAPACK (80’s)

(Blocking, cache
friendly)

ScaLAPACK (90’s)
(Distributed Memory)

PLASMA (00’s)

New Algorithms

(many-core friendly)

MAGMA Ny

Hybrid Algorithms 1

(heterogeneity friendly)

Level 1 BLAS

Level 3 BLAS

PBLAS

BLAS on tiles +
DAG scheduling

BLAS tasking +
(CPU/ GPU / Xeon Phi )
hybrid scheduling

v NIVERSITYof
icLd>
INNIOVATIVE TENNESSEE

COMPUTING LABORATORY and Computer Science




Level 1, 2 and 3 BLAS

Nvidia P100, 1.19 GHz, Peak DP = 4700 Gflop/s

4800 I I I I I I I I I I

V nvibia TESLA :

“iENinARAn

4400 - _ — = - - - )
4000 - 2 _
3600 - - _
3200 - 31 _
X
2800 - g _
2=
© 2400 _
[r—
O 2000 | _

y=y+A*X
1600 |- _

145 Gflop/s
1200 - =@=dgemm BLAS Level 3 /
- I y= & *X+y
800 dgemv BLAS Le)vz:;/
1

dax BLAS Le
400 @ ={—daxpy

Matrix size (N), vector size (NxN)

Nvidia P100

The theoretical peak double precision is 4700 Gflop/s U .
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What about accelerated LA for Data Analytics?

« Traditional libraries like MAGMA can be used as backend to accelerate the LA computations
In data analytics applications

 Need support for
1) New data layouts, 2) Acceleration for small matrix computations, 3) Data analytics tools

Need data processing and analysis support for Small matrices, tensors, and batched
Data that is multidimensional / relational computations

Fixed-size
batches

batches

Variable-size

Dynamic batches

matrix 3 order tensor

Tensors



Data Analytics and LA on many small matrices

* Machine learning,
« Data mining,

* High-order FEM,
* Numerical LA,

* Graph analysis,

Data Analytics and associated with it Linear Algebra on small LA
problems are needed in many applications:

* Neuroscience,

* Astrophysics,

¢ Quantum chemistry,

*  Multi-physics problems,
« Signal processing, etc.

Sparse/Dense solvers & preconditioners

Machine learning

Convolution

Pooling

Output (

Convolution Fully Output
connected predictions

= [ _———
& U o,
1]y -—% dog 0.0

L] H N — 1|

Convolution of Filters F; (feature detection) and input image D:

For every filter F, and every channel, the computation for
every pixel value O, , is a tensor contraction:

On,k = EDk.iFn.i

Plenty of parallelism; small operations that must be batched
With data “reshape” the computation can be transformed into
a batched GEMM (for efficiency; among other approaches)

Sparse / Dense Matrix DAG-based factorization

System m=) Batched LAPACK
111 A12 AlB A14_ i Y-, ,,,,,,:i @
A, ®0 0 Single calls to
“N\N\A ’ => Batched BLAS
Ay .
A41

Applications using high-order FEM

«  Matrix-free basis evaluation needs efficient tensor contractions,
Cil,i2,i3 = EAk,ilBk,iz,zs
k

«  Within ECP CEED Project, designed MAGMA batched methods
to split the computation in many small high-intensity GEMMs,
grouped together (batched) for efficient execution:

Batch_{ C,; = AT B,,, for range of i3 }



Programming model: BLAS + scheduling

MAGMA

hybrid scheduling

-

4 GPUs + CPU

BLAS tasking +

hybrid scheduling

Execution trace with hybrid task scheduling

Tllllll

GPU

&

l GPU

.

Critical Path

—

—

MAGMA Dynamic

Left-looking hybrid Cholesky

From sequential
LAPACK )

to parallel hybrid
MAGMA

1 for(j=0, j<n; j+=nb) {

for(j=0, j<n; j+=nb) {

zherk( “Upper”, “Conj

zpotrf2( “Upper”, &jb
if (info 1= 0)
*info +=j;

If (+ib) < n) {

}
}

ib = min(nb, n-j); J 3 magma_zherk( MagmaUpper, MagmaConjTr4

&jb, &, &one, | 4 magma_zgetmatrix_async( jb, jb, dA(j,j), ldd

(141 < 5 if (j+jb < n)
i (ngie mm']()“ConjUQate+ 6 magma_zgemm( MagmaConjTrans, Magm
A, &Id dA(0,j), Idda, dA(0,j+jb), Idg

