
Sustainability Challenges:

What Does It Take to Keep PAPI
Instrumental for the HPC Community?

Heike Jagode
Anthony Danalis, Jack Dongarra

2019 Collegeville Workshop on  
Sustainable Scientific Software (CW3S19)

July 22-24, 2019

https://collegeville.github.io/CW3S19/
https://collegeville.github.io/CW3S19/

PAPI
• Library that provides a consistent interface (and methodology) for hardware performance counters,

found across the system: 
i. e., CPUs, GPUs, on-/off-chip Memory, Interconnects, I/O system, File System, Energy/Power, etc.

• PAPI enables software engineers to see, in near real time, the relation between  
SW performance and HW events across the entire compute system

SUPPORTED ARCHITECTURES:
• AMD, power
• ARM Cortex A8, A9, A15, ARM64
• CRAY: Gemini and Aries interconnects, power
• IBM Blue Gene Series, Q: 5D-Torus, I/O system, EMON power/energy
• IBM Power Series
• Intel Westmere, Sandy|Ivy Bridge, Haswell, Broadwell, Skylake, KNC, Knights Landing
• Intel KNC, Knights Landing power/energy
• Intel RAPL (power/energy); power capping
• InfiniBand
• Lustre FS
• NVIDIA Tesla, Kepler: CUDA support for multiple GPUs; PC Sampling
• NVIDIA NVML
• Virtual Environments: VMware, KVM

PAPI
• Library that provides a consistent interface (and methodology) for hardware performance counters,

found across the system: 
i. e., CPUs, GPUs, on-/off-chip Memory, Interconnects, I/O system, File System, Energy/Power, etc.

• PAPI enables software engineers to see, in near real time, the relation between  
SW performance and HW events across the entire compute system

SUPPORTED ARCHITECTURES:
• AMD up to Zeppelin Zen, power for Fam17h
• AMD GPUs Vega, power, temperature, fan
• ARM Cortex A8, A9, A15, ARM64
• CRAY: Gemini and Aries interconnects, power/energy
• IBM Blue Gene Series, Q: 5D-Torus, I/O system, EMON power/energy
• IBM Power Series, PCP for POWER9-uncore
• Intel Sandy|Ivy Bridge, Haswell, Broadwell, Skylake, Kabylake, Cascadelake, KNC, KNL, KNM
• Intel RAPL (power/energy), power capping
• InfiniBand
• Lustre FS
• NVIDIA Tesla, Kepler, Maxwell, Pascal, Volta: support for multiple GPUs
• NVIDIA: support for NVLink
• NVIDIA NVML (power/energy); power capping
• Virtual Environments: VMware, KVM

PAPI
• Library that provides a consistent interface (and methodology) for hardware performance counters,

found across the system: 
i. e., CPUs, GPUs, on-/off-chip Memory, Interconnects, I/O system, File System, Energy/Power, etc.

• PAPI enables software engineers to see, in near real time, the relation between  
SW performance and HW events across the entire compute system

SUPPORTED ARCHITECTURES:
• AMD up to Zeppelin Zen, power for Fam17h
• AMD GPUs Vega, power, temperature, fan
• ARM Cortex A8, A9, A15, ARM64
• CRAY: Gemini and Aries interconnects, power/energy
• IBM Blue Gene Series, Q: 5D-Torus, I/O system, EMON power/energy
• IBM Power Series, PCP for POWER9-uncore
• Intel Sandy|Ivy Bridge, Haswell, Broadwell, Skylake, Kabylake, Cascadelake, KNC, KNL, KNM
• Intel RAPL (power/energy), power capping
• InfiniBand
• Lustre FS
• NVIDIA Tesla, Kepler, Maxwell, Pascal, Volta: support for multiple GPUs
• NVIDIA: support for NVLink
• NVIDIA NVML (power/energy); power capping
• Virtual Environments: VMware, KVM

PAPI
• Library that provides a consistent interface (and methodology) for hardware performance counters,

found across the system: 
i. e., CPUs, GPUs, on-/off-chip Memory, Interconnects, I/O system, File System, Energy/Power, etc.

