
Give MPI Threading a Fair Chance:

A Study of Multithreaded MPI Designs

Thananon Patinyasakdikul∗, David Eberius∗, George Bosilca∗ and Nathan Hjelm†

∗University of Tennessee

Knoxville, TN 37921
†University of New Mexico

Albuquerque, NM 87106

communication in favor of computations, which have become

faster and more energy efficient. Over the last decade alone

theoretical node-level compute power have increased 19×,

while bandwidth available to applications has seen an increase

by a factor of only 3×, resulting into a net decrease for byte

per floating-point operation (FLOP) of 6× [3]. An increased

rate of computations needs to be sustained by a matching

increase in memory bandwidth, but physical constraints set

hard limits on the latency and bandwidth of data transfers. The

current solution to overcome these limitations has increased

the number of memory hierarchies, with orders of magnitude

variation in cost and performance between them. Essentially,

current architectures represent execution environments where

data movements are the most performance-critical and energy-

critical components. This shift has greatly impacted the tradi-

tional programming approach where each computational core

corresponds to a unique process, and all data movement,

including at the node level, passes through a message passing

layer. As the intra-node inter-process communication costs

started to rise, efforts began to move applications toward a

more dynamic and/or flexible programming paradigm.

While communication libraries can be improved, using a

combination of processes and threads provides an approach

that is capable of better relieving the pressure on the memory

infrastructure, as there is no explicit communication between

threads in the same process. However, while the use of

multiple threads to alleviate intra-node data movement seems

like a reasonable approach, this generates an entire set of new

challenges, both at the programmability level and at the com-

munication level. Threads behave better when they are loosely

coupled, but more flexibility translates into reduced ordering

between actions in different threads, including communication.

Out-of-order communication is a chronic symptom of lack

of send determinism in applications [4], and an epitome of

out-of-sequence or unexpected messages. In a communication

paradigm other than MPI, this could be a minor issue (as an

example, in an Active Message [5] context), but the MPI API

was designed with a different set of requirements in mind and

is not necessarily compatible with such usage.

Current communication libraries struggle to efficiently sup-

port a large number of concurrent communications, imposing

artificial limitations on the latency and the injection rate of

messages. With that in mind, we propose in this paper several

Abstract—The Message Passing Interface (MPI) has been
one of the most prominent programming paradigms in high-
performance computing (HPC) for the past decade. Lately, with
changes in modern hardware leading to a drastic increase in
the number of processor cores, developers of parallel appli-
cations are moving toward more integrated parallel program-
ming paradigms, where MPI is used along with other, possibly
node-level, programming paradigms, or MPI+X. MPI+threads
emerged as one of the favorite choices in HPC community,
according to a survey of the HPC community. However, threading
support in MPI comes with many compromises to the overall per-
formance delivered, and, therefore, its adoption is compromised.

This paper studies in depth the MPI multi-threaded imple-
mentation design in one of the leading MPI implementations,
Open MPI, and expose some of the shortcomings of the current
design. We propose, implement, and evaluate a new design of the
internal handling of communication progress which allows for a
significant boost in multi-threading performance, increasing the
viability of MPI in the MPI+X programming paradigm.

Keywords—message passing, threads, hybrid MPI+threads

I. INTRODUCTION

The Message Passing Interface (MPI) is nearly ubiqui-

tous in HPC (according to [1] more than 90% of Esascale

Computing Project [ECP] and ATDM application proposals

use it either directly or indirectly). Therefore, the availability

of high-quality, high-performance, and highly scalable MPI

implementations which address the needs of applications and

the challenges of novel hardware architectures is fundamental

for the performance and scalability of parallel applications.

The MPI standard provides an efficient and portable

communication-centric application programming interface
(API) that defines a variety of capabilities to handle different

types of data movements across processes, such as point-to-

point messaging, collective communication, one-sided remote
memory access (RMA), and file support (MPI-IO) [2]. This

ensemble of communication capabilities gives applications a
toolbox for satisfying complex and irregular communication

needs in a setup that maintains portability and performance

across different hardware architectures and operating systems.
Owing to these characteristics, many scientific applications

have adopted MPI as their communication engine and, there-

fore, rely on the efficiency of the MPI implementation to

maximize the performance of their applications.

Recent hardware developments toward heavily threaded
architectures have shifted the balance of computation vs.

978-1-7281-4734-5/19/$31.00 ©2019 IEEE

strategies to enhance MPI’s performance in multi-threaded

environments through an increased level of concurrency—for

one-sided and two-sided communications—for communication

progress and for message matching. We discuss our designs

and implementation in section III and evaluate it with the Mul-

tirate benchmark [6] and a multi-threaded RMA benchmark [7]

[8], along with the information from MPI’s internal software

counter [9] in section IV.

II. BACKGROUND

In this section we provide a high-level background of

important internal MPI operations for handling user-level

communications for interacting with the hardware and the

overall design of MPI in multi-threaded environments.

A. MPI Threading Level

The MPI-3.1 standard [2] provides four levels of threading

support. During MPI initialization, more precisely during

MPI Init thread, users can marshal with the MPI implementa-

tion the desired thread level for the application. However, most

MPI implementations only provide thread-protection when the

user initializes MPI with MPI THREAD MULTIPLE as it is

the only mode that allows thread concurrency, which is the

focus of this study.

B. Progress Engine

The progress engine is not a requirement from the MPI

standard, but most MPI implementations adopted this scheme.

From a high-level perspective, the MPI progress engine is

the component that ensures communication progress, either

by moving bytes across the hardware, ensuring the expected

message matching, or guaranteeing MPI’s first-in, first-out

(FIFO) message order requirement. From an implementation

perspective, the progress engine is the central place where

every component in an MPI implementation registers its

progressing routine—such as polling for incoming messages,

processing pending outgoing messages, including messages for

collective operations, or reporting completion to the user level.

As the MPI standard does not provide an API for explicitly

progressing messaging, calls into the MPI progress engine

occur under the hood during calls to other MPI routines.

The decision to enter the progress engine or not on a given

MPI function call is up to the MPI implementation, with the

exception of blocking routines such as MPI Send, MPI Recv

or MPI Wait where message progression, at least related to

the operation itself, is mandatory.

The main purpose of the progress engine is to give the MPI

implementation the opportunity to check for message comple-

tion events from the network, and to ensure timely progress

on non-blocking communications. MPI usually reads entries

from the completion queues (CQs) for completion events

on a particular network endpoint. Completion events can be

from both incoming and outgoing messages. In the case of

outgoing message completion, MPI marks the corresponding

send request as completed, and doing so might release the user

from a blocking call such as MPI Send.

C. Matching Process

The matching engine is another important piece of an

MPI implementation for handling incoming messages, as it

is responsible for the correct matching of sends and receives.