,. 1]
11 magma_zsetmatrix_async(jb, jb, work, jb, dA B B
12 If(j+jb) <n){
ztrsm( “Left”, “Uppd 13 magma_event_sync( event );
&jb, &n n n

2 jb=min(nb, n-j);

jb, j, one, dA(0,j), Idda, one, d

7 magma_event_sync( event);

8 zpotrf( MagmaUpperStr, &jb, work, &jb, info);
9 if (info 1= 0)

10 *info +=j;

14 magma_ztrsm( MagmalLeft, MagmaUpper,
jb, n-j-jb, one, dA(j,j), Idda,

Note:

D and Scheduling with Chol

MAGMA runtime environment

P

} [A. Haidar, A. YarKhan, C. Cao, P. Luszczek, S. Tomov, and J. Dongarra, “Flexible Linear Algebra
ky Factorization”, 17th |EEE International

I Conference on High Performance Computing and Communications, New York, August 2015. ]

* MAGMA and LAPACK look similar

« Difference is lines in red, specifying data transfers and dependencies

« Differences are further hidden in a dynamic scheduler making the top level
representation of MAGMA algorithms almost identical to LAPACK
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Main Classes of Algorithms in MAGMA

* Hybrid algorithms

» GPU-only algorithms

Use both CPUs and GPUs

Entirely GPU code

MAGMA 2.3 LU factorization in double precision arithmetic

Intel Xeon E5-2650 v3 (Haswell) NVIDIA Kepler GPU NVIDIA Pascal GPU NVIDIA Volta GPU
CPU 2x10 cores @ 2.30 GHz m 15MP x 192 @ 0.88 GHz P100 56 MP x 64 @ 1.19 GHz V100 80 MP x 64 @ 1.38 GHz

6000
5000 ==\/100
©w
[«
S =®=P100
™ 4000
(O]
§ =W=K40
g 3000
S
o ==CPU
43
o 2000
1000
0 T T T T T T T T T T T T T T 1
2k 4k 6k 8k 10k 12k 14k 16k 18k 20k 22k 24k 26k 28k 30k 32k 34k 36k
Matrix size N x N
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Main Classes of Algorithms in MAGMA

o . . .
Hybrld a|90r|thm3 Performance of LU in DP
» Use both CPUs and GPUs CPU |2nxt% ﬁi?é‘fé?ﬁ’géi (ZHasweII) , s gj(;/:\%\ﬁta G1PéJs N
: | PCle e
» GPU-only algorithms
 Entirely GPU code 6000 l
|
: 5000 -
* QOut-of-GPU memory algorithms ,
. s . ¥ 4000
« LAthatis too large to fit into the main CPU/GPU memory S o
A. Haidar, K. Kabir, D. Fayad, S. Tomov, and J. Dongarra, “Out of Memory SVD ,_,(—3 3000 — O B
Solver for Big Data”, IEEE HPEC, September, 2017. 0] |« g “Hmagma_dgetrf
2000 2 %
3 . | S
Yuechao Lu, et al. on out-of-GPU memory GEMMs in RSVD, TASMANIAN, etc. 1000 -~ O
|
O L ]
10K 20K 30K 40K 50K 60K 70K 80K
Matrix size
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Main Classes of Algorithms in MAGMA

* Hybrid algorithms

e Use both CPUs and GPUs

» GPU-only algorithms

« Entirely GPU code

* QOut-of-GPU memory algorithms

« LAthatis too large to fit into the main CPU/GPU memory
. I\/I|xed -precision LA

Use new hardware features, e.g., Tensor Cores

A. Haidar, P. Wu, S. Tomov, and J. Dongarra, “Investigating half precision
arithmetic to accelerate dense linear system solvers”, SC'17 ScalA17
workshop, November 2017.

A. Haidar, S. Tomov, and J. Dongarra, and N. Higham, “Harnesing GPU Tensor
Cores for Fast FP16 Arithmetic to Speed up Mixed-Precision Iterative
Refinement Solvers”, SC'18 (accepted), November 2018.

