
Runtime Level Failure Detection and Propagation in HPC
Systems

Dong Zhong
The University of Tennessee

Knoxville, TN, USA

Aurelien Bouteiller
The University of Tennessee

Knoxville, TN, USA

Xi Luo
The University of Tennessee

Knoxville, TN, USA

George Bosilca
The University of Tennessee

Knoxville, TN, USA

Abstract

As the scale of high-performance computing (HPC) systems con-
tinues to grow, mean-time-to-failure (MTTF) of these HPC systems
is negatively impacted and tends to decrease. In order to efficiently
run long computing jobs on these systems, handling system fail-
ures becomes a prime challenge. We present here the design and
implementation of an efficient runtime-level failure detection and
propagation strategy targeting large-scale, dynamic systems that
is able to detect both node and process failures. Multiple overlap-
ping topologies are used to optimize the detection and propagation,
minimizing the incurred overheads and guaranteeing the scalabil-
ity of the entire framework. The resulting framework has been
implemented in the context of a system-level runtime for parallel
environments, PMIx Reference RunTime Environment (PRRTE),
providing efficient and scalable capabilities of fault management
to a large range of programming and execution paradigms. The
experimental evaluation of the resulting software stack on different
machines demonstrate that the solution is at the same time generic
and efficient.

CCS Concepts

• Computer systems organization → Distributed architec-

tures; Heterogeneous (hybrid) systems; Reliability; Fault-tolerant
network topologies; • Software and its engineering → Software
fault tolerance; Runtime environments.

Keywords

Fault tolerance, Failure detection, Reliable broadcast, Message prop-
agation, HPC runtime system

ACM Reference Format:

Dong Zhong, Aurelien Bouteiller, Xi Luo, and George Bosilca. 2019. Runtime
Level Failure Detection and Propagation in HPC Systems. In 26th European
MPI Users’ Group Meeting (EuroMPI 2019), September 11–13, 2019, Zürich,
Switzerland. https://doi.org/10.1145/3343211.3343225

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
EuroMPI 2019, September 11–13, 2019, Zürich, Switzerland
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7175-9/19/09. . . $15.00
https://doi.org/10.1145/3343211.3343225

1 Introduction

The complexity and vastness of the questions posed by modern
science has fueled the emergence of an era where exploring the
boundaries of matter, life, and human knowledge requires large
instruments, either to perform the experiments, collect the obser-
vation, and in the case of high-performance computing (HPC),
perform the compute-intensive analysis of scientific data. As the
march of science continues, small and easy problems have already
been solved, and significant advances increasingly require tackling
finer-grain, more accurate problems, which entails larger compute
workloads, fueling an unending need for larger HPC systems.

In turn, facing hard limits on power consumption and chip fre-
quency, HPC architects have been forced to embrace massive paral-
lelism as well as a deeper and more complex component hierarchy
(e.g., non-uniform memory architectures, GPU-accelerated nodes)
to continue the growth in compute capabilities. This has stressed
the traditional HPC software infrastructure in different ways, but
it notably put to prominence two different issues that had been
largely disregarded in the last two decades: fault tolerance and
novel programming models.

The Message Passing Interface (MPI) has been instrumental in
permitting the efficient programming of massively parallel systems,
scaling along from early systems with tens of processors to current
systems routinely encompassing hundreds of thousands of cores. As
failures become more common on large and complex systems [19],
the MPI standard is in the process of evolving to integrate fault tol-
erance capabilities, as proposed in the User-Level Failure Mitigation
(ULFM) specification draft [4], or various efforts to integrate tightly
checkpoint-restart withMPI [14]. The second source of stress comes
from programming systems that are inherently hierarchical. This
has brought forth a renaissance in the field of programming models,
leading to a variety of contenders challenging the hegemony of
MPI as the sole method of harnessing the power of parallel sys-
tems. Naturally, these alternatives to MPI also have to handle fault
tolerance [7, 9, 21, 22, 29]. In addition, the convergence between
big data infrastructure and the HPC infrastructure, as well as the
emergence of machine learning as a massive consumer of compute
capabilities, is gathering around HPC systems new communities
that have long-held expectations that the infrastructure provide
resilience as a core feature [32].

A feature that’s commonly needed by these communities with
a vested interest in fault tolerance is the capability to efficiently,
quickly and accurately detect and report failures, so that they can
manifest as error codes from the programming interface, or trigger

https://doi.org/10.1145/3343211.3343225
https://doi.org/10.1145/3343211.3343225

EuroMPI 2019, September 11–13, 2019, Zürich, Switzerland Dong Zhong, Aurelien Bouteiller, Xi Luo, and George Bosilca

implicit recovery actions. In prior works [5], we have designed
a tailor-made failure detector for MPI that deploys finely tuned
optimizations to improve its performance. These optimizations are
unfortunately strongly tied to the MPI internal infrastructure. For
example, a key parameter to the performance of that detector is
the access to low-level remote memory access routines, which may
not be typically available in a less MPI-centric context. Similar
concepts could be applied to other HPC networking interfaces (e.g.,
OpenSHMEM), but at the expense of a major infrastructure rewrite
for each and every one of them. In this paper, we test the hypothesis
that a fully dedicated MPI solution is not necessary to achieve great
accuracy and performance, and that a generic failure detection
solution, provided by an external runtime entity that does not have
access to theMPI context and communication conduits can deliver a
similar level of service. In order to test that hypothesis, and further,
to define how a generic a solution can be, we designed a multi-level
failure detection algorithm, which we refer to as RDaemon# in this
paper, which operates within the runtime infrastructure to monitor
both node and process failures. We implemented that algorithm as
a component in the PMIx [12] runtime reference implementation
(PRRTE), which is a fully fledged runtime that is used in production
to deploy, monitor and serve multiple HPC networking stack clients.
We then compare this generic failure detection service with the fully
dedicated MPI detector from ULFM Open MPI on one hand, and
with the Scalable Weakly-Consistent Infection-style Membership
(SWIM) protocol on the other hand, the latter standing as a state-of-
the-art detector for unstructured peer-to-peer systems. Henceforth
we highlight that there is a performance trade-off in generality, but
a satisfactory level of performance can be achieved in a portable
and reusable component that can satisfy the needs of a variety of
HPC networking systems.

The rest of this paper is organized as follows. Section 2 motivates
our study and provides use cases and background on the MPI spe-
cific failure detector implementation in ULFM. Section 3 presents
related work on failure detectors followed by Section 4 where we
describe the algorithm and implementation details of our generic
failure detector. Section 5 describes the performance and accuracy
comparison between three different failure detectors providing a
distinct trade-off on the general to specific scale.

2 Motivation and Background

Many projects have proposed fault management techniques, either
automatic, driven by the application, or by an intermediary library.
Most of these approaches rely on their own specialized infrastruc-
ture to detect, propagate and react to failures. This leads to a large
number of partial solutions, insufficiently maintained where no
portable and efficient support to build resilient applications or pro-
gramming models exists. This lack of portable reliable software
infrastructure also makes comparing fairly existing or proposed
solutions difficult, not necessary in terms of potential capabilities
but in terms of performance. We believe it is critical to level the
field and provide a resilient, efficient, and portable fault detector
and propagator, integrated into one of the most widely used parallel
execution runtimes, that allows other libraries and programming
models to build on and support resilience at any scale. Here are
some examples of usages of such a resilient framework that we are
actively pursuing.

