Impacts of Multi-GPU MPI Collective
Communications on Large FFT Computation

Alan Ayala
Innovative Computing Laboratory
The University of Tennessee
Knoxville, USA

Hejer Shaiek Azzam Haidar*

Stanimire Tomov
Innovative Computing Laboratory
The University of Tennessee
Knoxville, USA

Xi Luo
Innovative Computing Laboratory
The University of Tennessee
Knoxville, USA

George Bosilca Jack Dongarra

Innovative Computing Laboratory Nvidia Corporation Innovative Computing Laboratory Innovative Computing Laboratory

The University of Tennessee California, USA

Knoxville, USA

Abstract—Most applications targeting exascale, such as those
part of the Exascale Computing Project (ECP), are designed
for heterogeneous architectures and rely on the Message Passing
Interface (MPI) as their underlying parallel programming model.
In this paper we analyze the limitations of collective MPI commu-
nication for the computation of fast Fourier transforms (FFTs),
which are relied on heavily for large-scale particle simulations.
We present experiments made at one of the largest heterogeneous
platforms, the Summit supercomputer at ORNL. We discuss
communication models from state-of-the-art FFT libraries, and
propose a new FFT library, named HEFFTE (Highly Efficient
FFTs for Exascale), which supports heterogeneous architectures
and yields considerable speedups compared with CPU libraries,
while maintaining good weak as well as strong scalability.

Index Terms—Exascale applications, FFT, scalable, Collective
MPI, Heterogeneous systems

I. INTRODUCTION

One of the major challenges supercomputing has been
facing over the last decade is to reduce the cost of
communication between processors. The fast development
of graphics processing units (GPUs) has enabled great
speedup on computations locally, and nowadays a great
part of the runtime of several applications is consumed in
communication [1]. In this paper we are interested in the
distributed fast Fourier transform (FFT), which is one of the
most important algorithms needed for exascale applications
in computational science and engineering. Diverse parallel
libraries exist that rely on efficient FFT computations—in
particular within the field of particle applications [2]—
ranging from molecular dynamics computations to N-Body
simulations. Indeed, libraries in this applications area, such as
LAMMPS [3] and HACC [4] are targeting exascale computer
systems and require highly scalable and robust FFT kernels.

Thus, for all these applications it is critical to have
access to a fast and scalable implementation of an FFT
algorithm, an implementation that can take advantage of
novel hardware components, and maximize these components’
benefits for applications. Moreover, as the current trend in
the development of HPC platforms is to add an increased

* This work was done while the author was at the University of Tennessee.

The University of Tennessee

The University of Tennessee

Knoxville, USA Knoxville, USA

number of accelerators per node, creating an imbalance
between computation and communication at the node level,
it is necessary to investigate how the sheer compute power
affects the performance and scalability of FFT algorithms
and how to take advantage of this power by using efficient
communication platforms.

This paper is organized as follows: in Section II we
describe the classical FFT algorithm and the parallel MPI
communication model for state-of-the-art libraries; we also
introduce a novel library called HEFFTE. Next, Section
Il presents the communication bottleneck for FFT and
approaches to overcome it. Section IV presents an MPI
analysis of the routines needed within classical parallel FFT.
Section V presents numerical experiments on Summit, and
the limitations of hybrid FFT implementations highlighting
the case of HEFFTE. Finally, Section VI concludes our paper,
giving directions for future work and collaborations.

II. HEFFTE ALGORITHMIC DESIGN

It is well known that multidimensional FFTs can be
performed by a sequence of low-dimensional FFTs (e.g.,
see [5]). Algorithm 1 presents the classical steps for parallel
3D FFT, which are also displayed schematically in Figure
1. Two main sets of kernels intervene into the 3D FFT
computation: those in charge of the three sets of 1D FFTs,
and those that take care of reshaping the data at each stage.

In Figure 1 we show the FFT computation steps having
a 3D tensor as input data of size Ny x Ny x Ny distributed
among a grid of P processes, P = Py x P; X Ps; the algorithm
will perform as stated in Algorithm 1. For notation purposes:
N; is the output of 1D FFTs of size NV; in direction ¢. Note
that the orange boxes belong to processor 1 during the entire
computation. This approach is called pencil-to-pencil, and the
computation of a 3D FFT is carried by computing 3 sets of
1D FFTs.