Posters (GTC'18 2" place, ISC'18 15t place; 11K downloads in a month)

o N & O

Performance of solving Ax=b
using FP64 or IR with GMRes to achieve FP64 accuracy;

FP16-TC->64 dhgesv| ' ' ' ! ]
I FP16->64 dhgesv 2 1
FP32->64 dsgesv 410°
|-FPeddgesv | 37 .. :

.
-----
----------
.
.
.
l“‘
.
an®
--------
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ot
Y
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26k 30k 34k

14k 18k 22k
Matrix size

2k 4k 6k 8k 10k
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Main Classes of Algorithms in MAGMA
Hybrid algorithms

Use both CPUs and GPUs

GPU-only algorithms

Entirely GPU code

Out-of-GPU memory algorithms

LA that is too large to fit into the main CPU/GPU memory

Mixed-precision LA

Use new hardware features, e.g., Tensor Cores

Energy efficient

Build energy awareness and tradeoff with performance

Energy efficiency
(under ~ the same power draw)

... and 76 Gflop/Watt
using mixed-precision !

25

GFLOPs / Watt

\\\\$
20
10x
15
10
| il

0
CPU K40 P100 V100
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Main Classes of Algorithms in MAGMA
* Hybrid algorithms

+” Use both CPUs and GPUs
* GPU-only algorithms i Atnwbrgthystessars

« Entirely GPU code 3000 medium sizes

] 2 sizes Switch to non-

* Qut-0f-GPU memory algorithms g | Lo batched

» LAthat s too large to fit into the main CPU/GPU memory > C=C+A'B
* Mixed-precision LA T

* Use new hardware features, e.g., Tensor Cores : *Stnderd dgemm BLASS
. Energy efﬁCient 50~1000 matrices of size

 Build energy awareness and tradeoff with performance
 Batched LA

* LA on many small matrices

cLCoor NN
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Main Classes of Algorithms in MAGMA
* Hybrid algorithms

e Use both CPUs and GPUs

» GPU-only algorithms

» Entirely GPU code

* QOut-of-GPU memory algorithms

« LAthatis too large to fit into the main CPU/GPU memory Strong scalability of 3D FET on Summit (N = 1024)
* Mixed-precision LA

- x 6V100
« Use new hardware features, e.g., Tensor Cores o .40 Power

* Energy efficient

 Build energy awareness and tradeoff with performance > Assuming max bandwidth

200 22 x 12.5 GBJs = 50 GBls
o B t h d L A + Achieved performance is
dicne

200 1223/32 = 38 Gflop/s per node

L1111

1T
[2)

800

Memory bound scalability peak:

Gflop/s

. » or ~25 GB/s (this is maximum
* LA on many small matrices o ™ fthere is no duplexing)
1 2 4 8 16 32
P F FT # nodes
» FFTs, convolutions, auxiliary routines (transposes, matricizations, etc.)
mHElNIVERSITYof
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MagmaDNN

ceecee

» MagmaDNN is HP Data Analytics
— and ML framework built around
the MAGMA libraries aimed at
providing a modularized and
efficient tool for training DNNSs.

Applications

High-performance data analytics 2322
MagmaDNN and machine learning for many-

core CPUs and GPU accelerators %

Output @,
| O oo 4|
o :

(=

» MagmaDNN makes use of the
highly optimized MAGMA libraries
giving significant speed boosts
over other modern frameworks.

Scalable LA on new architectures

MAGMA Templates Data abstractions and APIs
Heterogeneous systems portability

e ™ 1
Single Heterogeneous Node

Tile algorithms
SLATE  LAPACK++

BLAS++ MAGMA (dense) MAGMA Batched MAGMA Sparse
< J
————————————————————————————————— Shared memory
[ScaLAPACKAPI] [ BLAS AP H LAPACK AP H Batched BLAS API
s Wome W, W,
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MagmaDNN

cececccecer

Applications : |
High-performance data analytics 2322 ey
MagmaDNN and machine learning for many- | = o |
core CPUs and GPU accelerators D oo DA R L
: Scalable LA on new architectures
MAGMA Templates Data abstractions and APIs
L Heterogeneous systems portability
e ™
Single Heterogeneous Node
Tile algorithms
SLATE  LAPACK++
BLAS++ MAGMA (dense) MAGMA Batched MAGMA Sparse
- Y,

[ScaLAPACK API]

Shared memory

[ BLAS API ] [ LAPACK API ] [ Batched BLAS API

MKL ESSL

cuBLAS

ACML

LA D Standard
libraries LA APIs

Run-time/
comm. APIs

Vendor
Libraries

SVD performance speedup

120

/1
<MAGMA-2

“O*MAGMA

J o =<>=MKL

EIGEN

5000 10000 15000
Matrix sizes
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Design process

Similar to TF or PyTorch

MagmaDNN is designed/
optimized with this training
paradigm in mind.