• PAPI enables software engineers to see, in near real time, the relation between  
SW performance and HW events across the entire compute system

SUPPORTED ARCHITECTURES:
• AMD up to Zeppelin Zen, power for Fam17h
• AMD GPUs Vega, power, temperature, fan
• ARM Cortex A8, A9, A15, ARM64
• CRAY: Gemini and Aries interconnects, power/energy
• IBM Blue Gene Series, Q: 5D-Torus, I/O system, EMON power/energy
• IBM Power Series, PCP for POWER9-uncore
• Intel Sandy|Ivy Bridge, Haswell, Broadwell, Skylake, Kabylake, Cascadelake, KNC, KNL, KNM
• Intel RAPL (power/energy), power capping
• InfiniBand
• Lustre FS
• NVIDIA Tesla, Kepler, Maxwell, Pascal, Volta: support for multiple GPUs
• NVIDIA: support for NVLink
• NVIDIA NVML (power/energy); power capping
• Virtual Environments: VMware, KVM

PAPI Framework: 1999 - 2009

Kernel Extension

Operating System

Performance Counter Hardware

PAPI HARDWARE SPECIFIC LAYER

Applications / 3rd Party Tools

Low-Level API High-Level API

PAPI
PORTABLE LAYER

PAPI’s original job:
Address the problem of accessing
hardware counters, found on a
diverse collection of modern
microprocessors, in a portable
manner.

PAPI Framework: 1999 - 2009
PAPI’s original job:
Address the problem of accessing
hardware counters, found on a
diverse collection of modern
microprocessors, in a portable
manner.

Why?
• Too many different interfaces

from different CPU vendors
• Interfaces poorly documented
• Performance counters poorly

documented (or not documented)
• Number of counters (offered by

vendors) has vastly increased
over the years, and so has their
complexity

• No standardized way to access
these counters

Kernel Extension

Operating System

Performance Counter Hardware

PAPI HARDWARE SPECIFIC LAYER

Applications / 3rd Party Tools

Low-Level API High-Level API

PAPI
PORTABLE LAYER

PAPI Framework: 1999 - 2009
PAPI’s original job:
Address the problem of accessing
hardware counters, found on a
diverse collection of modern
microprocessors, in a portable
manner.

Why?
• Too many different interfaces

from different CPU vendors
• Interfaces poorly documented
• Performance counters poorly

documented (or not documented)
• Number of counters (offered by

vendors) has vastly increased
over the years, and so has their
complexity

• No standardized way to access
these counters

Kernel Extension

Operating System

Performance Counter Hardware

PAPI HARDWARE SPECIFIC LAYER

Applications / 3rd Party Tools

Low-Level API High-Level API

PAPI
PORTABLE LAYER

CPUs ONLY

PAPI HARDWARE SPECIFIC LAYER

PAPI
PORTABLE LAYER

Applications / 3rd Party Tools

Low-Level API High-Level API

OS + Kernel Ext.

Performance Counter Hardware

PAPI Component:
CPUs

Developer API

PAPI Framework: 2009

CPUs ONLY

Challenge:
Tools to measure application performance in
increasingly complex systems MUST also
increase the richness of their measurements
to provide insights into the increasingly intricate
ways in which SW and HW interact!

PAPI HARDWARE SPECIFIC LAYER

PAPI
PORTABLE LAYER

Applications / 3rd Party Tools

Low-Level API High-Level API

OS + Kernel Ext.

Performance Counter Hardware

PAPI Component:
CPUs

Developer API

PAPI Framework: 2009 - 2018

PAPI Component:
GPUs

Developer API

Challenge:
Tools to measure application performance in
increasingly complex systems MUST also
increase the richness of their measurements
to provide insights into the increasingly intricate
ways in which SW and HW interact!

Redesign of  
PAPI to PAPI-Components:

PAPI HARDWARE SPECIFIC LAYER

PAPI
PORTABLE LAYER

Applications / 3rd Party Tools

Low-Level API High-Level API

OS + Kernel Ext.

Performance Counter Hardware

PAPI Component:
CPUs

Developer API

PAPI Framework: 2009 - 2018

PAPI Component:
GPUs

Developer API

PAPI Component:
NETWORKs

Developer API

Challenge:
Tools to measure application performance in
increasingly complex systems MUST also
increase the richness of their measurements
to provide insights into the increasingly intricate
ways in which SW and HW interact!