For single-threaded applications, the MPI standard offers the

guarantee that all messages between a source and destination

pair on the same MPI communicator are matched in a non-

overtaking manner, ensuring that the send order is the match-

ing order (or a FIFO ordering). This simplifies the semantics

as it ensures that, in single-threaded applications, messages

are always delivered in each communicator in a deterministic

order. However, at the network level the story is different, as

for performance and routing reasons networks do not provide

any ordering guarantee by default and the messages might

be delivered in an arbitrary order. This requires the MPI

library to implement a software solution to provide users with

the required message ordering guarantee. For multi-threaded

usage, the MPI standard only guarantees message ordering

within a single thread. Messages sent from different threads

are only guaranteed to happen in some serialized order, as

MPI communications, even blocking, are not synchronizing.

The algorithms to provide message ordering may be differ-

ent for each MPI implementation, but they share a common

approach: generate a sequence number for each message and

pack it within the message header. To simplify management,

this sequence number is generally per peer, per communicator.

The receiver extracts the sequence number from the incoming

header and uses it to ensure messages are processed in the

same order they were sent. Any message arriving out-of-

sequence needs to be saved for matching at a later time

when that message sequence number is called for. The im-

plementation has to allocate the necessary memory to store

the out-of-sequence messages, making this operation more

costly. Luckily, in a single-threaded scenario, the occurrence

is usually rare, and therefore the cost is negligible. However,

this is not the case for multi-threaded MPI. In the scenario—

with multiple threads concurrently sending messages on the

same communicator to the same destination MPI process—

given the nature of their non-deterministic behavior, threads

can easily compete and send the messages out of order. With

more likelihood of out-of-sequence messages, multi-threaded

MPI could suffer significant performance degradation as the

number of threads increases due to increased stress on the

matching process.

After the MPI implementation successfully validates the

sequence number of an incoming message, the message is

matched against a queue of the user’s posted receives. This

code region is a critical section and must be protected with a

lock in a multi-thread scenario to prevent concurrent access

to the queue. For example, races can occur when threads

are simultaneously posting receives; or when a thread adds

a request to the posted receive queue while another thread is

in the progress engine, trying to match an incoming message

with a request on the same queue.

D. Remote Memory Access

In addition to two-sided communication the MPI-3.1 stan-

dard provides support for one-sided (RMA) communication.

This support allows an MPI implementation to directly expose

hardware Remote Direct Memory Access (RDMA), a feature

which is present on some high-performance networks (e.g.,

Infiniband and Cray Aries). This allows the MPI implemen-

tation to offload communication directly to the hardware. In

addition, the one-sided model separates communication (data

movement) from the synchronization (completion). There is no

need for any explicit matching for one-sided communication

removing a potential multi-threaded bottleneck. This makes

RMA well suited for multi-threaded applications.

The current MPI 3.1 standard provides support for three

different types of one-sided communication operations: put

(remote write), get (remote read), and accumulate (remote

atomic); and support for two classes of synchronization:

active-target (fence, post-start-complete-wait), and passive-

target (lock, flush). Active-target requires the target MPI pro-

cess of an RMA operation to participate in the synchronization

of the window. It is not well suited for multi-threaded appli-

cations as all synchronization needs to be funneled through a

single thread. Passive-target flush, on the other hand, does not

require the target of an RMA operation to participate in either

the communication or synchronization and allows for concur-

rent synchronization. For this study we focus exclusively on

the passive-target mode (MPI Win flush).

III. DESIGN AND IMPLEMENTATION

A. Resource Allocation

One major difference between using multiple MPI processes

versus a single MPI process with multiple threads is the re-

sources allocated for MPI operations. Resources such as buffer

pools, network contexts and endpoints, or completion queues

(CQs) are generally created per MPI process. In the process-

to-process communication model, with this single producer–

single consumer relationship, resource contention is limited.

In the case of multiple threads in the same MPI process,

these resources have to be protected, as concurrent access to a

resource may not be supported or create race conditions that

could compromise the correctness of the communication—or

even corrupt the state of the MPI library. At the same time,

this protection adds an extra cost to the operation and often

increases with the number of concurrent threads.

B. Communication Resources Instance

There are a variety of critical internal MPI resources that

must be protected in a multi-threaded environment, such as

the network endpoints, network contexts, and CQs. In existing

MPI implementations, a single network context is typically

created per MPI process and a single network endpoint per

source/destination pair. The CQ is usually attached to the

network context to store completion events. For multi-threaded

MPI, access to both network contexts and their CQs may have

to be protected, thus creating a potential bottleneck.

To give multi-threaded MPI a fair chance, more resources

need to be allocated for the entire MPI process. We use

the concept of a Communication Resources Instance (CRI)

to encompass resources such as network contexts, network

endpoints, and CQs with per-instance level of protection to

perform communication operations. The MPI implementation

can allocate multiple CRIs internally for multi-threaded needs.

Currently, there is no interoperability between threading

frameworks such as POSIX threads and MPI; therefore, the

MPI implementation does not have a standardized way to

get the number of threads that will be used for MPI com-

munication from the application. Thus, it is challenging for

the implementation to assess the proper number of CRIs to

allocate. That being said, an implementation can provide the

user with a way to give a hint via environment variable(s),

MPI info key(s), or other means (MCA parameters [10] for

Open MPI [11] or the new MPI control variables MPI T cvar)

to let the implementation know how many threads the ap-

plication intend to use for concurrent MPI operations. The

implementation can then allocate the CRIs accordingly. In our

implementation, MPI allocates a set of CRIs into a resource

pool and creates a centralized body to assign the allocated

instances to threads.

Ideally, there should be at least a one-to-one thread to

CRI mapping to completely eliminate the potential for lock

contention. However, in some cases external constraints limit

the capability of creating CRIs. As an example, the Cray

Aries network devices have a hardware limit on the number

of network contexts users can create, so the design must also

accommodate for cases where the number of CRIs is less than

the number of threads.

Giving more resources to the threads might not be suffi-

cient to increase communication performance for two-sided

communication as the MPI implementation still serializes the

calls to both the send operation and progress engine to prevent

any potential race conditions. In order to benefit from more

available resources, both the send and receive paths have to

be redesigned to allow for more parallelism while maintaining

thread safety and continuing to ensure the expected matching

semantic.

C. Try-Lock Semantics

Using locks to protect critical resources is one of the

simplest and most popular approaches to ensure thread safety

for critical sections. These locks act as a funnel when multiple

threads are going through the same code path, as lock con-

tention will cause threads to block. In some cases, especially

when the critical section is only performance critical (not

correctness critical), we can mitigate the funneling effect by

using try-lock semantics, a non-blocking version of lock,

where the lock acquisition returns immediately if it fails to

acquire the lock.

Try-lock semantics provide more opportunities for paral-

lelism. When the lock is already taken, we can be certain that

a thread is progressing that particular code path, and therefore,

the current thread can move on and try to pick up another code

Algorithm 1 Utilizing multiple CRIs to allow concurrent

sends.