However, it is customizable.

Load Data

Preprocessing

Create/Load Model

Train Model
Export Model Predict
cLCor AT

N
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Workflow

o Load Data: Read-in any CSV, image, or other file
necessary for training.

o Preprocessing: Shape data and store in tensors.

o Create/Load Model: Restore a saved model or create

a new one using MagmaDNN’s Model class. Set
hyperparameters.

» Train Model: Fit the network using SGD.

o Predict: Use the fitted weights to predict class based
on new input.

o Export Model: Save model to be used again.

Load Data

Preprocessing

Create/Load Model

Train Model
Export Model Predict
cLoor AN
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Neural Network Ideas

Input

Hidden

Neural Networks are typically composed of layers
of linear transformations wrapped by activation
functions. The network is represented by some
function f.

After optimizing some loss criterion w.r.t. the
parameters of f, the function (or “network”)
becomes an accurate predictor of highly
abstracted data.

Other common, more complicated network types
exist: CNN, RNN, GANs, Belief Networks,
Boltzmann

el NIVERSITYof
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Neural Network Ideas (cont.) _

Activation Layer (i.e
- Layers RELU, sigmoid...)

Neural Networks are comprised of

several layers put together.
Available Layers:
- Input, Output (first and last layers of

the network)
Fully Connected (dense, linear Pooling2D Layer
transformation)
Activation (activation function)
Conv2D, Pooling2D (convolutional

layer)

Convolution2D Layer

Input Layer

ue INIVERSITYof
ICL'L/ ur
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DNN example representation

0 L-1) L)
) F.orw.a rd - > 2= W Aptby 4 =W A +Db
Ay = propagation AL=01(44) Al =>0-L (Z.)
(P-) N . . W1an-1
L
:Training @
| data 5 N
I matrix Outputs
M | [ ] [ ] 1
1 X = . Y
: .’ output (size 1x nb)
:size MxN _ _ layer L
hidden layer 1 hidden layer L-1
R Ex)
dZ, =W',dZ, "0 y(Z) Back dZ_ =A_-Y
dw,=dz, AT,/ nb < =+« dW, =dZ, AT, ,/ nb

db, =np.sum(dZ,, axis=1, keepdims =True)/nb propagation db, =np.sum(dZ,, axis=1, keepdims =True)/nb
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Compute Graph

- All operations/math are put into
a compute graph.

- Non-Eager

- Gradient Support, Grad Tables

ICL 1 \ ur el NIVERSITYof
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Operations & Compute Graphs

All Tensor operations are wrapped in an Operation class, which is used in the

compute graph. Operations also provide a modular interface for creating and
manipulating Tensors. They are created as shown:

Operatlon<float> *var = op::var<float> ( , {GLOROT, }}, HOST);
returns a new variable Tensor shape Tensor initializer. Options Tensor memory type.
are: GLOROT, UNIFORM, Options are: HOST
CONSTANT, ZERO, ONE, DEVICE. MANAGED
DIAGONAL, IDENTITY, CUDA MANAGED

NONE ;

‘ mHElNIVERSITYof
ICL [ENN ESSEE
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Operations & Compute Graphs (cont.)