Redesign of  
PAPI to PAPI-Components:

PAPI HARDWARE SPECIFIC LAYER

PAPI
PORTABLE LAYER

Applications / 3rd Party Tools

Low-Level API High-Level API

OS + Kernel Ext.

Performance Counter Hardware

PAPI Component:
CPUs

Developer API

PAPI Framework: 2009 - 2018

PAPI Component:
GPUs

Developer API

PAPI Component:
NETWORKs

Developer API

PAPI Component:
I/O systems

Challenge:
Tools to measure application performance in
increasingly complex systems MUST also
increase the richness of their measurements
to provide insights into the increasingly intricate
ways in which SW and HW interact!

Redesign of  
PAPI to PAPI-Components:
• Decouple CPU details from PAPI

Portable Layer
• Support stand-alone components

PAPI HARDWARE SPECIFIC LAYER

PAPI
PORTABLE LAYER

Applications / 3rd Party Tools

Low-Level API High-Level API

OS + Kernel Ext.

Performance Counter Hardware

PAPI Component:
CPUs

Developer API

PAPI Framework: 2009 - 2018

PAPI Component:
GPUs

Developer API

PAPI Component:
NETWORKs

Developer API

PAPI Component:
. . .

PAPI Component:
I/O systems

PAPI currently has >30 Components

PAPI has grown to support >30
hardware components.

New Sustainability
Challenge:

PAPI HARDWARE SPECIFIC LAYER

PAPI
PORTABLE LAYER

Applications / 3rd Party Tools

Low-Level API High-Level API

OS + Kernel Ext.

Performance Counter Hardware

PAPI Component:
CPUs

Developer API

PAPI Framework: 2009 - 2018

PAPI Component:
GPUs

Developer API

PAPI Component:
NETWORKs

Developer API

PAPI Component:
. . .

PAPI Component:
I/O systems

PAPI currently has >30 Components

PAPI has grown to support >30
hardware components.

New Sustainability
Challenge:
• Volume of code exposed to

changing requirements too large.
• C’s mechanisms(void *, function pointers,

preprocessor macros) are too cumbersome
for writing code that is both generic
AND safe/easy-to-maintain.

PAPI Framework: 2018 - present

PAPI HARDWARE SPECIFIC LAYERPAPI Component:
NETWORKs

PAPI Component:
. . .

PAPI Component:
. . .

PAPI
PORTABLE LAYER

Applications / 3rd Party Tools

Low-Level API High-Level API

Libraries / Apps

SDE API

PAPI
SDE LAYER

PAPI Component:
CPUs

OS + Kernel Ext.

Perf Counter Hardware

PAPI Component:
GPUs

PAPI Component:
SDEs

Library Interface

Registered Library SDEs

Developer API Developer APIDeveloper API

PAPI currently has >30 Components

PAPI Software-defined Event (SDE) Support

GOAL Offer support for software-defined events (SDE) to extend
PAPI's role as a standardizing layer for monitoring
performance counters.

VISION Enable HPC software layers to expose SDEs that
performance analysts can use to form a complete picture of
the entire application performance.

BENEFIT HPC application scientists will be able to better understand
the interaction of the different application layers, and the
interaction with external libraries and runtimes.

PAPI Framework: 2018 - present

PAPI HARDWARE SPECIFIC LAYERPAPI Component:
NETWORKs

PAPI Component:
. . .

PAPI Component:
. . .

PAPI
PORTABLE LAYER

Applications / 3rd Party Tools

Low-Level API High-Level API

Libraries / Apps

SDE API

PAPI
SDE LAYER

PAPI Component:
CPUs

OS + Kernel Ext.