1: function INIT

2: for i← 1, NumInstances do

3: instance[i]←CREATE-INSTANCE()

4: function SEND(msg)

5: k ← GET-INSTANCE-ID()

6: LOCK(instance[k]→ lock)

7: NETWORKSEND(instance[k],msg)

8: UNLOCK(instance[k]→ lock)

9: function GET-INSTANCE-ID–ROUND-ROBIN

10: static current id← 0
11: ret = current id

12: current id← current id+ 1
13: return (ret mod numInstances)

14: function GET-INSTANCE-ID–DEDICATED

15: static thread local my id← undefined

16: if my id is defined then

17: return my id

18: else

19: my id← GET-INSTANCE-ID()–ROUND-ROBIN

20: return my id

path to execute, or become a helper thread and complete other

menial work.

In the following subsections, we describe how we leverage

try-lock semantics along with the communication resources

instances (we will further refer to them as CRIs or ”instances”

in the following sections) to alleviate resource contention from

MPI’s internal receive path.

D. Concurrent Sends

For the MPI implementation to perform a send operation,

it needs access to a network endpoint. In the multi-threaded

case, the implementation usually protects the network context

with a lock. In our design, the network context is associated

with a CRI along with other resources, allowing us to move

the protection down the software stack, basically from per-

endpoint to per-instance. This move leads not only to finer

grains locks but also to an increased parallelism in the

communication infrastructure, allowing multiple threads to

perform send operations simultaneously on different instances.

Optimally assigning a CRI to a thread is a difficult question,

and we focus on evaluating two strategies: round-robin and

dedicated (Algorithm 1).

1) Round-Robin Assignment: In this strategy, every time

a thread needs to communicate, it first acquires a CRI. The

MPI implementation assigns an instance for a single use in

a first-come, first-served manner, supported by the use of a

circular array. Once the last available instance is assigned, the

implementation will recycle the instances and then give out the

Algorithm 2 Dedicated instance assignment to give priority to

the thread assigned instance before trying to progress others,

ensuring eventual progress for every instance.

1: function COMMUNICATION PROGRESS

2: count← 0
3: k ←GET-INSTANCE-ID()–DEDICATED

4: if trylock → instance[k].lock = success then

5: progress instance[k]
6: count← number of completions

7: unlock → instance[k].lock

8: if count = 0 then

9: for i← 1, NumInstances do

10: k ← GET-INSTANCE-ID()–ROUND-ROBIN

11: if trylock → instance[k].lock = success then

12: progress instance[k]
13: count← number of completions

14: unlock → instance[k].lock

15: if count > 0 then

16: return

first instance again. This approach eliminate the possibility of

lock contention by assigning a different instance for every call,

in exchange of a cheaper, atomic operation. It also improves

load balancing by distributing the communication work among

the allocated instances.

2) Dedicated Assignment: To permanently assign a CRI to

a thread, MPI can utilize thread-local storage (TLS), provided

either by the threading library (e.g., POSIX threads) or the

programming language (e.g., C11, C++11). This approach

can only be implemented when the system or the compiler

supports TLS, a pretty standard feature nowadays. In our

implementation we use the native compiler support either

from C11 or the GNU Compiler Collection (GCC). When

checking for a CRI to use, the implementation can check

if an instance information is stored in TLS. If not, it can

assign an instance with a round-robin assignment and save

the instance information in the TLS. With the dedicated

assignment strategy, there is no possibility of lock contention

on the instance as long as the number of threads is lower than

or equal to the number of instances allocated. If not, some

communicating threads might share the same instance and then

introduce lock contention if they simultaneously communicate.

E. Concurrent Progress

Traditionally, Open MPI serializes calls into the progress

engine, allowing only a single thread to progress communi-

cations. Such a coarse-grained protection under-utilizes the

available thread parallelism, and limits the rate of message

extraction to the power of a single thread. To allow threads to

extract messages concurrently, we removed the serialization

from the progress engine and exploited our instance-level

protection to provide the required thread safety instead.

Progress

Match

Progress

Match

c c c c

Fig. 1: Matching process is still a serial operation and become

a major roadblock for multi-threaded MPI. Serial progress

(left), Concurrent Progress with multiple CRIs effectively

move the bottleneck to the matching process (right)

The progress engine also suffers from the lack of threading

information in MPI. When a thread makes a call into the

progress engine, it requires an instance to progress. We utilize

the same centralized body as for concurrent sends to assign an

instance to a thread. The strategies to choose which instance to

progress are similar to how we choose the instance for the send

path—namely, Round-robin and Dedicated (Section III-D).

For the Dedicated strategy, with a permanent instance as-

signed to each thread, a few issues need to be addressed. First,

the MPI implementation has to make sure that it progresses

every allocated CRI to prevent deadlock scenarios where

message completion is generated in an instance that is not

progressed by the associated thread. Second, the user might

destroy the thread and create orphaned CRIs that cannot be

reused by other threads. To overcome this limitation, we have

each thread try to progress their dedicated instance first, and,

if there is no completion event, move on to try progressing

other instances. This design will guarantee that every instance

will eventually get progressed while still maintaining the

optimization benefit from TLS.

Furthermore, the try-lock semantics on the instances become

a valuable weapon to the efficiency of concurrent progress

design (Algorithm 2). If a thread fails to acquire the lock for

an instance, it assumes that another thread is progressing that

particular instance, and the current thread can try to pick up

another instance to progress or return.

F. Concurrent Matching

The matching process is possibly the only strictly serial

operation in the MPI two-sided communication. By changing

from a serial progress to a concurrent progress engine, we

effectively move the bottleneck to the matching process. As

long as the matching process cannot be performed in parallel,

it will be challenging to get optimal performance from multi-

threaded MPI (Figure 1), as there will always be a protected

section in the message reception critical path.

The current message matching design from state-of-the-

art, open-source MPI implementations such as MPICH and

Open MPI drastically differ. Even in the context of the

same MPI implementation, the matching infrastructure can

be different depending on the network used (Portals provides

P P

P P

P P

P P

T T

T T

T T

T T

Node 0 Node 1 Node 0 Node 1

T P

T P

T P

T P

Node 0 Node 1

Fig. 2: Different modes of operations in Multirate–Pairwise

benchmark binding CPU cores to communication entities.

hardware matching), the hardware capabilities (AVX provides

opportunities for vector matching) and the configured software

stack. As an example, Open MPI supports multiple methods

for matching, going from hardware matching when available,

to a single global queue when using the UCX PML; to a

vector fuzzy-matching single global queue [12]; and finally

to the default, more decentralized matching in the OB1 PML

(with a matching queue per process per communicator with

special arrangements for MPI ANY SOURCE that has the

potential to minimize the contention lock for communications

not between the same peers in the same communicator).

A study of optimized or parallel matching is not within

the scope of this paper. For this study, we will show the

potential of concurrent matching by utilizing OB1, a point-to-

point matching layer (PML) component designed to perform

the matching process per MPI communicator instead of glob-

ally. We can then simulate the concurrent matching process

by creating multiple communicators and allowing threads to

perform unhindered matching in parallel. While this approach

might not be practical for some real-world applications, it is

sufficient to demonstrate the potential of multi-threaded MPI.