31 32 3334 3536 1

Fig. 1. Phases of 3DFFT computation with pencil decomposition, schematic procedure of Algorithm 1.

Algorithm 1 3D Distributed FFT algorithm based on pencil decomposition

Require: Data in Spatial domain: Layout Ny/Py x Ny /P x Ny /Py
Ensure: Data in Fourier domain: Layout No/Py X N1/P; X Ny/ P,

Calculate a 2D grid Qg and @ st Qo X @1 = Py X P, X P,
No/Py x Ni/Py x N2/ Py Reshape, No X Ni/Qo x Na/Q1
No X Ni/Qo x NaJ/Q1 No X N1/Qox No/Qy

First Dimension 1D FFTs

No X N1/Qo x NaJ/Q1 & No/Qox Ni X Na/Q
NO/QO « Nl « Ng/Ql Second Dimension 1D FFTs NO/QO % Nl % NQ/Ql
— —~ R vh. — —

No/Qox Ni xNz/Qi S, No/Qo x N1/Q1x N

Third Dimension 1D FFTs

Z/V?J/QOXJ/V\I/QIX N, Z/V\O/QOXZ/V\l/QIX N,

Z/V?)/Qo X J/V\I/Ql x Ny

Reshape
.

Z/VB/PO X Z/V\1/P1 X J/V\2/P2

As shown in Algorithm 1, the input data is reshaped four
times, going successively from the input array to each of the 3
leading dimensions and then to the final output array. Note that
that we can reduce the number of reshapes to two, provided
we have the input array containing pencils on the first direction
ready to compute, and then stopping the reshape phase at the
third leading dimension (for comparison, see Figure 1). To
perform such reshapes of data across processes we rely on
the Message Passing Interface (MPI). HEFFTE supports two
options for communications: binary exchange (point-to-point)
and all-to-all.

A. Communication model

It is well known that the bottleneck for parallel FFTs is the
communication of data between tasks (see e.g., [6]), which
significantly affects the scaling at large core/GPU counts.
As will be shown in Section V, the communication time
dominates the cost of distributed FFTs. For the case of GPU
multi-node implementation, we can use fast interconnection
such as NVLINK within a node; however, the situation is
worse for inter-node communication since the data has to be
transferred back and forth to the CPU through PCle.

The first step to reshape an input array, cf. Algorithm 1,
is to perform packing/unpacking phases to make the data

contiguous in the memory. These phases generally account for
less than 10% of the reshaping time. Next, a communication
scheme is performed, and this can be done in two different
ways. The first one is the point-to-point (sends/receives)
approach where every processor has a loop over all the
processors that overlap with it. The second one is the all-
to-all approach, where all tasks within a sub-communicator
communicate to each other.

For most parallel FFT libraries the communication phase is
typically handled by moving data structures on the shape of
pencils, bricks, and slabs of data. For each of these options
the total amount of data communicated is always the same,
so decreasing the number of messages between processors
means increasing the size of the messages they send. For
instance, if the communication takes brick-shaped data (3D
blocks) into pencil-shaped data (1D blocks), and assuming
that the data is originally distributed among Py X P; X P,
every row (Fp) of processors communicate together to get
Py sets of complete rows of data. Thus, there will be Py
messages in that case. By a similar reasoning, we can get
the asymptotic number of messages sent by the different
communication schemes. The approach brick-shaped data <
pencil-shaped data requires O(P'/3) messages, where P is

Point-to-point routines

Collective routines

Libraries Blocking Non-blocking Blocking Non-blocking Process Topology
MPI_Allttoallv MPI_Comm_create
FFTMPI MPI_Send MPI_Irecv MPI_Allreduce None MPI_Group
MPI_Barrier
SWFFT MPI Sendrecv MPI_Isend MPI_Allreduce None MPI_Cart_create
MPI_Irecv MPI_Barrier MPI_Cart_sub
TABLE I

MPI ROUTINES REQUIRED FOR HEFFTE COMMUNICATION FRAMEWORK, INHERITED FROM FFTMPI AND SWFFT LIBRARIES.

the total number of processors. Reshaping pencil-shaped <
pencil-shaped uses O(P'/2) messages, brick-shaped < slab-
shaped data requires O(P?/ 3) messages, and slab-shaped <
pencil-shaped data requires O(P) messages.