Perf Counter Hardware

PAPI Component:
GPUs

PAPI Component:
SDEs

Library Interface

Registered Library SDEs

Developer API Developer APIDeveloper API

PAPI currently has >30 Components

void *papi_sde_init(const char *lib_name);

Initializes internal data structures and returns an opaque handle that must be passed to all
subsequent calls to PAPI SDE functions.

lib_name is a string containing the name of the library.

int papi_sde_register_counter(void *handle, const char *event_name,
 int mode, int type, void *counter);

Must be called for every program variable that the library wishes to register as an event.
handle is the opaque handle returned by papi_sde_init().
event_name is a string containing the name of the event being registered.
mode is an integer declaring whether a counter is read-only or read-write.
type is an enumeration of the type of the event.
counter is a pointer to the actual variable that serves as the counter for this event.

typedef long long (*papi_sde_fptr_t)(void *);
int papi_sde_register_fp_counter(void *handle, const char *event_name,

 int mode, int type, papi_sde_fptr_t fp_counter, void *param);

int papi_sde_describe_counter(void *handle, const char *event_name,
 const char *event_description);

Registers a function pointer to an accessor function provided by the library. Enables the user to export
an event the value of which does not map to the value of a single program variable inside the library.

fp_counter is a pointer to the accessor function with return type ”long long int”.
param is an opaque object that the library passes to PAPI, and PAPI passes it as a parameter
to the accessor function.

Provides a description of the event which will be displayed by utilities such as papi_native_avail.
event_description is a string containing the description of the event.

int papi_sde_unregister_counter(void *handle, const char *event_name);

Can be called to unregister an event counter. Useful for implementing transient events.

int papi_sde_add_counter_to_group(void *handle, const char *event_name,
 const char *group_name, uint32_t group_flags);

Adds a counter to a group so that logical groups can be formed out of multiple related event counters.
Groups are first class citizens and can be recursively added to other groups. A group is automatically
created the first time a counter is added to it.

group_name is a string containing the name of the group.
group_flags specifies if the group should report the sum, the min, or the max of the counters it contains.

Creates a counter whose memory is managed by PAPI (instead of the library)
handle is the opaque handle returned by papi_sde_init().
event_name is a string containing the name of the event being registered.
type is an enumeration of the type of the event.
counter_handle is a opaque handle that can be used to access the created counter

int papi_sde_create_counter(void *handle, const char *event_name,
 int type, void *counter_handle);

Creates a counter whose memory is managed by PAPI (instead of the library)
counter_handle is the opaque handle returned by papi_sde_create_counter().
increment is the value to be added to the counter.

int papi_sde_inc_counter(void *counter_handle, long long increment);

Records an element
record_handle is the opaque handle returned by papi_sde_create_recorder().
typesize is the size of the new element in bytes.
value is a pointer to the new element.

int papi_sde_record(void *record_handle, size_t typesize, void *value);

Creates a counter which can record (log) a series of values. The memory of the recorder is
handled internaly by PAPI.

handle is the opaque handle returned by papi_sde_init().
event_name is a string containing the name of the event being registered.
typesize is the size of each element (to be recorded) in bytes .
record_handle is a opaque handle that can be used to access the created recorder.

int papi_sde_create_recorder(void *handle, const char *event_name,
 size_t typesize, void *record_handle);

PAPI SDE API

void *papi_sde_init(const char *lib_name);

Initializes internal data structures and returns an opaque handle that must be passed to all
subsequent calls to PAPI SDE functions.

lib_name is a string containing the name of the library.

int papi_sde_register_counter(void *handle, const char *event_name,
 int mode, int type, void *counter);

Must be called for every program variable that the library wishes to register as an event.
handle is the opaque handle returned by papi_sde_init().
event_name is a string containing the name of the event being registered.
mode is an integer declaring whether a counter is read-only or read-write.
type is an enumeration of the type of the event.
counter is a pointer to the actual variable that serves as the counter for this event.

typedef long long (*papi_sde_fptr_t)(void *);
int papi_sde_register_fp_counter(void *handle, const char *event_name,

 int mode, int type, papi_sde_fptr_t fp_counter, void *param);

int papi_sde_describe_counter(void *handle, const char *event_name,
 const char *event_description);

Registers a function pointer to an accessor function provided by the library. Enables the user to export
an event the value of which does not map to the value of a single program variable inside the library.

fp_counter is a pointer to the accessor function with return type ”long long int”.
param is an opaque object that the library passes to PAPI, and PAPI passes it as a parameter
to the accessor function.