IV. EXPERIMENTS

Most of the design strategies described in this paper are

generic, and can be applied to different MPI implementations.

To assess their benefit and potential performance impact we

implemented them in Open MPI, by taking advantage of the

Open MPI modular design [13], and utilizing the OB1 point-

to-point messaging component (pml/OB1) in conjunction with

the uct (for Infiniband networks) and ugni (for Aries networks)

Byte Transport Layer (BTL) components (btl/uct), which were

updated to use multiple CRIs. We also modified the Open MPI

progress engine (opal progress) to allow multiple threads in

the progress engine.

To gain low-level insights into the different statistics re-

lated to the communication engine, we took advantage of

Open MPI’s built-in Software-based Performance Counters

(SPCs) [9] to expose internal MPI information with low

overhead. SPCs offer a variety of measurements from the MPI

level, such as the number of messages sent/received as well as

MPI internal information, such as the number of unexpected or

TABLE I: Testbeds configuration.

Alembert Trinitite

Processor Dual 10-core Intel Xeon
E5-2650 v3 @2.3 Ghz

Dual 16-core Intel Xeon
E5-2698 v3 @2.3 Ghz

Haswell Haswell
Main Memory 64GB DDR4 128GB DDR4
Interconnect InfiniBand EDR (100

Gbps)
Cray Aries (100 Gbps)

OS Scientific Linux 7.3 Cray Suse Linux
Compiler GCC 8.3.0 GCC 8.3.0

out-of-sequence messages, the cost of matching, or the length

of the matching queues. For this study, we focus on two of

these counters: the number of out-of-sequence messages and

the total matching time.

To evaluate the impact of each strategy presented in this

paper, we measure the message rate with the Multirate bench-

mark [6] in pairwise pattern for two-sided communication, and

use the RMA-MT benchmark [14] for one-sided communica-

tion. We have run several hundred experiments and report in

all instances the mean and the standard deviation in the figures,

which should be noted is consistently very small.

Multirate–pairwise spawns pairs of communication entities

which can be mapped to either an MPI process or a single

thread to perform communication simultaneously (Figure 2).

For two-sided communication experiments, we perform zero

byte communications as they allows us to capture only the

cost of the message envelope. Open MPI sends necessary

matching information to be matched on the receiver side

without any payload (the size of this matching header is small

in Open MPI, around 28 bytes).

RMA-MT is a benchmark developed at Sandia National Lab

(SNL) and Los Alamos National Laboratory (LANL) to stress-

test an MPI implementation under a heavy multi-threaded

Remote Memory Access (RMA) workload. The experimental

testbeds specifications are presented in Table I, and are Alem-

bert from the University of Tennessee (IV-A through IV-E)

and LANL’s Trinitite clusters (IV-F).

A. Concurrent Sends

Figure 3a demonstrates the effect of allocating additional

internal resources, CRIs. We use the original design, which

serializes progress and therefore only allows a single thread to

perform the network extraction at a time. By only introducing

changes on the sender side, these experiments demonstrate

the impact of increasing resource availability, thus decreasing

contention on the send path. This allows multiple threads

to reach the lowest network level simultaneously, each in a

different context, and to technically perform send operations

concurrently. We employ the two strategies described in Sec-

tion III-D to assign an instance to a thread: round-robin and

dedicated presented by solid and dashed lines, respectively.

Each color represents a different number of instances allocated

for the experiment.

The red lines represent the base performance—the original

multi-threading support in Open MPI—with a single instance

shared between all threads. The impact of contention on

the shared resource become visible very early, starting as

soon as 2 threads. The scenario under investigation here is

very demanding. As the only payload is the MPI matching

envelope, threads sharing the same instance will continously

fight for the same protection lock, and the lock will therefore

always be contested.

Ideally, a one-to-one mapping from a thread to an instance

should be the starting point to maximize the performance as,

if handled correctly, even when all threads use the network

there can be no contention on any instances. We achieve this

scenario by employing the Dedicated strategy on this experi-

ment, represented by the blue-dashed line (with 20 threads, 20

instances). Just by increasing the number of instances we can

achieve a performance gain of up to 100% compared to our

original case. If we reduce the number of instances to 10, we

see a small performance drop after going over 10 threads as

the threads start sharing the instances, thus introducing some

congestion (green-dashed line).

Although the round-robin strategy (solid lines) does not give

the best performance, it significantly softens the effect of the

congestion by evenly spreading the CRIs among threads, thus

reducing the lock congestion. It is still a viable strategy when

Dedicated cannot be implemented due to lack of compiler

support on the platform.

The performance metrics obtained from SPC are presented

along with Figure 3 in Table II. Due to the space constraints,

we only present the information from the last data point from

the best result of each figure, at 20 thread pairs, 20 instances

with Dedicated assignment strategy. In general, for serial

progress, the SPCs show similar numbers of out-of-sequence

messages (up to 90%) with similar time spent in matching.

B. Concurrent Progress

Figure 3b presents the performance impact from concurrent

progress. The difference from the above experiment is the

concurrent progress, which basically allows multiple threads

to execute the progress engine simultaneously.

Concurrent progress hinders the performance instead of

boosting it, even with increased parallelism (Figure 3b). The

results show a funneling effect as the number of threads

increases, regardless of number of instances or the assignment

strategy, just as expected. The potential parallelism from con-

current progress is restricted by the next step in the execution

path, the matching, and cannot boosts the performance as

long as the matching process remains a serial operation; the

approach effectively moves the bottleneck from the progress

engine to the matching process (Figure 1).

The SPC information from Table II reveals that the MPI

implementation is spending up to 300% more time in matching

compared to our earlier experiment, which is consistent with

our expectations.

C. Concurrent Matching

We relax the constraints on the matching to improve upon

the previous case. To simulate a concurrent matching process,

●

●

● ●

●
●

● ● ● ●
●

●
● ● ●

●
●

● ●
●

●

●
● ●

● ● ●
● ● ●

●
● ●

●

●

●

● ● ●

●

●

● ●
● ●

● ● ● ● ● ● ●
●

● ●
● ● ● ● ●

0.1 M

0.2 M

0.3 M

0.4 M

0.5 M
0.6 M
0.7 M
0.8 M

1 M

2 M

3 M

0 5 10 15 20

M
e

s
s
a

g
e

 R
a

te
 (

m
s
g

/s
)

Serial Progress

(a)

●

● ●
●

●

●
● ●

● ●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●
●

● ●
●

●

●
●

●

● ●

●
●

● ●
●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

0.1 M

0.2 M

0.3 M

0.4 M

0.5 M
0.6 M
0.7 M
0.8 M

1 M

2 M

3 M

0 5 10 15 20

Number of thread pairs

mode
● round−robin

dedicated

Number of instances
●

●

●

1

10

20

Concurrent Progress

(b)

●

●

● ●

● ●
● ● ● ● ● ● ● ● ● ●

● ● ● ●

●

●

●
●

●
●

● ● ●
● ●

● ● ● ● ● ● ● ● ●

●

●

●
●

●
●

● ● ●
● ●

●
● ● ● ● ● ● ● ●

0.1 M

0.2 M

0.3 M

0.4 M

0.5 M
0.6 M
0.7 M
0.8 M

1 M

2 M

3 M

0 5 10 15 20

Concurrent Progress + Concurrent Matching

(c)

Fig. 3: Zero byte message rate on different strategies.