ULFM repairs the MPI infrastructure after a failure [4]. A com-
municator can be reconfigured after a process failure detection, with
the failed processes excludedwithMPI_Comm_shrink. Missing pro-
cesses can be re-spawned using theMPI functionMPI_Comm_spawn.
The specialized failure detector provided in ULFM operates only on
the MPI_COMM_WORLD scope, and relies on non-portable opti-
mization to mitigate issues with accuracy due to being executed in
the context of the MPI process. Using RDaemon# alleviates these
issues by cleanly splitting the MPI rank ordering, progress engine,
and thread initialization modes from the operation of the failure
detector. We will discuss in the experimental section how the gen-
erality of RDaemon# does not incur a large overhead compared to
the specialized ULFM detector.

OpenSHMEM is a one-sided partitioned global address space
(PGAS) programming model. While OpenSHMEM does not cur-
rently have a fault tolerance model, several teams are exploring
checkpoint and restart [22]. RDaemon# failure detection and propa-
gation attributes can provide the notification to trigger the recovery.
For more exploratory works, application developers can experi-
ment with modulating the frequency and placement of restart point
within the application and employ the failure detector directly, or
through OpenSHMEM interfaces.

EREINIT is a global-restart failure recovery model based on a
fast re-initialization of MPI [14]. This work is a co-design between
MVAPICH and Slurm resource manager to add process and node
failure detection and propagation features. It exhibit interesting
detection capabilities, but unfortunately it use an inefficient prop-
agation method and is tied to a single resource manager (Slurm).
RDaemon# can substitute a portable fault detection capability to en-
able EREINIT to run on machines with different resource managers
(Slurm, PBS, LSF, TORQUE, etc) and a more efficient propagation
to reduce the stabilization and recovery time of EREINIT.

DataSpaces and FTI are persistent data storage services. Fault
Tolerance Interface (FTI) provides a fast and efficient multilevel
checkpointing functionality [2]. Its interface lets users decide what
data need to be protected and when it is reasonable to do so. The
checkpointing routine then saves the marked data into a hierar-
chical storage using a variety of encoding and caching strategies,
and staging to mitigate the cost of checkpointing. DataSpaces is a
data sharing framework which supports the complex interaction
and coordination patterns required by coupled data-intensive ap-
plication workflows [30]. It can asynchronously capture and index
data which allows for dynamic interactions and in-memory data
exchanges between coupled applications. For both these software,
RDaemon# can provide the basic service to detect and report fail-
ures of the distributed infrastructure storage service, which, thus
far, has not been fault tolerant.

3 Related Work

In this section, we survey related work on large-scale distributed
runtime environments, different kinds of heartbeat based and ran-
dom gossip based failure detectors, together with reliable broadcast
algorithms to propagate fault information.

Runtime Level Failure Detection and Propagation in HPC Systems EuroMPI 2019, September 11–13, 2019, Zürich, Switzerland

3.1 Runtime Environments

A wide range of approaches to the problem of exascale distributed
computing runtime environments has been studied, each primarily
emphasizing a particular key aspect of the overall problem.

MPICH provides several runtime environments, such as MPD [8],
Hydra [25] and Gforker [25]. MPD connects nodes through a ring
topology but it is not resilient; two node failures could separate
nodes into two separates groups that prevent communication with
one another. Another drawback of MPD is that this approach has
proved to be non-scalable [6]. Hydra scales well for large num-
bers of processes on a single node and interacts efficiently with
hybrid programming models that combine MPI and threads. While
Hydra can monitor and report MPI process failures, it does not
cope with daemon failures. Open RTE [13, 28] is the Open MPI
runtime environment to launch, monitor, and kill parallel jobs, as
well as managing I/O forwarding. It also connects daemons through
various topologies, however the communication is not reliable. In
general, these runtimes have limited applicability outside of the
related MPI implementation that has motivated their creation.

The PRRTE runtime serves as the demonstrator and reference
implementation for the PMIx specification [12]. Technically, it is a
fork of the Open RTE runtime, and thus inherits most of its capabil-
ities to launch and monitor MPI jobs. Thanks to a well documented,
and recently standardized PMIx interface, PRRTE has increased its
capabilities, outgrowing the MPI world it was originally designed
for, and is currently capable of deploying a wide variety of parallel
applications and tools. Although PRRTE provides rudimentary sup-
port for clients’ fault detection and reporting, detection of failed
nodes is unstable, and the reporting broadcast topology is itself not
resilient, allowing at best process fault detection and propagation.
The current work expands on the existing capabilities of PRRTE by
adding advanced failure detection and reporting methodologies that
can efficiently operate despite the failure of the runtime daemon
themselves.

3.2 Failure Detection

Research in the areas of failure detection has been extensively stud-
ied. Chandra and Toueg [15] proposed the first unreliable failure
detector oracle that could solve consensus and atomic broadcast
problems for unreliable distributed systems. Many implementa-
tions [16, 23, 24] based on this oracle are using all-to-all heartbeat
patterns where every node periodically communicates with all
other nodes. However, these implementations, due to the commu-
nication patterns employed, are inherently not scalable beyond
systems with low hundreds of nodes. An optimized version, the
gossip-style protocol [17, 20, 26, 31], in which nodes pick at random
peers to monitor and exchange information with, is another popu-
lar approach for failure detection in unstructured systems where
the group membership is not a-priori established, or dynamically
and rapidly varies. Unfortunately, gossip methods perform poorly
with large numbers of simultaneous node crashes, and, given the
random nature of the communication pattern, the time to detect a
failure is not strictly bounded, leading to non-deterministic detec-
tion time. Furthermore, the gossip methods have the disadvantage
of generating a large number of redundant detection and gossip
messages that decrease the scalability.

Recently, we proposed a deterministic failure detector for HPC
systems based on network overlays [5], where each participant only
observes a single peer following a recoverable ring topology. The
experimentation results demonstrate the efficiency of the algorithm;
however, the implementation in ULFM being done at the applica-
tion level can only detect MPI process failures. The implementation
employs multiple optimization and shortcuts that are only possible
due to its tight and deep integration within the MPI library and the
availability of its highly optimized communication primitives. For
example, limitations on the accuracy of the detector when the MPI
implementation is not actively communicating are circumvented
by using passive target Remote Memory Access primitives (RMA)
which are initially provided for supporting the MPI communica-
tion; the operational mode, overhead, and accuracy of the detector
are impacted by the thread model used during the MPI initializa-
tion (i.e., MPI_THREAD_SINGLE results in lower overhead but a
higher chance of false positive than MPI_THREAD_MULTIPLE);
and, in manycore systems, every MPI process is observed and re-
ported as an independent entity, which can impart that the over-
head scales with the number of MPI processes rather than the
number of compute nodes; last, the detection topology is tied to
the MPI_COMM_WORLD handle which limits the type of topolo-
gies that can be employed. This resilient PRRTE work avoids these
limitations and has the capability to detect both process and node
failures with a smaller observation topology, and is not limited to
MPI application only.

3.3 Reliable Broadcast

Gossip-style [17, 18] dissemination mechanisms emulate the spread
of gossip in society. Initially, members are inactive except for one
member which is aware of an event of interest. It propagates this
information by randomly pinging other members, until it pings
someone who already was already notified. Notified members use
the same strategy to gossip the information. Gossip-style is resilient
to process failure and spreads exponentially quickly in the group,
however, in the worst case, some members may never get notified.