B. HEFFTE library

HEFFTE is a C++ library for FFT calculation on large
heterogeneous systems, and it is part of the Exascale
Computing Project (ECP). It is documented in [7]-[10] and
aims to become the standard for large FFT computations
on the upcoming exascale systems. HEFFTE is open source
and will include wrappers for C, Fortran, and Python,
as well as wrappers for large-scale applications such as
LAMMPS [3] and HACC [11]. HEFFTE supports two
options for communications: binary exchange (point-to-point)
and all-to-all. For the computation of 1D FFTs, we call an
external library—HEFFTE currently supports FFTW3 [12],
MKL [13], and CUFFT [14], although other 1D FFT libraries
can be supported.

The current version of HEFFTE was built by optimiz-
ing the kernels and communication frameworks of two well
documented libraries, FFTMPI [15] (built-in on LAMMPS
software [3]) and SWFFT [16] (built-in on HACC soft-
ware [11]). Table I shows the MPI routines FFTMPI and
SWEFFT call, and hence the ones that HEFFTE needs. From
our experiments—see [8, Sec 3.3] [10]—we know that point-
to-point communication gives better performance for small
CPU/GPU counts, while for large counts it is all-to-all that
gives best performance. In the next two sections we study the
theoretical bounds of performance as well as its limitations on
large heterogeneous supercomputers like Summit.

III. COMMUNICATION BOTTLENECK

As shown in Section V, a parallel GPU implementation
speeds up the FFT execution; however, this speedup is limited
since the communication takes in general more than 95%
of the runtime. To better analyze this limitation, we have
developed a performance model to evaluate how well HEFFTE
library can perform and to guide upcoming optimization
efforts. A challenge in developing high-performance FFTs is
that the FFT computation does not have a high computational
intensity (defined as the FLOPs/Byte ratio). Indeed, Table II
shows the FFT’s computational intensity in contrast to
the dense matrix-matrix multiplication in double complex

arithmetic (ZGEMM).

Knowing the FLOPs/Byte rate one can directly compute a
roofline performance model based on the bandwidth rate B
(e.g., given in GB/s) that provides the data. For example, the
performance Pzgpaa for ZGEMM to read 3 matrices and
write back 1 in gigaFLOP/s is bounded by:

0.375 N
PZGEMJVI S man {6900, e — B} .

Thus, if we have a PCle connection of 12 GB/s and want to
compute the minimal /N that reaches asymptotic performance
(of 6900 gigaFLOP/s in this case), we solve

oo = 12 055N

to find N =6,133.
This means that if we have many matrices of size N = 6,133
to multiply, we can pipeline the computation and commu-
nication so that communication is totally overlapped with
computation (i.e., resulting in an overall top performance of
6900 gigaFLOP/s). This is the basis of blocking in dense linear
algebra and finding the smallest blocking size that still gives
peak performance.

Similarly, we derive that the performance Pr g for a batch
of 1D FFTs is bounded by:

Prpr < min {600, w B} .
In the previous inequality, the division by 2 is for taking
into account the process of reading the vectors and writing
them back. Note that for this bound, N would have to be
unrealistically large in order to get the performance bounded
by 600. In other words, the intensity of the computation does
not grow fast enough to apply some blocking techniques like
in the dense linear algebra case. In conclusion, performance

is always memory bound:

0.31221092]\7 B

Thus, nodal performance in an InfiniBand (IB) 100Gb
network (12.5 GB/s bandwidth, or B=25 GB/s for the bidi-
rectional communications in FFT) with N = 2,000 will be
limited by

Prpr <

25%0.312 % 11/2 = 42.9 gigaFLOP/s.