TABLE II: Software Performance Counters information from last data point of the experiment in Figure 3.

(20 thread pairs, Dedicated assignment, total messages = 2,585,600)

Serial Progress Concurrent Progress Concurrent Progress + Matching

Number of instances 1 10 20 1 10 20 1 10 20
Out-of-sequence messages 2,154,493 2,323,003 2,225,190 2,375,922 2,425,818 2,420,660 15,188 45 0
Out-of-sequence (%) 83.32% 89.98% 86.08% 91.89% 93.82% 93.62% 0.59% ≈ 0% 0%
Match time (ms) 2,732 2,622 2,738 8,553 7,944 8,069 476 430 389

we create multiple communicators and take advantage of

the matching logic in the OB1 PML, with matching queues

private to each communicator. Since the pml/OB1 component

in Open MPI performs matching per-communicator, this ef-

fectively provides support for concurrent matching.

Multirate–pairwise provides an option to assign a commu-

nicator per each pair of communicating threads. With a unique

communicator per thread pair along with concurrent sends and

concurrent progress, this part of the experiment represents

the multi-threaded performance when the contention in the

matching process is minimal.

Figure 3c highlights a major increase in the message rate

for all strategies. Even the round-robin assignment (solid lines)

shows performance improvement with the number of threads,

a completely different outcome from our earlier experiments.

The instance assignment strategy seems to perform well even

after the number of threads is greater than the number of

instances. For this strategy, messages from the same commu-

nicator can be sent out from different instances. There are

chances that the receiver—as their threads extract the mes-

sages simultaneously from multiple instances—will perform

matching on the messages from the same communicator and

introduce some congestion (Figure 1).

Dedicated assignment gives the best performance as each

thread always uses the same network instance in addition to

using the same communicator (dashed lines). The blue dashed

line represents an ideal scenario with one-to-one mapping from

thread to CRI to communicator. The performance scales with

the number of threads but drops once the number of threads

is large, suggesting other bottlenecks not yet identified. The

green dashed line shows the same performance scaling until

the threads have to share instances (at 11 threads and over)

before dropping off similarly to the blue dashed line.

The information from the SPCs also shows a drastic im-

provement over earlier experiments as the number of out-of-

sequence messages drops significantly after introducing more

instances. The match time is minimal, as there is a guarantee

for no contention on both the instance and the matching

process. While this approach could be implemented in a cus-

tomized benchmark, using dedicated communicators for each

communication thread pair might not be practical for most

applications. Nonetheless, this experiment successfully shows

that the major bottleneck for multi-threaded MPI currently

resides in the matching process contention.

D. Message Overtaking

We can break the matching process into two parts: se-

quence number validation, and the queue search to match

messages with MPI requests. As explained earlier, out-of-

sequence messages force the MPI implementation to allocate

memory to buffer the message for processing later, which is

a costly operation right in the middle of the critical path. It

is possible to relax the matching order requirement in MPI,

which translate to ignoring the sequence number validation,

by providing the MPI info key mpi assert allow overtaking

to the communicator, allowing MPI to therefore immediately

match every incoming message. This info key is not novel, it

has been intensely discussed in the MPI Forum, and has been

approved for inclusion in the next version of the MPI standard.

This study can serve as a further validation of the usefulness

of this info key in threaded scenarios.

Allowing the MPI implementation to match every incoming

message immediately will lead to high stress on the queue

search. When using multiple tags, the queue search is a linear

operation where the cost increases with the queue length.

●

●

●
●

●

● ● ●
● ● ● ● ● ● ● ●

● ●
●

●

●

●

●
●

●
●

● ● ●

● ●
● ●

● ● ● ● ●
● ●

●

●

●

●

●

●
●

●

● ●

● ●
●

● ●

●
●

●
●

●

0.5 M

0.6 M

0.7 M

0.8 M

1 M

2 M

3 M

0 5 10 15 20

M
e

s
s
a

g
e

 R
a

te
 (

m
s
g

/s
)

Serial progress

(a)

●

●

●

●

●

●
●

●

●

●
●

●
● ● ●

● ● ● ●
●

●

●
●

●

● ●
●

● ●

●
● ●

●
●

● ●
●

● ● ●

●

●

●

●
●

● ●

● ●

● ●
●

●
● ● ●

● ●
●

●

0.5 M

0.6 M

0.7 M

0.8 M

1 M

2 M

3 M

0 5 10 15 20

Number of thread pairs

mode
● round−robin

dedicated

Number of instances
●

●

●

1

10

20

Concurrent progress

(b)

●

●

●

●

●

● ● ● ● ●
● ●

● ● ● ● ● ● ● ●

●

●

●

●

●

●

●
●

●

●
●

●

● ● ● ●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

● ●
●

●
●

●
●

0.5 M

0.6 M

0.7 M

0.8 M

1 M

2 M

3 M

0 5 10 15 20

Concurrent progress + Concurrent Matching

(c)

Fig. 4: Zero byte message rate when the message ordering is not enforced.

When a message is matched out of sequence, the average

time to search the queue is increased because the request

associated with the message might be at the end of the

queue. To fully reap the benefits of message overtaking, we

modify Multirate–pairwise to post the receive with a wildcard

tag (MPI ANY TAG) to force the implementation to always

match the incoming message with the first posted receive

request, skipping the queue search entirely.

This experiment represents the multi-threaded MPI perfor-

mance if the matching process cost is minimal. We perform

the same set of experiments from earlier with our tweak and

demonstrate the result in Figure 4. If we take a look at the

serial progress performance (Figure 4a), for a single instance

(red lines), we can still see that increasing the number of

instances helps in giving some performance boost from the

sender side. The message rate flattens out around 500K msg/s

and remains unchanged with an increasing number of threads,

similarly with our earlier experiment (Figure 3a). This suggests

that the source of performance degradation in multi-thread

MPI is mostly from the matching process.

Although concurrent progress still shows the same perfor-

mance drop from matching congestion where multiple threads

try to acquire the matching lock, the message rate still flattens

out around the same point as serial progress (Figure 4b). While

in the last case, with both concurrent progress and concurrent

matching (Figure 4c), removing the ordering does not affect

the performance because the matching process for this strategy,

based on MPI ANY TAG, is already optimal.