Regarding deterministic reliable broadcast algorithms, a fully
connected topology can handle a large number of failures but has
scalability issues since it generate too many messages. At the other
extreme, a mendable ring topology might be good for scalability (as
each process only has 2 neighbors) but offers poor propagation la-
tency and suffers in scenarios with multiple node failures. Circulant
k-nomial graphs [1, 27] provide a balance between the previous
two methods. Among circulant graphs, the binomial graph (BMG)
has the lowest diameter, which minimizes the number of hops for a
dissemination to reach all processes and the smallest fault diameter,
which guarantee the number of hops in the dissemination path will
remain scalable even when some processes on the delivery path
have failed. In this work we expand on these properties to maintain
the efficiency of the dissemination by integrating elements of the
architecture hierarchy to design a multi-level propagation strategy
that reduces the cost of propagation on typical HPC systems.

4 A Generic HPC Failure Detection Service

In this section, we describe the design of a generic failure detector
(called RDaemon# in the remainder of this paper) that we have im-
plemented and delivered as an infrastructure service in the context

EuroMPI 2019, September 11–13, 2019, Zürich, Switzerland Dong Zhong, Aurelien Bouteiller, Xi Luo, and George Bosilca

Table 1: Parameters and notations.

Symbol Description

N Number of Daemons (or nodes)
Daemon Runtime environment process; one per node
Process Application process; a node may host

multiple application processes
δ Heartbeat period between daemons
η Timeout for assuming a daemon failure

Repor tedi Set of failed daemon and processes identifiers
known at process/daemon i

of PPRTE. The overarching goal is to deliver a flexible and accurate
failure detector while exploiting the specificities of the HPC ma-
chine model to sustain high detection accuracy and speed, while
incurring a limited amount of noise on the monitored application.

4.1 Machine Model

We consider a machine model representative of a typical HPC sys-
tem. The machine is a distributed system comprised of compute
nodes with an interconnection network. Each node can host run-
time daemons and one or more application processes. Daemons
and processes have a unique identifier (e.g., a rank) that can be used
to establish communication between any given pair. Messages take
an unknown, but bounded amount of time to be delivered (i.e., the
network is pseudo-synchronous [15]). The identity and number of
daemons and processes participating in the application is known
a priori, or is established through explicit operations that do not
require group membership discovery.

4.2 Failure Model

We strive to report crash failures; that is, when a compute entity
stops emitting messages unexpectedly and permanently. A crash
failure may manifest as the ultimate effect of a variety of underlying
conditions—for example, an illegal instruction is performed by a pro-
cess because of a processor overheating, an entire node or cabinet
loses power, or a software bug manifests by interrupting unexpect-
edly or rendering some processes permanently non-responsive. In
the context of this work, we further distinguish between two sub-
types of crash failures. First, application process failures1, which
may impact any number of hosted application processes without
necessarily being concomitant with the failure of other processes,
even hosted on the same node. Second, node failures, which we
consider congruent with the observation of a daemon process fail-
ure. When a daemon failure occurs, all hosted application processes
on that node also undergo a process failure. Our work detects both
types of failures. We will discuss in the following sections how this
distinction helps improve the scalability of the failure detection
algorithm.

4.3 Notations

Table 1 summarizes some of the notations we will employ to de-
scribe the algorithm. The daemon is the infrastructure process

1Note that application process failures are crash failures; this paper does not dwell with
other types of application failures like incorrect code or dataset corruption resulting
in wrong results or silent errors.

deployed on each node to launch and monitor the execution of
application processes on that node. The failure detector we propose
employs heartbeats between daemons and timeouts to detect node
failures.

4.4 Detection of Process Failures

As illustrated in Figure 1, the failure detector we propose employs
two distinct strategies to detect process failures on one hand and
node failures on the other hand.

Daemon

Process_0 Process_1 Process_2 Process_3

Figure 1: Hierarchical notification of hosted processes

through PMIx notification routines. The PRRTE daemon

is in charge of observing, and forward notifications to the

node-local managed application processes. The detection

and reliable broadcast topology operates at the node level

between daemons.

To detect process failures that are not congruent with a node
failure, we leverage the direct observation of application processes
that can be performed by the node-local daemon. Since a process
failure does not impact the execution of the runtime daemon man-
aging that process, that daemon can execute localized observation
operations which are dependent upon node-local operating system
services. For example, the Open RTE Daemon Local Launch Subsys-
tem (ODLS) monitors SIGCHLD signals to detect discrepancies in
the core-binding affinity with respect to the user requested policy.
That same signal also permits, from the node-local daemon, an ex-
tremely fast and efficient observation of the unexpected termination
of a local application process. As a substitute, or in complement, a
daemon may also deploy a watchdog mechanism [12] to capture
non-terminating crash failures that may arise from software defects,
like live-locks, deadlocks and infinite loops.

4.5 Detection of Node/Daemon Failures

Resilient PRRTE’s algorithm for node/daemon failure detection
has two components: a node-level observation ring, and a reliable
broadcast overlay network between daemons.

We arrange all N daemons to a logistic ring topology, as illus-
trated in Figure 2. Thus, initially, each daemon d observes its prede-
cessor d − 1 mod N and is observed by its successor d + 1 mod N .
The predecessor periodically sends heartbeat messages to d (with a
configurable period δ). At the same time, d sends heartbeat mes-
sages to its own observer. For each node, a daemon emits heartbeats
m1,m2, ... at time τ1, τ2, ... to its observer o. Let τ ′i = τi + t . At any
time t ∈ [τ ′i ,τ

′
i+1), o knows that d is alive if it has received the

heartbeat messagemi or higher. Otherwise, o suspects that d has
failed and initiates the propagation of the failure of d.

When the observer detects that its predecessor has failed, it
undergoes two major steps. First, it needs to reconnect the ring
topology, as illustrated in Figure 3. Daemon o tries to observe the
predecessor of d (the daemon it previously observed). It sets d-1
as its new predecessor and then sends a request to d-1 to initiate

Runtime Level Failure Detection and Propagation in HPC Systems EuroMPI 2019, September 11–13, 2019, Zürich, Switzerland

Figure 2: Daemons monitor

one another along a ring

topology to detect node fail-

ures.

Figure 3: The algorithm

mends the detection ring

topology when a node fail-

ure occurs by requesting

heartbeats from the closest

live ancestor in the ring.

heartbeat emission. Of course, it is possible that d-1 has also failed,
which will be detected at the next timeout. In order to speed up the
reconnection process, o may skip over daemons that have already
been reported as failed in the past (i.e., daemons whose identifier
is in Reportedo because they have been observed and reported by
another daemon). Each time a daemon is marked as failed, all the
processes it managed are also marked as failed. After we get the list
of all those affected processes and nodes, the observer component
calls the propagation component to broadcast the fault information
to other daemons, and then notify its local processes.

4.6 Broadcasting Fault Information

Considering that the observation topology is static, it does not pro-
vide automatic or probabilistic dissemination of fault information.
Thus, to complete the reporting of failures, failures identified by
an observer must be broadcasted to inform all other daemons and
application processes. An important aspect when considering a
runtime that tolerates node/daemon failures is that the propagation
algorithm itself needs to be resilient to failures.

For broadcasting fault information between daemons, we use
the scalable and fault-tolerant BMG topology [1]. BMG has good
fault-tolerant properties such as optimal connectivity, low fault-
diameter, strongly resilient and good optimal probability in failure
cases. Note that unlike prior works, the propagation algorithm 1 is
not a flat BMG between application processes, but consists of an
inner BMG overlay between daemons, and an outer star overlay
from each daemon to its local managed processes.

Figure 4 shows an example of the execution of the BMG broad-
cast with 12 nodes. For simplicity, the local stars connecting each
daemon to its local processes are not represented.