Operation GFlop/s GFlop/s Flops Bytes Flops/B
1 V100 GPU | 6 V100 GPUs
Batch of B 1D FFTs 600 3,600 5B Nloga N 16 BN 0.312 loga N
ZGEMM 6900 41,400 6 N3 16 N2 (¥4) | 0375 N (/4)
TABLE II

COMPUTATIONAL INTENSITY IN FLOPS/BYTE FOR 1D FFTS (vS. GEMM) IN DOUBLE COMPLEX ARITHMETIC. LISTED ALSO ARE THE ACHIEVABLE PERFORMANCES FOR THE
TWO OPERATIONS IN GIGAFLOP/S ON SINGLE V100 GPU AND A NODE OF 6 V100 GPUS, AS ON THE SUMMIT SUPERCOMPUTER. THE MULTIPLICATION BY 4 AND DIVISION
BY 4 FOR GEMM IS TO TAKE INTO ACCOUNT THAT 3 MATRICES ARE READ AND ONE IS WRITTEN BACK TO STORAGE.

Similarly, nodal performance on Summit, featuring nodal
bandwidth of 50 GB/s through Dual Rail EDR-IB, will be
limited by

0.312 loga N

PFFT S 50 =7.8 loggN.

For example, if N = 10, 000, nodal performance will be bound
by 104 gigaFLOP/s. This means that further optimizations
for the nodal FFTs will have limited effect on the overall
performance, since 104 gigaFLOP/s will be the maximum that
can be extracted from the node (while currently we can achieve
much more: 600 gigaFLOP/s from just one GPU). Still, current
FFT results on Summit show scalability of ~ 9 gigaFLOP/s
per node, which gives a potential speedup of 10x acceleration
while still leaving GPU resources for other computations, as
typically needed in applications [11].

To reach close to the roofline performance peak for the
model presented, FLOPs must be overlapped with the commu-
nication. Communication alone usually is the larger fraction
of the entire computation, as also illustrated and quantified
for some of the runs shown in Section V. Figure 2 shows
another example for time needed for communication vs. time
for computation. In this example NVLINK marks the time

120
100
'g 80
~ NVLink data
o 60
£
l_
40 «@2D using 1D
20 CUFFT

Matrix size (N x N)

Fig. 2. Time for 2D FFT using 1D cuFFTs on NVIDIA V100 GPU. The
NVLINK shows the time to receive and send the data for the computation
through a 32 GB/s connection. Computation and communication can be
overlapped by pipelining the work on the 1D vectors, in which case the total
computation time is given by the NVLINK curve; otherwise is the sum of the
two curves (i.e., about two times slower in this case).

to receive and send the data for the local GPU computation
through a 32 GB/s connection. If the receiving and sending

TABLE III
SYMBOLS USED IN THE COST MODEL
Symbol Description
n Number of Nodes
p Number of Processes per Node
M Message size per Processes
Binter Inter-node P2P bandwidth

of the 1D vectors is pipelined, the NVLINK curve gives the
total time; otherwise, the total execution time is about twice
as long, at least for the specifics in this illustration.

IV. MPI COLLECTIVE COMMUNICATION

On a hybrid, multi-GPU and multi-lane computing
environment such as Summit, it is important to understand
how the communications can be optimized to maximize the
bandwidth at each level of the hardware hierarchy. Considering
the operation to be performed—alltoall—we have developed
a performance model to assess the performance of the entire
collective communication on Summit.

Table III shows the symbols used in the performance model.
The time for an MPI_Alltoall operation can be divided into
two parts: intra-node and inter-node. The upper bound of
the time for the entire operation is the sum of the two,
when no overlap is possible between the two parts—while
optimally scheduling the intra-node communications would
hide their cost behind the inter-node communications, so the
lower bound is the maximum time of the two parts which
equals to the cost of inter-node part in most cases. Also,
with an increasing number of nodes, the cost of the inter-
node part grows linearly (as each node must send a well-
defined amount of data to each other node), while the cost of
the intra-node part remains constant and eventually become
negligible. Hence, our cost model focuses on the inter-node
part and assumes perfect overlap of the two parts. Instead of
looking at the alltoall operation from an each involved process
perspective, we shift our focus to the external links, and we
reason at the level of the nodes. Thus, for each node, the
collective transfers (n— 1) x p? x M bytes data to other nodes;
and suppose the inter-node P2P bandwidth is B, e, the time
of an MPI_Alltoall operations is:

Talltoall = T%nter = (Tl - 1)p2M/Binter- (1)

0.9 -0-Actual

Estimated

07 4@-Estimated Theoretical Peak

0.6
0.5

Time(s)

0.4
0.3
0.2
0.1

24 48 72 96
Number of processes

Fig. 3. MPI_Alltoall performance on Summit (16MB).