Variables are Operations that wrap around Tensors. Operations are also used
for representing some math operation in the computational graph. For example:

Operation< > *result = ( (A, x), b);

Tensor< > *result tensor = result-> (),

This constructs a compute graph and eval() evaluates it into a Tensor. Available
operations are: Variable, Tanh, Sigmoid, Add, and Matmul. Since all of these are

inherited from Operation, it is simple to create/add new operations.

v NIVERSITYof
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Operations & Compute Graph (Full Example)

auto A = op::var<float> ("A", { }, {GLOROT, { }}, MANAGED) ;
auto X = op::var<float> ("X", { }, {UNIFORM, { }}, MANAGED) ;
auto B = op::var<float> ("B", { }, {DIAGONAL, { }}, MANAGED) ;

/* compute some math operations */

auto result = ( (A, X), B);
Tensor<float> *result tensor = result-> ()’
/* use results .... */

delete result; /* only need to delete head of tree */

delete result tensor;

|CL ‘} U\r v NIVERSITYof
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Memory Manager

Core Memory Kernel

4 memory types:
HOST (cpu memory)
DEVICE (gpu memory)
MANAGED (internal managed)
CUDA_MANAGED (cuda managed)

Sﬁpports interactions between all
memory types

Managed memory types must be
synced!

HOST

HOST

e

£

22N\

CUDA

MANAGED /'

CUDA

\MANAGED

icLL>
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Tensors

Data with multiple axes.

Everything in MagmaDNN uses tensors.

Scalar Vector Matrix Tensor
M AR
341 I[17][5 4]

v NIVERSITYof
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Layers

Layers are a set of weights/biases and put a forward-prop function on the
compute graph. For instance:

layer: :FullyConnectedLayer< > *fc = (input-> (), n_units);

This creates a weight, w, and bias, b, tensor and puts [W*¥input->out() + b] onto
the head of the compute graph defined by input->out().

v NIVERSITYof
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Layers (Full Example)

auto data = op::var<float> ( , {n_batches, size}, {UNIFORM, ({
auto input = (data) ;

auto fecl = (input-> (), n_hidden units);
auto actl = (fcl-> (), layer: :TANH) ;

auto fec2 = (actl-> (), n_output classes);
auto act2 = (£c2-> (), layer::SIGMOID) ;

auto output = (£fc2-> (),

Tensor<float> *forward prop result = output-> ()-> ();

}}, DEVICE)

icLL>
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Training (example)

Tensor<float> ({ }, HOST) ;

(data, "mnist data set.csv");

std: :vector<Layer<float>> layers vector;

/* Create Layers in Here as Shown Before... */

Optimizer<float> optimizer = ( ) ;
Model<float> (layers vector, optimizer, batch size);

model. (data, n_epochs) ;

v NIVERSITYof
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Distributed Training

Many node training
Averages gradients
Implemented many strategies and optimizations (using CUDA-aware MPI)

Master-worker reduce Ring Allreduce

Asynchronous
MPI_Alireduce ynchr
training
v NIVERSITYof
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Accelerating CNNs in MagmaDNN with FFT

» Convolutions D, . * G, . of images D, . and filers G, . can be accelerated through FFT,
as shown by the following equality, consequence of the convolution theorem:

D,. * G, = FFT' [ FFT(D, ) .* FFT(G,,) ],

where .* is the Hadamard (component-wise) product, following the *.*’ Matlab notation

» Developed mixed-precision (FP16-FP32) FFT using the GPU’s Tensor Cores (TC) acceleration
» Dynamic splitting to increase the FP16 accuracy, while using high-performance TC

Xep3a(:) = 81 X1ppeg(c) + 55 X2epyg(:)
[X1 X2] = FFT([ X1 X2] in FP16+ (e.g., go to radix 4, where the FFT matrix is exact in FP16)

FFT (X)=s, X1 +s, X2

v NIVERSITYof
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Accelerating CNNs with FFT

» Accuracy of the mixed-precision
(FP16-FP32) FFT

Reference:

X. Cheng, A. Sorna , Ed D’Azevedo, K. Wong, S. Tomov, "Accelerating
2D FFT: Exploit GPU Tensor Cores through Mixed-Precision,” The
International Conference for High Performance Computing, Networking,
Storage, and Analysis (SC'18), ACM Student Research Poster, Dallas,
TX, November 11-16, 2018.

https://icl.utk.edu/projectsfiles/magmalpubs/77-mixed-precision-FF T.pdf
https://www.jics.utk.edu/recsem-reu/recsem18

0.00025

0.0002

—Dynamic Splitting

00001 ~——CUFFT16 (Error

scaled by 107-3)

Error

0.0001

0.00005

16 64 256 1024 4096

Input matrix size (M * N)