E. Current State of MPI Threading

In this section, we compare our proposed strategies and

with different state-of-the-art MPI implementations on the

same configuration of Multirate–pairwise. To get a better

understanding of where the threaded performances are over-

all, we also compare with the process-based mode, where

communications—instead of happening between threads—

now happen between processes placed on the same nodes as

the original threads. Ideally, running on the same hardware

with the same communication pattern should yield similar

performance, regardless of whether processes or threads are

used. Unfortunately, as we demonstrated in Figure 5, at the

●

●

● ●

●

●

● ●

●
●

● ●
●

● ●

● ● ● ●

●

●
●

● ● ●
● ● ● ●

●
●

●
●

● ● ●

● ● ● ●●

●

●

●

●

●

●
●

●
● ●

●
● ●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

● ● ●
●

●

0.1 M

1 M

10 M

0 5 10 15 20

Number of communication pairs

M
e
s
s
a
g
e
 r

a
te

/s

●

●

● ●OMPI Process

OMPI Thread

OMPI Thread + CRIs

OMPI Thread + CRIs*

IMPI Process

IMPI Thread

MPICH Process

MPICH Thread

Pairwise 0 bytes, window size = 128, Alembert

Fig. 5: Zero byte message rate from different state-of-the-art

MPI implementations shows disparity between two mode of

operations along with our threading improvements. (Note: Log

scale on Y-axis.)

current stage of threading support in all MPI implementations,

we are far from this ideal scenario.

The MPI implementations presented in this experiment are

Intel MPI 2018.1 [15], MPICH 3.3 [16] and Open MPI

4.0.0 [11] with and without our modification. Each MPI

implementation was compiled with GCC 8.3.0 with proper

optimization flags (except for Intel MPI which is only available

as a pre-compiled binary from the vendor).

Figure 5 highlights, using a log-scale Y axis from multi-

thread standpoint, that there is little difference between MPI

implementations (dashed lines)—they all perform similarly

poorly. We observe roughly a 100% performance boost from

our base implementation by employing try-lock semantics

●

●

●
●

●

●

●

●

●
●

●

●

0.4 M
0.5 M
0.6 M
0.7 M
0.8 M

1 M

2 M

3 M

10 M

20 M

30 M

1 2 4 8 16 32

M
e

s
s
a

g
e

 r
a

te
 (

m
s
g

/s
)

1 bytes

●

●

●
●

●

●

●

●

●
●

●

●

0.4 M
0.5 M
0.6 M
0.7 M
0.8 M

1 M

2 M

3 M

10 M

20 M

30 M

1 2 4 8 16 32

128 bytes

●

●

●
●

●

●

●

●

●
●

●

●

0.4 M
0.5 M
0.6 M
0.7 M
0.8 M

1 M

2 M

3 M

10 M

20 M

30 M

1 2 4 8 16 32

Number of threads

1024 bytes

●

●

●
●

●

●

●

●

●
●

●

●
0.4 M
0.5 M
0.6 M
0.7 M
0.8 M

1 M

2 M

3 M

10 M

20 M

30 M

1 2 4 8 16 32

4096 bytes

● ● ● ● ●

●

● ● ● ● ●

●
0.4 M
0.5 M
0.6 M
0.7 M
0.8 M

1 M

2 M

3 M

10 M

20 M

30 M

1 2 4 8 16 32

progress_engine

serial

concurrent

mode
● single

dedicated

round−robin

16384 bytes

Fig. 6: RMA-MT performance using MPI Put and MPI Win flush on Haswell architecture

● ●

●
●

●

●

●

● ●

●
●

●

●

●

0.1 M

0.2 M

0.4 M

0.6 M
0.8 M

1 M

2 M

3 M

10 M

20 M

30 M

1 2 4 8 16 32 64

M
e

s
s
a

g
e

 r
a

te
 (

m
s
g

/s
)

1 bytes

● ●

●
●

●

●

●

● ●

●
●

●

●

●

0.1 M

0.2 M

0.4 M

0.6 M
0.8 M

1 M

2 M

3 M

10 M

20 M

30 M

1 2 4 8 16 32 64

128 bytes

● ●

●
●

●
●

●

● ●

●
●

●
●

●

0.1 M

0.2 M

0.4 M

0.6 M
0.8 M

1 M

2 M

3 M

10 M

20 M

30 M

1 2 4 8 16 32 64

Number of threads

1024 bytes

● ●
● ●

●
●

●

● ●
● ●

●
●

●
0.1 M

0.2 M

0.4 M

0.6 M
0.8 M

1 M

2 M

3 M

10 M

20 M

30 M

1 2 4 8 16 32 64

4096 bytes

●

● ● ●
●

●

●

●

● ● ●
●

●

●

0.1 M

0.2 M

0.4 M

0.6 M
0.8 M

1 M

2 M

3 M

10 M

20 M

30 M

1 2 4 8 16 32 64

progress_engine

serial

concurrent

mode
● single

dedicated

round−robin

16384 bytes

Fig. 7: RMA-MT performance using MPI Put and MPI Win flush on KNL architecture.

with multiple CRIs (dark red), but these results should be

put in a larger context and compared with the process-to-

process performance. The black dotted line represents the CRI

injunction with concurrent progress and concurrent matching,

the most optimistic scenario for communicating threads. While

we do notice a significant boost in performance, up to 10×

compared with the base implementation, we still cannot reach

the same level of performance as the non-threading mode,

suggesting not yet identified bottlenecks for multi-thread MPI.

F. RMA Performance

To test the performance of our implementation with one-

sided MPI, we ran experiments with the RMA-MT benchmark.

The experiments were run on the Trinitite system at LANL

using both Intel Knights Landing (KNL) and Haswell compute

nodes. Open MPI was configured to use the ugni BTL and

the RDMA one-sided component (osc). The ugni btl provides

support for multiple CRIs for one-sided communication only.

By default, the ugni btl will try to detect the number of

cores available to the MPI process and will attempt to create

one instance per available core. In the case of the RMA-MT

benchmark, this creates 32 instances on Haswell nodes and 72

instances on KNL nodes.

All tests were configured to bind each benchmark thread to a

dedicated CPU core (-x option). We ran the benchmarks from 1

to 32 threads on Haswell nodes, and 64 threads on KNL nodes,

using the MPI Put operation (-o put) and MPI Win flush

synchronization (-s flush) with both round-robin and dedicated

assignment strategies. This benchmark spawns a user-specified

number of threads that for each message size perform 1000

put operations. The first thread then calls MPI Win sync to

synchronize the window. The results for both Haswell and

KNL architectures appear in Figures 6 and 7 where the black

horizontal line in each sub-figure represents the theoretical

peak message rate for that particular message size.

The results show that the performance when using dedi-

cated instances for threads (triangles) significantly outperforms

round-robin (square). The performance difference is similar

on both KNL and Haswell nodes. When using a dedicated

thread instance, the performance of the RMA-MT benchmark

scales almost perfectly with the number of threads. The single

instance performance (red) represents the performance before

support was added for multiple network instances, where the

performance drops with increasing numbers of threads due to

the lock contention on a single instance.

As expected, there appears to be little benefit from concur-

rent progress in this configuration (dashed lines), likely due

to the absence of involvement of the target process in one-

sided communications, which annul the need for concurrently

draining the network and matching the messages.