(1) In this example, daemon 0 is the initial reporter and its
observer component starts the propagation by calling the
StartPropagation reliable broadcast algorithm.

(2) This prepares a broadcast message containing the identifier
of the failed process (or daemon), and the associated applica-
tion processes, when relevant. Daemon 0 issues the message
to its neighbors in the BMG topology.

(3) Upon receiving a broadcast message, a daemon considers if
the message needs to be forwarded. If the message carries
a list of processes that are already known to have failed,
then the daemon already triggered the propagation, and no

Algorithm 1 Two-Level Reliable Broadcast Algorithm.
N ▷ Number of nodes (value from environment)
Eid ▷ Identifier of a process observed as failed (input parameter)
Reportedi ▷ Set of identifiers of previously reported failures, local

to daemon i (initially empty)
msg ▷ Message containing the set of process identifiers to report

(initially empty)
Hosted{Did} ▷ Set of process identifiers managed by the daemon

Did (initially empty, obtained from environment)
1: procedure StartPropagation(Eid) ▷ Daemon i starts the

propagation
2: if (Eid < Reportedi) then
3: Add Eid tomsд
4: if Eid is a daemon then

5: Obtain Hosted{Eid}
6: add Hosted{Eid} tomsд

7: ReliableBroadcast(i,N ,msд)
8: Addmsд to Reportedi
1: procedure ReliableBroadcast(i,N ,msд) ▷ Daemon i sends

error messages to all its neighbors
2: for k ← 0 to log2 N do ▷ Neighbors in the BMG
3: i sends msg to ((N + i + 2k) mod N)
4: i sends msg to ((N + i - 2k) mod N)
5: for all lp ∈ Hosted{i} do ▷ Local application processes
6: i sends msg to lp

1: procedure Forwarding(msд) ▷ Triggered when daemon
or process j receivesmsд; decides if the message needs to be
forwarded and notified locally

2: if msд 1 Reportedj then
3: if j is a daemon then

4: ReliableBroadcast(j,N ,msд)
5: Addmsд to Reportedj

further action is needed. Thus every daemon forwards the
message once, ensuring that all edges of the BMG will carry
exactly one message per detection.

The propagation message issued at each daemon is ordered so
that the messages that are part of a binomial spanning tree rooted
at the emitter are sent first. Figure 5 shows the a spanning tree
for a broadcast originating from node 0; the redundant messages
(colored in blue) are extra messages that provide reliablility and
ensure that any node in the BMG can always be reached within
O(loд2N) steps (given that less than 2loд2N failures strike, with
more failures, statistically rare scenarios can degenerate in a linear
propagation time). The advantages of this new broadcast algorithm
are:

(1) Sequence ordering brings higher parallelism: messages to
node {10, 11, 7} can arrive from any redundant forwarding
path rather than only from the 0-rooted spanning tree. This
may decrease the apparent height of the tree, and thus reduce
the average notification latency.

(2) Limited network degree: the maximum degree for every
daemon is logarithmic, which avoids hot-spot effects that
are common in randomized gossip algorithms.

EuroMPI 2019, September 11–13, 2019, Zürich, Switzerland Dong Zhong, Aurelien Bouteiller, Xi Luo, and George Bosilca

seq:3
seq:1

se
q:5

se
q:8

seq:2
seq:4

seq:6
seq:7

01

2

3

4

5 6 7

8

9

10

11

Figure 4: Binomial graph with 12 nodes with messages sent

from 0 highlighted.

0

1

seq:1

2

seq:3

4

seq:5 seq:8

8

seq:7 seq:6

10

seq:4

11

seq:2

35 9 6

7

Figure 5: Binomial spanning tree in broadcast from node 0,

redundant messages from 0 are colored in blue.

(3) Deterministic number of messages: the total number of mes-
sages is exactly the number of links in the BMG topology,
that is, O(Nloд2N) messages overall. In contrast, random
march gossip algorithms have to balance between the prob-
ability of not reaching every participant and the number of
messages.

(4) The number of heartbeats and propagation messages is de-
pendent upon the number of nodes, not the number of man-
aged application processes. In manycore systems, this can
significantly reduce the effective cost of the algorithm when
compared to a flat topology between application processes.

Figure 6: Resilient PRRTE architecture. The orange boxes

represent components with added resilience features. The

dark blue colored boxes are new modules.

4.7 Implementation

4.7.1 PMIx Interface We implemented RDaemon# as a set of com-
ponents in PRRTE. PRRTE is a fork of the Open MPI runtime,
Open RTE [13]. PRRTE is developed and maintained by the PMIx
community as a demonstrator and enabler technology that demon-
strates and exercises the features of the PMIx interface [12]—an
abstract set of interfaces by which not only applications and tools
can interact with the resident system management stack (SMS),
but also the various SMS components can interact with each other.
Many communication libraries, resource managers, and job sched-
uling systems are currently employing PMIx in production, and
many more are under development. For example, Open MPI has
now substituted Open RTE with a shim layer over PMIx and thus

can be launched and monitored by PRRTE. Similarly, OpenSHMEM
uses PRRTE as the default launcher. Meanwhile, the Slurm batch
scheduler and job starter ships with native PMIx support, meaning
that an application that interoperate with Slurm through PMIx can
be ported over PRRTE without effort.

In RDaemon#, we leverage the interfaces specified by PMIx [11]
to interoperate with the client application, communication library,
or programming language, as well as with the SMS. To the best of
our knowledge, RDaemon# is the first implementation to populate
the PMIx interfaces with a truly resilient implementation. An im-
portant feature of the interface is the PMIx Event Notification [10]:
we use it to perform the local propagation of failure information
from the daemon to the client processes.

4.7.2 RDaemon
#
in the PRRTE Architecture While a full depiction

of the architecture and feature set of PRRTE is out of the scope of
this paper, some are relevant to our implementation effort. PRRTE is
based on a Modular Component Architecture (MCA) which permits
easily extending or substituting the core subsystemwith experimen-
tal features. As shown in in figure 6, within this architecture, each
of the major subsystems is defined as an MCA framework, with
a well-defined interface, and multiple components implementing
that framework can coexist.

We added two new frameworks and four components to PRRTE
daemons. The proc_failure component is in charge of detecting
the failure of locally hosted processes (using SIGCHLD signals from
the operating system). The BMG component implements a broadcast
algorithm in a reliable way; to be noted, this component abides
by the normal interface for a daemon broadcast and can reliably
broadcast any type of information. The detector component emits
heartbeats and monitors timeouts, and last, the error_ppg compo-
nent prepares the content of the reliable broadcast messages (i.e.,
the list of failed processes). In order to populate the list of failed
processes in node failure cases, the list of processes hosted by a
particular daemon needs to be obtained (line 5 of procedure Start-
Propagation in Algorithm 1). This information is queried from
the key-value store of PMIx. Note however that multiple daemons
querying that information could cause a storm of network activity
within the SMS in order to fetch this information, or require its
replication (memory overhead). Fortunately, as a given daemon is
observed by a single other daemon, there is a single initiator to the

Runtime Level Failure Detection and Propagation in HPC Systems EuroMPI 2019, September 11–13, 2019, Zürich, Switzerland

propagation routine and this potential non-scalable usage of the
PMIx key-value store can be avoided.