16384 65536

Accelerating 2D FFT: Exploit GPU Tensor Cores through Mixed-Precision

Xiaohe Cheng, Anumeena Sorna, Eduardo D’Azevedo (Advisor), Kwai Wong (Advisor), Stanimire Tomov (Advisor)
Hong Kong University of Science and Technology, National Institute of Technology, Oak Ridge National Laboratory, University of Tennessee

Overview

Q 2D FFT in HPC applications
= Frequency domain analysis
= Quantum cluster simulations
Q Large volume and high parallelism
= Exploit modern parallel architectures
= Graphics Processing Units (GPUs)
= Nvidia CUDA
Q cuFFT library: current state of the art, but can
NOT benefit from the FP16 arithmetic on
recent hardware due to accuracy limitations
* cuFFT does not

Additional Observatlons

Q For fixed number of S0 forst numberof
input elements, the
accuracy is affected by
the shape of matrix. 5 oo
Particular matrix =
dimensions lead to -
higher accuracy, which

can be exploited by o
FFT applications.

Our Proposed Approach
Q Implementing 2D FFT
Y=F-X-FT
e . ©

mm

—* 1D FFT: Apply Cooley—Tukey algorithm, choose N1 = 4 (radix-4)
to balance execution speed and accuracy.

Reshape &

Trampou N2-Point DFTs

N1-Point DFTs

i El

_II—
Ta Num-u-rnrrsm
TMlnmvmummn ‘size In the combine step, ranspose® and Transpose* and take N2
Nm‘immmm.n rocursivocin © | [E i b

SRR G

e
1D FFT over 1D FFT over ﬁ l ﬂ
each row ach column
Q To utilize oolumn major 1D I % e
FFT routine
Y=(F-F-0N

- © m  Oranspose

In implomentaton we
mody i GF kamotto
vold aking ranspose.

< Mixed precision DFT: dynamic splitting

Conclusions & Future Work

achieve the same D FFTlover = Linearity of FFT allows  [FSSSIv.
GEMM 320% lavellof accalaration T ag the separate computation llxm( >+ M.,( ) 105 | 1o Q Our dynamic splitting method computes 2D fast
FFTFP16  17.02% *The fnal ransooso is e of FFT(Xy) and FET(Xo) | gy @~ infinity nom of inp transform efficiently by utilizing the hardware
s e as cuBLAS GEMM SRR’ " each coumn in half precision 1600 | 16t | 5 oy nomm of rosaue [T T Yy by 9

advancement in half-precision floating-point arit
Q The implementation effectively emulates single
precision calculation, and produces highly accul
results from a variety of inputs
Q The speed of current cuBLAS-based implement
inferior to cuFFT library, but optimizations are a
= Tiled matrix transpose via GPU shared me
= Pre-computation of twiddle factors
= Combination of real and imaginary operati

QO Results: Tensor Core accelerated FFT &
improved accuracy
= Straightforward CUDA implementation
costs ~2.5x time of cuFFT32
= Error within 104, 1000x better than
CuFFT16

Experimental Results

Q The method preserves high accuracy,
even with growing matrix sizes

0.00025

Q The cost of dynamic splitting and combine
is not significant

00002 «Dynamic Splitting

QO Mixed-precision methods benefit both
computation and memory
Q Tensor cores on new GPU architecture
= Matrix-multiply-and-accumulate units
with throughput up to 125 TFLOPS
= Multiply Inputs: FP16 (half type) only
[ € [€ €[ €| € [M[mmIM[M[mmIM[Mm
Q FFT properties: linearity, numerical
stability, intensive matrix multiplications

Motivation — Er :?:,T{'.?ﬂg Q Input-aware auto-tuning splitting algorithm is to
E ——CuFFT16 (Error E . # Combine designed to support ill-conditioned inputs. It ma)

o0.m01 scaled by 10-3) improve execution speed and accuracy.
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Accelerating CNNs with Winograd's minimal filtering algorithm

> FFT Convolution is fast for large filters;
Typical filters are small, e.g., 3x3, where Winograds'’s