V. RELATED WORK

Many studies have been conducted investigating ways to

improve the efficiency of multi-threaded MPI. [17]–[19] pro-

posed several strategies to minimize locking for MPI internals

to mitigate the effect of lock contention, which becomes

one of the main performance bottlenecks for multi-threaded

MPI. The authors of [20] proposed software offloading to

avoid the lock entirely by having one dedicated communica-

tion thread, centralizing the MPI operations between threads

through a lock-less command queue. [21] [22] [23] [24]

investigate alternative thread vs. process approaches and the

use of shared memory mapping between MPI processes for

intra-node communications, circumventing the use of threads

and MPI THREAD MULTIPLE and avoid the cost of thread

synchronization from MPI entirely.

In this study, we take advantage of the thread synchroniza-

tion object of Open MPI’s progress engine. Threads are bound

to the object with events, allowing threads to get notification

of event completion. Open MPI leverages the synchronization

object to reduce the lock contention in the progress engine,

similarly to the study of Dang et al., for MPICH [25].

Si et al. propose interoperability between the MPI and

OpenMP runtimes [26] [27] to fully utilize idle application-

level threads for MPI communications in many-core environ-

ments. Grant et al. studied an approach to aggregate small

messages from multiple threads into a larger buffer before

sending to peer to avoid the matching overhead incurred per

message [28].

There is interest in extending the MPI standard to allow

MPI users to create necessary communication endpoints to

enhance multi-threaded communication performance by giving

threads direct access to the hardware resources [29], [30].

These studies are somewhat similar to our work, but instead

of proposing a solution hidden in the MPI software stack,

they propose user-level solutions, a possibly more enticing

approach for power-users.

A previous study investigated the performance of the multi-

threaded RMA support in Open MPI when using multiple

device contexts [8]. That work, however, did not look at the

performance when binding network resources to threads. The

results of this study show that there are additional performance

benefits that can be achieved by dedicating a thread to a

particular resource.

VI. OPTIMIZATION SUGGESTIONS

In general, the MPI implementations could benefit from

allocating more resources for threads to allow them to op-

erate simultaneously. There are several strategies to assign

the resources to threads. Our experiments confirm that the

ideal approach is to have at least a one-to-one mapping

from thread to the resource (dedicated assignment), similar to

non-threading environments where each process has exclusive

access to its network resources.

For two-sided communication, the likelihood of out-of-

sequence messages increases with the number of threads,

putting tremendous stress on the receiver side’s matching pro-

cess. Using an MPI info key to allow message overtaking from

the application level might help in boosting the performance.

However, it might only be suitable for some categories of

application that do not rely on message ordering, such as task-

based runtimes.

The matching process remains one of the major bottlenecks

for two-sided communication, as it is a critical section that has

to be protected. This study further demonstrates the potential

of multi-threaded MPI if the matching process is parallelized,

but while it is possible to argue that all the protection

mechanisms can be optimized, it remains true that matching,

as imposed by the MPI standard, is inherently sequential.

Dropping the matching requirements for messages will either

move the MPI two-sided communications performance and

scalability toward one-sided communications—which come

with their own set of constraints—or push in the direction of

Active Messages, a field that has received little interest from

the MPI community as yet.

One-sided communication reaps the most benefit from more

allocated resources. Without matching process, the perfor-

mance does not suffer from the funneling effect on the

matching process serialization. Our experiment shows good

performance scaling with the number of threads. However,

one-sided communication imposes the burden of synchroniza-

tion and programming complexity on the users.

VII. CONCLUSION

With the hope to make MPI a more suitable communication

infrastructure for mixed programming paradigms (MPI+X),

we assessed the performance of two-sided communications

on several MPI implementations in a multi-threaded sce-

nario. Confronted with an abysmal performance gap between

threads-and processes-based communications, we proposed

several strategies to address this performance gap, and imple-

mented and evaluated them in the Open MPI library, looking

at their impact on both one- and two-sided communications.

While we implemented our proposed design in Open MPI, the

design is highly portable and can be easily adopted for other

MPI implementations. We have also proposed a few potential

additions to the MPI standard that would allow for better

threading support, topics we plan to continue to investigate

in the future.

Our optimizations are partially available in Open MPI

release version 4.0 and entirely in the master branch on the

official Open MPI GitHub repository.1

ACKNOWLEDGMENT

This material is based upon work supported by the National

Science Foundation under Grant No. #1664142 and the Exas-

cale Computing Project (17-SC-20-SC), a collaborative effort

of the US Department of Energy Office of Science and the

National Nuclear Security Administration.

1https://www.github.com/open-mpi/ompi

REFERENCES

[1] D. E. Bernholdt, S. Boehm, G. Bosilca, M. G. Venkata, R. E. Grant,
T. Naughton, H. P. Pritchard, M. Schulz, and G. R. Vallee, “Ecp
milestone report a survey of mpi usage in the us exascale computing
project wbs 2.3. 1.11 open mpi for exascale (ompi-x)(formerly wbs 1.3.
1.13), milestone stpm13-1/st-pr-13-1000.”

[2] M. P. I. Forum, MPI: A Message-Passing Interface Standard Version

3.1, June 2015, http://mpi-forum.org/.
[3] S. Rumley, M. Bahadori, R. Polster, S. D. Hammond, D. M. Calhoun,

K. Wen, A. Rodrigues, and K. B. man, “Optical interconnects
for extreme scale computing systems,” Parallel Computing, vol. 64,
no. Supplement C, pp. 65 – 80, 2017, high-End Computing
for Next-Generation Scientific Discovery. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167819117300170

[4] A. Guermouche, T. Ropars, E. Brunet, M. Snir, and F. Cappello, “Un-
coordinated checkpointing without domino effect for send-deterministic
mpi applications,” in 2011 IEEE International Parallel Distributed

Processing Symposium, May 2011, pp. 989–1000.
[5] T. Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schau ser, “Ac-

tive messages: a mechanism for integrated communication and compu
tation,” in Computer Architecture, 1992. Proceedings., The 19th Annual

Inte rnational Symposium on. IEEE, 1992, pp. 256–266.
[6] T. Patinyasakdikul, X. Lou, D. Eberius, and G. Bosilca, “Multirate: A

flexible mpi benchmark for fast assessment of multithreaded communi-
cation performance,” in Submitted to Proceedings of the 26th European

MPI Users’ Group Meeting, ser. EuroMPI ’19, 2019.
[7] M. G. F. Dosanjh, T. Groves, R. E. Grant, R. Brightwell, and P. G.