5 Experimental Evaluation

5.1 Experimental Setup

Experiments are conducted on two different machines: (1) ICL’s
NaCl is an Infiniband QDR Linux cluster comprising 66 Intel Xeon
X5660 compute nodes, 12 cores per node; (2) NERSC’s Cori is a Cray
XC40 supercomputer with Intel Xeon "Haswell" processors and the
Cray "Aries" high speed inter-node network, 32 cores per node.
Our RDaemon# is based upon PRRTE (#71ef547), with external
PMIx (#21d7c9). We compare with ULFM revision #77f9157, which
is based on the same base version of Open MPI we use to evaluate
RDaemon# in MPI workloads. Each experiment is repeated 30 times
and we present the average. We use Intel MPI Benchmark (IMB
v2019.2) [3] for MPI performance measurements for point-to-point
(P2P) and collective communications (one MPI rank per core). For
all experiments we use the map-by node, bind-to core binding
policy which puts sequential MPI ranks on adjacent cores. The only
exception is the IMB P2P experiment where we use the map-by
node, bind-by node policy to set communicating MPI ranks on
different nodes.

5.2 Accuracy

For the first experiment, we explore the accuracy of RDaemon#’s
detector. The accuracy experiment is conducted by (1) Starting with
a large value for the detection timeout η; (2) Verify that no failure
is detected when there is no injection, and all injected failures
are reported; (3) If the previous test is accurate, decrease η (and
accordingly the heartbeat period δ) until we notice false positive
detection. We set a constant ratio η = δ ∗ 2. This methodology
exposes the behavior in normal deployment (100ms period) as well
as the behavior at the limit for very short η timeout values (in the
order of milliseconds). Figure 8 presents the results on NaCl 64
nodes. In heavily communicating benchmarks (IMB point-to-point
and collective tests), all tests succeed until the heartbeat period is
lower than 20 milliseconds. To further investigate, we measured
that the heartbeat message is neither delayed by communication
congestion nor compute pressure, but we found out that daemons
need some time to launch the processes when starting the job which
causes heartbeat delay and false detection during job startup.

5.3 Noise

We also investigate the noise overhead incurred on an MPI applica-
tion by the heartbeat emission and management from RDaemon#.
Figure 7 illustrates the overhead incurred with P2P and collec-
tive communications running IMB. In order to contextualize the
incurred overhead, we present, in shaded grey, the band of natu-
ral variability of the benchmark without a failure detector active
(averaдe ± σ), and, for clarity, we plot error bars for δ = 1ms , the
only case where the variability sometime exceeds the natural vari-
ability of the benchmark. For the PingPong benchmark, we use
the -multi mode of IMB with one rank per core on 2 nodes. This
ensures that all cores are active with the communication pattern
and thus compete for resources with RDaemon# activities. For the
collective benchmarks, we run on 64 nodes using all cores. For

each message size, we set the number of repetitions for the test
to last at a minimum 20 seconds so that multiple heartbeat emis-
sions occur during the experiment. Overhead is calculated by using
the maximum latency result, normalized by the non-fault tolerant
performance:

Overhead =
(RDaemon# − PRRTE)

PRRTE
(1)

From the graph we can see that the latency performance and band-
width performance are barely affected with heartbeat period rang-
ing from milliseconds to seconds. Notably, when δ ≥ 10ms , it has
trivial influence on the system, as illustrated by the fact that the
average overhead is within the band of natural variability of the
benchmark. When δ = 1ms the incurred noise varies in a band that
increases the PingPong latency by up to three percent. In collec-
tive communication, the noise overhead is less than eight percent,
slightly higher than the standard deviation of the benchmark itself,
at four percent. In a general comparison with ULFM (normalized to
its performance without failure detection active), we can see that
RDaemon# achieves a similar level of incurred noise for a given
heartbeat period and communication pattern.

5.4 Comparison with SWIM

This section compares the failure detection latency and scalability
of RDaemon# with SWIM [17]—a random-probing based failure
detection protocol and gossip membership updates. To decrease
the chance of false detection, SWIM uses a suspicion mechanism.
When a node does not reply to a probing in time, the initiator then
judges this node as suspicious (but not yet failed). It then broad-
casts this suspicion information within a subgroup: if any node
in the subgroup receives an acknowledge before the timeout, it
will declare the suspected node as alive; otherwise it will declare
a failure. In order to improve the efficiency of multi-cast, SWIM
uses the infection-style dissemination mechanism and piggybacks
the information to be disseminated in the detection’s pings and ac-
knowledgements messages. For the SWIM implementation, we use
Go-Memberlist (#a8f83c6). We used a go-MPI interface to replicate
our MPI detection benchmark with SWIM.

Figure 9 compares the scalability of the two detectors with regard
to the number of deployed processes with η = 1s , δ = 0.5s . We
could run SWIM tests only up to 256 members; after that limit,
some nodes exceed the maximum connection backlog set in the
operating system for listen operations on TCP sockets, causing an
application crash during initialization. For RDaemon#, we run all
tests up to 768 processes on 64 nodes. As the number of processes
increases latency of RDaemon# remains almost the same. For 4K
processes, the stabilization of RDaemon# is still below the range
of the heartbeat period and timeout. SWIM latency shows a linear
increase when the number of processes increase which will be the
bottleneck when scaling up (assuming the maximum connection
requests limit issue can be solved).

Figure 10 compares single node failure detection and propagation
latency between RDaemon# and SWIM with different heartbeat
period settings. For all tests we set η = δ ∗2. The experiment uses 64
nodes in both cases; RDaemon# deploys on all 768 cores, but SWIM
uses only 256 cores (due to not being able to deploy with more pro-
cesses, as discussed above). We can clearly see that for RDaemon#

EuroMPI 2019, September 11–13, 2019, Zürich, Switzerland Dong Zhong, Aurelien Bouteiller, Xi Luo, and George Bosilca

4 32k 4M
-4.0%

-2.0%

0.0%

2.0%

4.0%
PingPong

4 32k 4M

PingPing

Ov
er

he
ad

4 32k 4M
Message Size

-4.0%
-2.0%
0.0%
2.0%
4.0%
6.0%
8.0%

Bcast

4 32k 4M

Reduce

4 32k 4M

AllReduce ULFM
RDAEMON#

 = 0.1s
 = 0.01s
 = 0.001s

IMB std

Figure 7: PRRTE with fault tolerance overhead over PRRTE and ULFM using IMB.

20 30 40 50 100
Heartbeat period (ms)

40
60
80

100

200

La
te

nc
y

(m
s)

RDAEMON# daemon failure
RDAEMON# false
 positive present
Heartbeat
Timeout

Figure 8: Accuracy with short detection timeout.

25 26 27 28 29 210 211 212

Number of processes

1

2

3

4

5

La
te

nc
y

(s
)

RDAEMON#

SWIM

Figure 9: Detection latency comparison between RDaemon
#

and SWIM with increasing number of processes (δ = 0.5s).

the detection latency is between (δ , η), and the last notification
happens very soon after the detection, which demonstrates the
efficiency of our propagation algorithm (variability in the results
comes from the randomness of when the node failure happened
with respect to the heartbeat period). However, for SWIM, even
considering the advantage of managing a smaller number of pro-
cesses, the latency is still more than 10 ∗ δ , because after the initial

0.0
3
0.0

5 0.1 0.2 0.3 0.4 0.5

Heartbeat period (s)

0

1

2

3

4

5

La
te

nc
y

(s
)

RDAEMON#

SWIM
Heartbeat
Timeout

Figure 10: Detection and Propagation delay comparison be-

tween RDaemon
#
and SWIMwith varying heartbeat period.

timeout declares a suspicion, the gossip protocol and confirmation
mechanism have to be executed before the failure is reported.