30
25
20

15

10

0 L]

Actual P2P (2 pair)

Bandwidth (GB/s)

Theoretical peak Actual P2P (1 pair)

Fig. 4. MPI P2P performance on Summit (16MB).

Figure 3 presents the time of MPI_Alltoall operations with
the various number of processes. In this experiment, each
node has 6 processes, and each process binds to a GPU and
transfers large enough data (16 MB) which is able to reach
the peak P2P bandwidth. Based on the Summit architecture
configuration, the theoretical inter-node bandwidth is 25GB/s
(2 lanes of 12.5GB/s); using this bandwidth in our cost
model, the estimated time is shown as the red line in the
Figure 3. Meanwhile, the actual performance is the blue line,
which is far from the theoretical peak.

Based on our tests, we think the most possible explanation
for this performance gap is the low inter-node P2P bandwidth.
The green bar on the Figure 4 shows the inter-node P2P
bandwidth on Summit using Netpipe [17], which suggests that
one pair of P2Ps among two nodes can only utilize half of the
theoretical bandwidth. This may be caused by the one pair
of P2P being able to use only one lane of the interconnect.
In order to attempt to achieve higher bandwidth utilization,
we modify the benchmark to allow two pairs of concurrent
P2Ps among two nodes and make sure these two P2Ps are
on different sockets to avoid the resource competition. The
result is shown by the blue bar on Figure 4; with the doubled

number of pairs, the bandwidth of each pair decreases to half,
which indicates the MPI P2P communications on different
sockets interfere with each other, even though in theory they
should be independent. In this way, our attempt fails and we
cannot reach full bandwidth with the current version of MPI
(spectrum-mpi 10.3.0.1) on Summit for P2P communication.

The green line on Figure 3 shows the estimated time of
using the actual P2P performance from Netpipe in our cost
model. This result is much closer to the actual performance,
which suggests the performance gap of MPI_Alltoall operation
to the theoretical peak is because of the low P2P performance.

From the previous analysis, we note that multi-rail commu-
nication will need to be carefully managed across all processes
on the node in order to get any potential benefit. However,
the cost of such management might negatively impact the
performance, degrading the potential benefit of the multi-rail
optimization.

V. NUMERICAL EXPERIMENTS

In this section we present numerical experiments on
Summit. We start by looking at the computational perfor-
mance comparison between a parallel hybrid implementation
(HEFFTE) and a parallel CPU implementation FFTMPI. In
Figure 5 we observe that HEFFTE outperforms FFTMPI
(which yields similar performance numbers as SWFFT) by
a factor of approximately 2x speedup.

5000
4500
4000
3500
3000
2500
2000
1500
1000

500

WHEFFTE
-FFTMPI

GFlops

1 2 4 8 16 32 64 128 256 512

Number of nodes

Fig. 5. Strong scalability on 3D FFTs of size 10243, for FFTMPI using 40
cores per node (blue) and HEFFTE using 6 V100 GPUs per node (red).

The drop in performance for FFTMPI in Fig. 5 might be
explained by the cost of collective communication between
over 20,000 processes, which is highly impacted by Summit
latency. For HEFFTE, at 512 nodes we have 3072 processes
communicating between each other, and intra-node communi-
cation is performed on fast NVLINK interconnection. For this
problem size, HEFFTE would likely have a performance drop
at some large node count.