Bridges, “Rma-mt: A benchmark suite for assessing mpi multi-threaded
rma performance,” in 2016 16th IEEE/ACM International Symposium on

Cluster, Cloud and Grid Computing (CCGrid), May 2016, pp. 550–559.
[8] N. Hjelm, M. G. F. Dosanjh, R. E. Grant, T. Groves,

P. Bridges, and D. Arnold, “Improving mpi multi-threaded rma
communication performance,” in Proceedings of the 47th International

Conference on Parallel Processing, ser. ICPP 2018. New York,
NY, USA: ACM, 2018, pp. 58:1–58:11. [Online]. Available:
http://doi.acm.org/10.1145/3225058.3225114

[9] D. Eberius, T. Patinyasakdikul, and G. Bosilca, “Using software-based
performance counters to expose low-level open mpi performance
information,” in Proceedings of the 24th European MPI Users’ Group

Meeting, ser. EuroMPI ’17. New York, NY, USA: ACM, 2017, pp. 7:1–
7:8. [Online]. Available: http://doi.acm.org/10.1145/3127024.3127039

[10] J. Squyres, “Modular component architecture,” https://www.open-
mpi.org/papers/workshop-2006/mon 06 mca part 1.pdf, [Online; ac-
cesed 21-March-2019].

[11] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M.
Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, R. H.
Castain, D. J. Daniel, R. L. Graham, and T. S. Woodall, “Open MPI:
Goals, concept, and design of a next generation MPI implementation,”
in Proceedings, 11th European PVM/MPI Users’ Group Meeting, Bu-
dapest, Hungary, September 2004, pp. 97–104.

[12] W. Schonbein, M. G. F. Dosanjh, R. E. Grant, and P. G. Bridges,
“Measuring multithreaded message matching misery,” in Euro-Par 2018:

Parallel Processing, M. Aldinucci, L. Padovani, and M. Torquati, Eds.
Cham: Springer International Publishing, 2018, pp. 480–491.

[13] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M.
Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, R. H.
Castain, D. J. Daniel, R. L. Graham, and T. S. Woodall, “Open mpi:
Goals, concept, and design of a next generation mpi implementation,”
in Recent Advances in Parallel Virtual Machine and Message Passing

Interface, D. Kranzlmüller, P. Kacsuk, and J. Dongarra, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2004, pp. 97–104.

[14] [Online]. Available: https://github.com/hpc/rma-mt
[15] “Intel mpi library software,” https://software.intel.com/en-us/mpi-library,

[Online; accesed 21-March-2019].
[16] W. Gropp, “Mpich2: A new start for mpi implementations,” in

Proceedings of the 9th European PVM/MPI Users’ Group Meeting on

Recent Advances in Parallel Virtual Machine and Message Passing

Interface. London, UK, UK: Springer-Verlag, 2002, pp. 7–. [Online].
Available: http://dl.acm.org/citation.cfm?id=648139.749473

[17] D. Goodell, P. Balaji, D. Buntinas, G. Dozsa, W. Gropp, S. Kumar,
B. R. d. Supinski, and R. Thakur, “Minimizing mpi resource contention
in multithreaded multicore environments,” in 2010 IEEE International

Conference on Cluster Computing, Sep. 2010, pp. 1–8.

[18] P. Balaji, D. Buntinas, D. Goodell, W. Gropp, and R. Thakur, “Toward
efficient support for multithreaded mpi communication,” in Proceedings

of the 15th European PVM/MPI Users’ Group Meeting on Recent

Advances in Parallel Virtual Machine and Message Passing Interface.
Berlin, Heidelberg: Springer-Verlag, 2008, pp. 120–129. [Online].
Available: http://dx.doi.org/10.1007/978-3-540-87475-1 20

[19] G. Dózsa, S. Kumar, P. Balaji, D. Buntinas, D. Goodell, W. Gropp,
J. Ratterman, and R. Thakur, “Enabling concurrent multithreaded mpi
communication on multicore petascale systems,” in Recent Advances

in the Message Passing Interface, R. Keller, E. Gabriel, M. Resch, and
J. Dongarra, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010,
pp. 11–20.

[20] K. Vaidyanathan, D. D. Kalamkar, K. Pamnany, J. R. Hammond,
P. Balaji, D. Das, J. Park, and B. Joó, “Improving concurrency and asyn-
chrony in multithreaded mpi applications using software offloading,”
in Proceedings of the International Conference for High Performance

Computing, Networking, Storage and Analysis. ACM, 2015, p. 30.

[21] “Lockless performance.” [Online]. Available: https://locklessinc.com/

[22] M. Si, A. J. Pena, J. Hammond, P. Balaji, M. Takagi, and Y. Ishikawa,
“Casper: An asynchronous progress model for mpi rma on many-core
architectures,” in 2015 IEEE International Parallel and Distributed

Processing Symposium. IEEE, 2015, pp. 665–676.

[23] M. Prache, P. Carribault, and H. Jourdren, “Mpc-mpi: An mpi
implementation reducing the overall memory consumption,” in Recent

Advances in Parallel Virtual Machine and Message Passing Interface,

Proceedings of the 16th European PVM/MPI Users Group Meeting

(EuroPVM/MPI 2009), ser. Lecture Notes in Computer Science,
M. Ropo, J. Westerholm, and J. Dongarra, Eds. Springer Berlin
Heidelberg, 2009, vol. 5759, pp. 94–103. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-03770-2 16

[24] A. Hori, M. Si, B. Gerofi, M. Takagi, J. Dayal, P. Balaji, and Y. Ishikawa,
“Process-in-process: techniques for practical address-space sharing,” in
Proceedings of the 27th International Symposium on High-Performance

Parallel and Distributed Computing. ACM, 2018, pp. 131–143.

[25] H. Dang, S. Seo, A. Amer, and P. Balaji, “Advanced thread synchroniza-
tion for multithreaded mpi implementations,” in 2017 17th IEEE/ACM

International Symposium on Cluster, Cloud and Grid Computing (CC-

GRID), May 2017, pp. 314–324.

[26] L. Dagum and R. Menon, “Openmp: An industry-standard api
for shared-memory programming,” IEEE Comput. Sci. Eng.,
vol. 5, no. 1, pp. 46–55, Jan. 1998. [Online]. Available:
https://doi.org/10.1109/99.660313

[27] M. Si, A. Peña, P. Balaji, M. Takagi, and Y. Ishikawa, “Mt-mpi:
multithreaded mpi for many-core environments,” in Proceedings of the

International Conference on Supercomputing, 06 2014.

[28] R. Grant, A. Skjellum, and P. V Bangalore, “Lightweight threading
with mpi using persistent communications semantics,” in Workshop on

Exascale MPI 2015 held in conjunction with Supercomputing (SC15),
11 2015.

[29] S. Sridharan, J. Dinan, and D. D. Kalamkar, “Enabling efficient multi-
threaded mpi communication through a library-based implementation of
mpi endpoints,” in SC ’14: Proceedings of the International Conference

for High Performance Computing, Networking, Storage and Analysis,
Nov 2014, pp. 487–498.

[30] J. Dinan, R. E. Grant, P. Balaji, D. Goodell, D. Miller, M. Snir, and
R. Thakur, “Enabling communication concurrency through flexible mpi
endpoints,” The International Journal of High Performance Computing

Applications, vol. 28, no. 4, pp. 390–405, 2014.