5.5 Comparison with ULFM for Process

Failures

This section compares RDaemon# with the other extreme on the
spectrum of general versus specialized—ULFM. The ULFM imple-
mentation also has two main components: process-level detection
ring, and propagation overlay with all launched processes. The
detection ring is built at Byte Transfer Layer (BTL) level, which
provides the portable low-level transport abstraction in Open MPI.
ULFM’s current implementation provides several mechanisms to
ensure the timely activation and delivery of heartbeats:

(1) Using a separate, library-internal thread to send the heart-
beats in order to be separated from the application’s com-
munication. This also mitigates the drift in heartbeat emis-
sion dates (which would cause false positive detection) in
compute-intensive applications. For receiver it needs to poll
BTL engine to check the aliveness of its successor.

(2) Using RDMA put to raise a flag in the receiver’s registered
memory. By using the hardware accelerated put operations,
ULFM avoids the problem of active polling BTL engine.

Runtime Level Failure Detection and Propagation in HPC Systems EuroMPI 2019, September 11–13, 2019, Zürich, Switzerland

(3) Using in-band detection directly from the high-performance
network fabric to report unreachable error directly to the
propagation component.

2 4 8 16 32 64
Number of Nodes (ppn1 and ppn12)

1

2

3

4

5

6

La
te

nc
y

(m
s)

log(Nodes)
RDAEMON#_PPN1
RDAEMON#_PPN12

log(Processes)_PPN1
log(Processes)_PPN12
ULFM_PPN1
ULFM_PPN12

Figure 11: Process failure detection and propagation delay

compared to ULFM.

The propagation overlay is also built at the BTL level. Reliable
broadcast messages are sent using the same active message infras-
tructure employed to deliver short MPI messages and matching
fragments (however, a different tag is employed to avoid disrupt-
ing the MPI matching). Because the propagation happens at the
application process level, all MPI processes are part of the reli-
able broadcast algorithm, thus the lower bound for reaching all
processes is log2(Number o f Processes).

In contrast, RDaemon#’s process failure detection is implemented
at the daemon level. This mechanism doesn’t pressure the applica-
tion communication resources, and can progress the processing of
heartbeats without the need for RDMA hardware. The broadcast
overlay in RDaemon# is built at the daemon level which decreases
the number of participants to the number of nodes—a potentially
large saving in manycore systems. This helps reduce the total mes-
sages transferred and forwarded compared to ULFM, and the the
lower bound for a full propagation is log2(Number o f Nodes).

Figure 11 compares the latency of process failure detection and
propagation between ULFM and RDaemon#. For process failures
(as opposed to node failures), both RDaemon# and ULFM rely on
non-heartbeat–based detection. ULFM uses the shared-memory
transport (SM BTL) between co-hosted processes, and this BTL
features a very rapid (almost instantaneous) in-band reporting of
the endpoint failure. For RDaemon#, the daemons detect process
failures with operating system signals. So, in this process failure
experiment, we do not measure the effectiveness of the heartbeat
mechanism (and timeout). Instead, we stress the broadcast compo-
nent exclusively.

Experiments are conducted on NaCl up to 64 nodes using all 12
cores on each node. The process mapping results in ULFM perform-
ing a large part of the propagation between co-hosted processes
(using the SM BTL transport) and employs InfiniBand communi-
cation for inter-node messages. RDaemon# uses TCP to broadcast
between daemons, and each daemon uses a PMIx’s notification to

distribute the error information to all hosted processes. We can see
that our implementation enjoys the same performance as ULFM
but greatly reduces the complexity. The detection and propagation

4 8 16 32 64 128
Number of Nodes (ppn 32)

4

6

8

10

12

La
te

nc
y

(m
s)

RDAEMON#

log(Num of nodes)
RDAEMON#avg

Figure 12: Process failure detection and propagation delay

on Cori.

time is less than 5 milliseconds despite using TCP. For ULFM the
detection and propagation delay increases from 2 milliseconds to 3
milliseconds as the number of processes increases. For both RDae-
mon# and ULFM the latency increase trend fit a∗ log2(N)+b, which
can be easily scale up to hundreds of thousands of nodes, but for
ULFM the trend follows the number of processes rather than the
number of nodes.

To further validate the logarithmic trend of RDaemon# scalabil-
ity, we scales the evaluation on the larger Cori system (with more
processes per node). We can see in Figure 12 that with 4K processes
the detection and propagation latency is about 10 milliseconds, and
the scalability trend remains logarithmic with the number of nodes
(not processes).

5.6 Node Failures Detection

We now compare the detection latency for full-node failures. In
RDaemon# node failures result in the loss of a daemon, for ULFM
they result in the loss of multiple consecutive processes in the ring
topology. In both cases, the node failure is detected by the absence
of heartbeats before the timeout expiration.

Figure 13 presents the behavior observed when injecting a sin-
gle daemon failure under different heartbeat period settings. We
conducted the experiments on 64 nodes with 764 processes. For
RDaemon# after synchronizing, we inject a node crash by order-
ing a process to kill its host daemon. For ULFM, all application
processes on the target node suicide as a group. For the heartbeat
period setting we start from 30 milliseconds to 0.5 second for both
RDaemon# and ULFM. For all heartbeat period, we set η = δ ∗ 2.
From the figure, we can see that the detection latency in all cases
lands in the interval [δ ,η].

Figure 14 shows single node failure detection and propagation
performance with a fixed heartbeat period δ = 0.5s and an in-
creasing total number of nodes. After a node crash, all processes
hosted on this node will be affected, the observer node fetches and
packs the information of all affected processes information, then

EuroMPI 2019, September 11–13, 2019, Zürich, Switzerland Dong Zhong, Aurelien Bouteiller, Xi Luo, and George Bosilca

0.0
3

0.0
5 0.1 0.2 0.3 0.4 0.5

Heartbeat period(s)

0.0

0.2

0.4

0.6

0.8

1.0

La
te

nc
y(

s)

RDAEMON#

RDAEMON# Detected
ULFM
HeartBeat
Timeout

Figure 13: Single Daemon Failure detection and propagation

delay compared to ULFM with different heartbeat period.

distributes the packed message. From the figure see that RDae-

2 4 8 16 32 64
Number of Nodes (ppn12)

0.5

0.6

0.7

0.8

0.9

La
te

nc
y

(s
)

RDAEMON#

Figure 14: SingleDaemonFailureDetection andPropagation

delay with different number of nodes.

mon# can detect and propagate a node failure between (0.5s, 1s) for
all tested number of nodes.

The last experiment, presented in Figure 15), investigates the ef-
fect of multiple concurrent node failures. The experiment is similar
to the single node failure case, except for the number of processes
that inject failures. We first consider the worst-case scenario, in
which failures strike contiguous nodes. In this case, the daemon
that detects the first failure undergoes the ring-mending operation,
which entails a linear number of timeouts before all failures are
notified. Note that ULFM exhibits the same behavior, even for sin-
gle node failures: in the map-by-slot binding policy, consecutive
ranks fail simultaneously with a node failure. From a fault toler-
ance perspective, the ordering of daemons on the detection ring
should avoid setting nodes that have a correlated chance of failure
sequentially (e.g., avoid choosing predecessor and successor from
the same cabinet), which is easier to achieve when the detection
infrastructure is split from the MPI rank ordering. To study the

average behavior, we also inject failures at random nodes. In this
case, the detection and propagation are independently conducted by
different observer nodes and neatly overlap, resulting in a marginal
increase in the overall detection latency for reporting all failures.

1 2 3 4
Number of daemon failures

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

La
te

nc
y

(s
)

RDAEMON# adjacent daemon failures
RDAEMON# random daemon failures

Figure 15: Multiple daemon failures at the same time.