1 0 -1 0
algorithm has been successful; BT _ |0 1 1 0
In 2D, convolution of tile D of size 4x4 with SO
filter F of size 3x3 is computed as 1 0 0
*E = AT T * [RT G= % —% %
D*F=AT[[GDG'].*[BTDB]]A 2 : 2
. . r 11 1 0
where B, G, and A are given on the right: AT = o 1 -1 _1]

» Computing for a number of filters, sliding the tile over a batch of images, each with a number of
channels, can be expressed as batched gemms, e.g.,

batch m n Kk (sizes coming from VGG-16 CONVOLUTION LAYERS)
16x64 12544 64 3

16x64 12544 64 64

16x16 12544 128 64

16x16 12544 128 128 icLL> fggﬁﬁgggg

N
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Install and Build

Dependencies:

Cuda (>9.0)
CuDNN (>6.0)
Magma (>2.3.0) (>2.5.0 for half-precision)

Download MagmaDNN from
https://bitbucket.org/icl/magmadnn (currently not up
to date) or clone it using

hg clone https://bitbucket.org/icl/magmadnn

Compiling/Installing: Copy the make.inc file
from make.inc-examples/to MDNN’s root,
change any necessary settings in make.inc and
then run

sudo make install

Testing: You should now be able to run the
below command

make testing && cd testing && sh run_tests.sh

this will run the default testers for the
MagmaDNN package.
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Hyperparameter optimization

Configuration File <—®—P GUI Launcher OpenDlEL architectu re:
(A) GUI launcher creates a configuration file
l l for the workflow, and executive will read
this file to set up workflows;
Executive (B) After initial configuration, executive
starts all modules;
(C) The modules have access to the
. \ communication library, and directly
! y, o communicate or utilize tuple-space
L communication.
» | Direct Comm | 1Tu%e Sipaca)) :
' / omm [ !
® " :
"~~---- Communication Library----
. 'I """"" J, """"" J, """""" A ¥ N ‘
E . T ((Tuple ) |
: rocessing Data . Library :
: rand IO Analyzer ag'gslges and Tool MSer:g;y
' | Module | Module | | | Modules | | Pite |
! A A A A
L (O S By icLor  HRNINESEY
- ] R e, <A Modules ........................ .’ ”\ND\?ATIVE Department of E|ecm:§§n ering
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MagmaDNN training performance (single V100 GPU)

70

MLP Time Comparison on MNIST

—— MagmaDNN
TensorFlow

——  PyTorch
~Theano GPU
—+Theano CPU

LA

Layers

10 12 14

Data: 60,000 images, 28x28 pixels each

Parameter/Setting Value

Name

GPU Nvidia 1050 Ti

CPU Intel Xeon X5650 @
2.67GHz x 12

0S Ubuntu 16.04 LTS

Epochs )

Batch Size 100

Learning Rate 0.2

Weight Decay 0.001

#Hidden Units 598

Layer

icLL>or
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MagmaDNN scalability and SGD speedup

Speedup vs. TensorFlow

ASGD Peak
3 MagmaDNN

Speedup

1 2 3 4 5 6 7 8
Number of GPUs
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MagmaDNN benchmarks and testing examples ...

EEG-Based Control of a Computer Cursor Movement with
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Current work and Future directions
 Performance portability and unified support on GPUs/CPUs

— C++ templates w/ polymorphic approach;
— Parallel programming model based on CUDA, OpenMP task scheduling, and MAGMA APls.
— Shows potential; still lacks the arsenal of features present in other popular frameworks

 Hyperparameter optimization
— Critical for performance to provide optimizations that are application-specific;
— Alot of work has been done (on certain BLAS kernels and the approach) but still need a simple framework to handle the entire library;
— Current hyperparameter optimization tool must be further extended in functionalities
— Add visualization and OpenDIEL to support ease of GPU deployment over large scale heterogeneous systems

- Extend functionality, kernel designs, and algorithmic variants
— BLAS, Batched BLAS, architecture and energy-aware

— New algorithms and building blocks, architecture and energy-aware
— Distribution strategies and (asynchronous) techniques for training DNN on large scale systems

 Use and integration with applications of interest (with ORNL collaborators)

— Brain-computer interface systems

— Post-processing data from electron detectors for high-resolution microscopy studies (Unmixing 4-D Ptychografic Images)THEUNNERSITYOf

— Optimal cancer treatment strategies INNIOVATIVE TF;NNPSSEE
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