M FFT computation 11.77%

M MPI communication 49.45%

M Packing 9.65%
[Unpacking 29.13%

CPU

0.74s

Accelerate

—>

local operations
using GPUs

43 x

M FFT computation 1.03 %

M Packing 091%
[Unpacking 0.72%

GPU

M MPI communication 97.34%

0.01

Fig. 6. Profile of a 3D FFT of size 10243 on 4 CPU nodes — using 128 MPI processes, i.e., 32 MPIs per node, 16 MPIs per socket (Left) vs. 4 GPU nodes
— using 24 MPI processes, i.e., 6 MPIs per node, 3 MPI per socket, 1 GPUs per MPI (Right)

A. Limitations of HEFFTE library

The speedups that HEFFTE reports come from the classical
approach of state-of-the-art FFT libraries, which consists of
reducing the kernels run-time, and overlapping computation
and communication. However, there is not much that can
be improved on terms of GPU computations, and therefore
we need to search for improvements on the communication
scheme. To make this point clear, in Figure 6 we present a
single experiment where the GPU computation speeds up the
CPU computations by 43x. We achieve this speedup by using
the 1D FFTs from CUFFT and fast matrix transpositions
for the MPI packing and unpacking operations from the
MAGMA library [18]. However, over 97% of the run time is
now spent only in communication.

Both HEFFTE and FFTMPI get their best performance
when using collective communication (particularly all-
to-all MPI calls), and these kinds of MPI functions do
not use close to the peak of the bandwidth available,
and optimizations of such routines are still not available
(e.g., on the NVIDIA Collective Communications Library
[NCLL] for GPUs efficient communications). Hence,
new and better versions of MPI_AIlI2Allv functions are
required. To that end, we developed our own routine called
Magma_AlI2Allv (introduced in [8]), which is based on non-
blocking data transfer plus the use of CUDA IPC memory
handlers. Magma_AlI2Allv improves collective all-to-all
communications on up to 32 nodes—see Figure 7—but starts
failing as the node count increases. This phenomenon might
be due to the fact that inter-node communication requires
data to pass through the host which makes communication
slower than direct GPU to GPU transfers, and 32 nodes
is, according to our experiments on Summit, the maximum
number of nodes to take advantage of these kind of tools.

Fluctuations observed in Fig. 7, may relate to the fact

-m-POINT ALL2ALL -@-MAGMA_A2A
.s 100%
®
o 95% ~—
S -
£ 90%
£
S 8%
[=
o
= 80%
[T}
2 5%
(]
.§ 70%
-
o 0
N 65%
1 2 4 8 16 32
Node count

Fig. 7. Comparing the runtime impact of different MPI communication
supported on HEFFTE.

that our 3DFFT algorithm (c.f. Alg. 1) works with different
processor grids at each stage, and therefore it does require
more steps of communication (e.g. initial FFT grid to first
direction and/or third direction to final FFT grid, c.f. Fig. 1)
for some processor counts, and do not require them for others.

To further improve the performance and gain more speedup,
we might want to use single-precision data (which is sup-
ported by HEFFTE). However, it would be more efficient to
develop communication-avoiding paradigms to achieve further
speedups by keeping good scalability. This could be achieved
by modifying the algorithms to trade less communication for
more computation.

VI. CONCLUSIONS

We have presented the limitations of hybrid parallel im-
plementation of FFTs and discussed the communication bot-
tleneck and possible solutions to overcome these difficulties.
We presented a detailed analysis of the communication model

and how it limits the computation performance, which has
then been verified with numerical experiments on a large
heterogeneous supercomputer (Summit at Oak Ridge National
Laboratory). We reported that communication takes over 95%
of the run time for large CPU/GPU counts, and to understand
this issue we have analyzed Spectrum-MPI’s binary and all-
to-all communication frameworks and how they behave on
Summit platform. Finally, we have shown that our proposed
library, HEFFTE, speeds up almost twice the current state-
of-the-art libraries being used by ECP projects. This library
has optimized kernels; however, it needs to further optimize
the communication framework to achieve close to peak per-
formance.

ACKNOWLEDGMENT

This research was supported by the Exascale Computing
Project (ECP), Project Number: 17-SC-20-SC, a collaborative
effort of two DOE organizations (the Office of Science and
the National Nuclear Security Administration) responsible for
the planning and preparation of a capable exascale ecosystem.