6 Conclusion

Failure detection and propagation is a critical service for resilient
systems. In this work, we present an efficient failure detection and
propagation design and implementation for distributed systems.
The algorithm is integrated within PRRTE so that the detection
service can be employed by a wide variety of clients through a well
specified and popular interface (PMIx). The process and node failure
detection strategy presented in this work depends on heartbeats and
timeouts. Unlike gossip-based algorithms, it enjoys deterministic
communication bounds and overhead to provide a reliable solution
that works at scale, yet it doesn’t require an over-specialization
detrimental to applicability. Our design and implementation takes
into account the intricate relationship and trade-offs between sys-
tem overhead, detection efficiency, and risks: low detection time
requires frequent emission of heartbeats messages, increasing the
system noise and the risk of false positive. Our solution addresses
those concerns and is capable of tolerating high frequency of node
and process failures with a low-degree topology that scales with the
number of nodes rather than the number of managed processes. Our
results from different machines and benchmarks compared to re-
lated works shows that RDaemon# outperforms non-HPC solutions
significantly, and is competitive with specialized HPC solutions that
can manage only MPI applications. Thus, this runtime-level failure
detector opens the gate for efficient management of failures for
an emerging field of libraries, programming models, and runtime
systems operating on large-scale systems.

Acknowledgments

This material is based upon work supported by the National Science
Foundation under Grant No. (1725692); and the Exascale Computing
Project (17-SC-20-SC), a collaborative effort of the U.S. Department
of Energy Office of Science and the National Nuclear Security Ad-
ministration.

Runtime Level Failure Detection and Propagation in HPC Systems EuroMPI 2019, September 11–13, 2019, Zürich, Switzerland

References

[1] Thara Angskun, George Bosilca, and Jack Dongarra. 2007. Binomial Graph: A
Scalable and Fault-Tolerant Logical Network Topology. In Parallel and Distributed
Processing and Applications, Ivan Stojmenovic, Ruppa K. Thulasiram, Laurence T.
Yang, Weijia Jia, Minyi Guo, and Rodrigo Fernandes de Mello (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 471–482.

[2] Leonardo Bautista-Gomez, Seiji Tsuboi, Dimitri Komatitsch, Franck Cappello,
Naoya Maruyama, and Satoshi Matsuoka. 2011. FTI: High Performance Fault
Tolerance Interface for Hybrid Systems. In Proceedings of 2011 International
Conference for High Performance Computing, Networking, Storage and Analysis
(SC ’11). ACM, New York, NY, USA, Article 32, 32 pages. https://doi.org/10.1145/
2063384.2063427

[3] Gergana S. (Blackbelt). [n. d.]. Introducing Intel MPI Benchmarks.
Retrieved February 7, 2018 from https://software.intel.com/en-us/articles/
intel-mpi-benchmarks

[4] Wesley Bland, Aurelien Bouteiller, Thomas Herault, Joshua Hursey, George
Bosilca, and Jack J. Dongarra. 2013. An evaluation of User-Level Failure Mitiga-
tion support in MPI. Computing 95, 12 (Dec 2013), 1171–1184.

[5] G. Bosilca, A. Bouteiller, A. Guermouche, T. Herault, Y. Robert, P. Sens, and
J. Dongarra. 2016. Failure Detection and Propagation in HPC systems. In SC
’16: Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. 312–322. https://doi.org/10.1109/SC.2016.26

[6] G. Bosilca, T. Herault, A. Rezmerita, and J. Dongarra. 2011. On Scalability for MPI
Runtime Systems. In 2011 IEEE International Conference on Cluster Computing.
187–195. https://doi.org/10.1109/CLUSTER.2011.29

[7] Aurelien Bouteiller, George Bosilca, and Manjunath Gorentla Venkata. 2016.
Surviving Errors with OpenSHMEM. In OpenSHMEM and Related Technologies.
Enhancing OpenSHMEM for Hybrid Environments, Manjunath Gorentla Venkata,
Neena Imam, Swaroop Pophale, and Tiffany M. Mintz (Eds.). Springer Interna-
tional Publishing, Cham, 66–81.

[8] Ralph Butler, William Gropp, and Ewing Lusk. 2000. A Scalable Process-
Management Environment for Parallel Programs. 168–175 pages. https://doi.
org/10.1007/3-540-45255-9{_}25

[9] C. Cao, T. Herault, G. Bosilca, and J. Dongarra. 2015. Design for a Soft Error
Resilient Dynamic Task-Based Runtime. In 2015 IEEE International Parallel and
Distributed Processing Symposium. 765–774. https://doi.org/10.1109/IPDPS.2015.
81

[10] Ralph H. Castain. 2017. RFC0002:PMIx Event Notification. Retrieved Nov 03,
2017 from https://pmix.org/pmix-standard/event-notification/

[11] Ralph H. Castain. 2017. RFC0015:Job Control And Monitoring APIs. Retrieved
Nov 03, 2017 from https://pmix.org/pmix-standard/job-control-and-monitoring/

[12] Ralph H. Castain, Joshua Hursey, Aurelien Bouteiller, and David Solt. 2018. PMIx:
Process management for exascale environments. Parallel Comput. 79 (2018), 9 –
29.

[13] R. H. Castain, T. S. Woodall, D. J. Daniel, J. M. Squyres, B. Barrett, and G. E.
Fagg. 2005. The Open Run-Time Environment (OpenRTE): A Transparent Multi-
cluster Environment for High-Performance Computing. In Recent Advances in
Parallel Virtual Machine and Message Passing Interface, Beniamino Di Martino,
Dieter Kranzlmüller, and Jack Dongarra (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 225–232.

[14] Sourav Chakraborty, Ignacio Laguna, Murali Emani, Kathryn Mohror, Dha-
baleswar K. Panda, Martin Schulz, and Hari Subramoni. [n. d.]. EReinit: Scalable
and efficient fault-tolerance for bulk-synchronous MPI applications. Concurrency
and Computation: Practice and Experience 0, 0 ([n. d.]), e4863. https://doi.org/
10.1002/cpe.4863 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.4863
e4863 cpe.4863.

[15] Tushar Deepak Chandra and Sam Toueg. 1996. Unreliable Failure Detectors
for Reliable Distributed Systems. J. ACM 43, 2 (March 1996), 225–267. https:
//doi.org/10.1145/226643.226647

[16] Wei Chen, S. Toueg, and M. K. Aguilera. 2002. On the quality of service of failure
detectors. IEEE Trans. Comput. 51, 1 (Jan 2002), 13–32. https://doi.org/10.1109/
12.980014

[17] A. Das, I. Gupta, and A. Motivala. 2002. SWIM: scalable weakly-consistent
infection-style process group membership protocol. In Proceedings International

Conference on Dependable Systems and Networks. 303–312. https://doi.org/10.
1109/DSN.2002.1028914

[18] Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson, Scott Shenker,
Howard Sturgis, Dan Swinehart, and Doug Terry. 1987. Epidemic Algorithms
for Replicated Database Maintenance. In Proceedings of the Sixth Annual ACM
Symposium on Principles of Distributed Computing (PODC ’87). ACM, New York,
NY, USA, 1–12. https://doi.org/10.1145/41840.41841

[19] Catello Di Martino, Zbigniew Kalbarczyk, and Ravishankar Iyer. 2016. Measur-
ing the Resiliency of Extreme-Scale Computing Environments. In Principles of
Performance and Reliability Modeling and Evaluation. Springer, 609–655.

[20] Indranil Gupta, Tushar D. Chandra, and Germán S. Goldszmidt. 2001. On Scalable
and Efficient Distributed Failure Detectors. In Proceedings of the Twentieth Annual
ACM Symposium on Principles of Distributed Computing (PODC ’01). ACM, New
York, NY, USA, 170–179. https://doi.org/10.1145/383962.384010

[21] Sara S. Hamouda, Benjamin Herta, Josh Milthorpe, David Grove, and Olivier
Tardieu. 2016. Resilient X10 overMPI User Level FailureMitigation. In Proceedings
of the 6th ACM SIGPLAN Workshop on X10 (X10 2016). ACM, New York, NY, USA,
18–23. https://doi.org/10.1145/2931028.2931030

[22] Pengfei Hao, Swaroop Pophale, Pavel Shamis, Tony Curtis, and Barbara Chapman.
2015. Check-Pointing Approach for Fault Tolerance in OpenSHMEM. In Revised
Selected Papers of the Second Workshop on OpenSHMEM and Related Technologies.
Experiences, Implementations, and Technologies - Volume 9397 (OpenSHMEM 2015).
Springer-Verlag New York, Inc., New York, NY, USA, 36–52. https://doi.org/10.
1007/978-3-319-26428-8_3

[23] Marcos Kawazoe Aguilera,Wei Chen, and Sam Toueg. 1997. Heartbeat: A timeout-
free failure detector for quiescent reliable communication. In Distributed Algo-
rithms, Marios Mavronicolas and Philippas Tsigas (Eds.). Springer Berlin Heidel-
berg, Berlin, Heidelberg, 126–140.

[24] M. Larrea, A. Fernandez, and S. Arevalo. 2000. Optimal implementation of
the weakest failure detector for solving consensus. In Proceedings 19th IEEE
Symposium on Reliable Distributed Systems SRDS-2000. 52–59. https://doi.org/10.
1109/RELDI.2000.885392

[25] Mathematics and Computer Science Division Argonne National Labora-
tory. 2014. Hydra Process Management Framework. Retrieved June
24, 2014 from https://wiki.mpich.org/mpich/index.php?title=Hydra_Process_
Management_Framework

[26] Sridharan Ranganathan, Alan D. George, Robert W. Todd, and Matthew C.
Chidester. 2001. Gossip-Style Failure Detection and Distributed Consensus for
Scalable Heterogeneous Clusters. Cluster Computing 4, 3 (01 Jul 2001), 197–209.
https://doi.org/10.1023/A:1011494323443

[27] P. Shamis, R. Graham, M. G. Venkata, and J. Ladd. 2011. Design and Imple-
mentation of Broadcast Algorithms for Extreme-Scale Systems. In 2011 IEEE
International Conference on Cluster Computing. 74–83. https://doi.org/10.1109/
CLUSTER.2011.17

[28] Jeffrey M. Squyres. 2012. The Architecture of Open Source Applications:Open
MPI. Retrieved May 18, 2012 from http://www.aosabook.org/en/openmpi.html

[29] Omer Subasi, Tatiana Martsinkevich, Ferad Zyulkyarov, Osman Unsal, Jesus
Labarta, and Franck Cappello. 2018. Unified fault-tolerance framework for hybrid
task-parallel message-passing applications. The International Journal of High
Performance Computing Applications 32, 5 (2018), 641–657. https://doi.org/10.
1177/1094342016669416 arXiv:https://doi.org/10.1177/1094342016669416

[30] Qian Sun, Melissa Romanus, Tong Jin, Hongfeng Yu, Peer-Timo Bremer, Steve
Petruzza, Scott Klasky, and Manish Parashar. 2016. In-staging Data Placement
for Asynchronous Coupling of Task-based Scientific Workflows. In Proceedings
of the Second Internationsl Workshop on Extreme Scale Programming Models and
Middleware (ESPM2). IEEE Press, Piscataway, NJ, USA, 2–9. https://doi.org/10.
1109/ESPM2.2016.12

[31] Robbert van Renesse, Yaron Minsky, and Mark Hayden. 1998. A Gossip-Style
Failure Detection Service. InMiddleware’98, Nigel Davies, Seitz Jochen, and Kerry
Raymond (Eds.). Springer London, London, 55–70.

[32] Judicael A. Zounmevo, Dries Kimpe, Robert Ross, and Ahmad Afsahi. 2013.
Using MPI in High-performance Computing Services. In Proceedings of the 20th
European MPI Users’ Group Meeting (EuroMPI ’13). ACM, New York, NY, USA,
43–48. https://doi.org/10.1145/2488551.2488556

https://doi.org/10.1145/2063384.2063427
https://doi.org/10.1145/2063384.2063427
https://software.intel.com/en-us/articles/intel-mpi-benchmarks
https://software.intel.com/en-us/articles/intel-mpi-benchmarks
https://doi.org/10.1109/SC.2016.26
https://doi.org/10.1109/CLUSTER.2011.29
https://doi.org/10.1007/3-540-45255-9{_}25
https://doi.org/10.1007/3-540-45255-9{_}25
https://doi.org/10.1109/IPDPS.2015.81
https://doi.org/10.1109/IPDPS.2015.81
https://pmix.org/pmix-standard/event-notification/
https://pmix.org/pmix-standard/job-control-and-monitoring/
https://doi.org/10.1002/cpe.4863
https://doi.org/10.1002/cpe.4863
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.4863
https://doi.org/10.1145/226643.226647
https://doi.org/10.1145/226643.226647
https://doi.org/10.1109/12.980014
https://doi.org/10.1109/12.980014
https://doi.org/10.1109/DSN.2002.1028914
https://doi.org/10.1109/DSN.2002.1028914
https://doi.org/10.1145/41840.41841
https://doi.org/10.1145/383962.384010
https://doi.org/10.1145/2931028.2931030
https://doi.org/10.1007/978-3-319-26428-8_3
https://doi.org/10.1007/978-3-319-26428-8_3
https://doi.org/10.1109/RELDI.2000.885392
https://doi.org/10.1109/RELDI.2000.885392
https://wiki.mpich.org/mpich/index.php?title=Hydra_Process_Management_Framework
https://wiki.mpich.org/mpich/index.php?title=Hydra_Process_Management_Framework
https://doi.org/10.1023/A:1011494323443
https://doi.org/10.1109/CLUSTER.2011.17
https://doi.org/10.1109/CLUSTER.2011.17
http://www.aosabook.org/en/openmpi.html
https://doi.org/10.1177/1094342016669416
https://doi.org/10.1177/1094342016669416
http://arxiv.org/abs/https://doi.org/10.1177/1094342016669416
https://doi.org/10.1109/ESPM2.2016.12
https://doi.org/10.1109/ESPM2.2016.12
https://doi.org/10.1145/2488551.2488556

	Abstract
	1 Introduction
	2 Motivation and Background
	3 Related Work
	3.1 Runtime Environments
	3.2 Failure Detection
	3.3 Reliable Broadcast

	4 A Generic HPC Failure Detection Service
	4.1 Machine Model
	4.2 Failure Model
	4.3 Notations
	4.4 Detection of Process Failures
	4.5 Detection of Node/Daemon Failures
	4.6 Broadcasting Fault Information
	4.7 Implementation

	5 Experimental Evaluation
	5.1 Experimental Setup
	5.2 Accuracy
	5.3 Noise
	5.4 Comparison with SWIM
	5.5 Comparison with ULFM for Process Failures
	5.6 Node Failures Detection

	6 Conclusion
	Acknowledgments
	References