REFERENCES

[1] J. Demmel, Communication-avoiding algorithms for linear algebra and
beyond, in: 2013 IEEE 27th International Symposium on Parallel and
Distributed Processing, 2013.

[2] S.J. Plimpton, Ffts for (mostly) particle codes within the doe exascale
computing project, 2017.

[3] Large-scale atomic/molecular massively parallel simulator, available at
https://lammps.sandia.gov/ (2018).

[4] S. Habib, V. Morozov, N. Frontiere, H. Finkel, A. Pope, K. Heitmann,

K. Kumaran, V. Vishwanath, T. Peterka, J. Insley, D. Daniel, P. Fasel,

Z. Luki¢, Hacc: Extreme scaling and performance across diverse archi-

tectures, Commun. ACM 60 (1) (2016) 97-104. doi:10.1145/3015569.

URL http://doi.acm.org/10.1145/3015569

S. Plimpton, A. Kohlmeyer, P. Coffman, P. Blood, fftmpi, a library

for performing 2d and 3d ffts in parallel, Tech. rep., Sandia National

Lab.(SNL-NM), Albuquerque, NM (United States) (2018).

[15]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]
[16]

[17]

[18]

A. Grama, A. Gupta, G. Karypis, V. Kumar, Accuracy and stability of
numerical algorithms, Addison Wesley, second ed., 2003.

K. Czechowski, C. McClanahan, C. Battaglino, K. Iyer, P.-K. Yeung,
R. Vuduc, On the communication complexity of 3d ffts and its impli-
cations for exascale, 2012. doi:10.1145/2304576.2304604.

S. Tomov, A. Haidar, D. Schultz, J. Dongarra, Evaluation and Design of
FFT for Distributed Accelerated Systems, ECP WBS 2.3.3.09 Milestone
Report FFT-ECP ST-MS-10-1216, Innovative Computing Laboratory,
University of Tennessee, revision 10-2018 (October 2018).

S. Tomov, A. Haidar, A. Ayala, D. Schultz, J. Dongarra, Design and
Implementation for FFT-ECP on Distributed Accelerated Systems, ECP
WBS 2.3.3.09 Milestone Report FFT-ECP ST-MS-10-1410, Innovative
Computing Laboratory, University of Tennessee, revision 04-2019 (April
2019).

S. Tomov, A. Haidar, A. Ayala, H. Shaiek, J. Dongarra, FFT-ECP
Implementation Optimizations and Features Phase, Tech. Rep. ICL-UT-
19-12 (2019-10 2019).

H. Shaiek, S. Tomov, A. Ayala, A. Haidar, J. Dongarra, GPUDirect MPI
Communications and Optimizations to Accelerate FFTs on Exascale
Systems, Extended Abstract icl-ut-19-06 (2019-09 2019).

J. Emberson, N. Frontiere, S. Habib, K. Heitmann, A. Pope, E. Rangel,
Arrival of First Summit Nodes: HACC Testing on Phase I System, Tech.
Rep. MS ECP-ADSEO01-40/ExaSky, Exascale Computing Project (ECP)
(2018).

M. Frigo, S. G. Johnson, The design and implementation of FFTW3,
Proceedings of the IEEE 93 (2) (2005) 216-231, special issue on
“Program Generation, Optimization, and Platform Adaptation”.

Intel, Intel Math Kernel
us/articles/intel-mkl/.

URL https://software.intel.com/en-us/mkl/features/fft
C. Nvidia, Cufft library (2018).

D. Richards, O. Aziz, J. Cook, H. Finkel, et al., Quantitative performance
assessment of proxy apps and parents, Tech. rep., Lawrence Livermore
National Lab.(LLNL), Livermore, CA (United States) (2018).

Q. O. Snell, A. R. Mikler, J. L. Gustafson, Netpipe: A network pro-
tocol independent performance evaluator, in: in IASTED International
Conference on Intelligent Information Management and Systems, 1996.

Library, http://software.intel.com/en-

S. Tomov, J. Dongarra, M. Baboulin, Towards dense linear algebra for
hybrid gpu accelerated manycore systems, Parellel Comput. Syst. Appl.

36 (5-6) (2010) 232-240, DOI: 10.1016/j.parco.2009.12.005.