Provides a description of the event which will be displayed by utilities such as papi_native_avail.
event_description is a string containing the description of the event.

int papi_sde_unregister_counter(void *handle, const char *event_name);

Can be called to unregister an event counter. Useful for implementing transient events.

int papi_sde_add_counter_to_group(void *handle, const char *event_name,
 const char *group_name, uint32_t group_flags);

Adds a counter to a group so that logical groups can be formed out of multiple related event counters.
Groups are first class citizens and can be recursively added to other groups. A group is automatically
created the first time a counter is added to it.

group_name is a string containing the name of the group.
group_flags specifies if the group should report the sum, the min, or the max of the counters it contains.

Creates a counter whose memory is managed by PAPI (instead of the library)
handle is the opaque handle returned by papi_sde_init().
event_name is a string containing the name of the event being registered.
type is an enumeration of the type of the event.
counter_handle is a opaque handle that can be used to access the created counter

int papi_sde_create_counter(void *handle, const char *event_name,
 int type, void *counter_handle);

Creates a counter whose memory is managed by PAPI (instead of the library)
counter_handle is the opaque handle returned by papi_sde_create_counter().
increment is the value to be added to the counter.

int papi_sde_inc_counter(void *counter_handle, long long increment);

Records an element
record_handle is the opaque handle returned by papi_sde_create_recorder().
typesize is the size of the new element in bytes.
value is a pointer to the new element.

int papi_sde_record(void *record_handle, size_t typesize, void *value);

Creates a counter which can record (log) a series of values. The memory of the recorder is
handled internaly by PAPI.

handle is the opaque handle returned by papi_sde_init().
event_name is a string containing the name of the event being registered.
typesize is the size of each element (to be recorded) in bytes .
record_handle is a opaque handle that can be used to access the created recorder.

int papi_sde_create_recorder(void *handle, const char *event_name,
 size_t typesize, void *record_handle);

PAPI SDE API

Advanced PAPI SDE API offers a
variety of feature:

• single events, recorders,
• function pointers,
• statistics,
• groups, …

SDEs in MAGMA-SPARSE

Single-value SDEs: Simple register one counter via:
int papi_sde_register_counter(…, const char *event_name,…,  
 void *counter);

MAGMA performance metrics Description
MAGMA::numiter Number of iterations until convergence attained
MAGMA::SpmvCount Number of sparse matrix-vector multiplications
MAGMA::InitialResidual Initial residual
MAGMA::FinalResidual Final residual
MAGMA::SolverRuntime Total run-time of the solver

SDEs in MAGMA-SPARSE

Single-value SDEs: Simple register one counter via:

Multi-value SDEs: Create a recorder to log multiple values for one SDE:
int papi_sde_create_recorder(…, const char *event_name,…,  
 void *record_handle);

int papi_sde_record(void *record_handle,…, void *value);

MAGMA performance metrics Description
MAGMA::IterativeResidual Recorder of all residuals until convergence

int papi_sde_register_counter(…, const char *event_name,…,  
 void *counter);

MAGMA performance metrics Description
MAGMA::numiter Number of iterations until convergence attained
MAGMA::SpmvCount Number of sparse matrix-vector multiplications
MAGMA::InitialResidual Initial residual
MAGMA::FinalResidual Final residual
MAGMA::SolverRuntime Total run-time of the solver

10-10

10-8

10-6

10-4

10-2

100

102

104

106

 0 100 200 300 400 500 600 700 800 900 1000

Runtime of Solvers:

0.1312 sec

0.0956 sec

0.0404 sec

0.1120 sec

0.6497 sec

0.2999 sec

0.1725 sec

0.1910 sec

R
e

si
d

u
a

l

Iteration

PAPI SDE Recorder: Residual per Iteration (662_bus: 662-by-662 with 2474 nonzeros)

BICG
BICGSTAB

CG
CGS

GMRES
IDR

QMR
TFQMR

SDEs in MAGMA-SPARSE: Power Network Problem

Matrix from: https://sparse.tamu.edu/HB/662_bus

symmetric and positive-definite matrix

555
1110
2.4019e+03
6.4937e-10
9.5568e-02

784
1568
2.4019e+03
5.8935e-10
1.1197e-01

880
1760
2.4019e+03
7.2674e-10
1.7255e-01

sde:::MAGMA::numiter:
sde:::MAGMA::SpmvCount:
sde:::MAGMA::InitialResidual:
sde:::MAGMA::FinalResidual:
sde:::MAGMA::SolverRuntime:

… … …

10-10

10-8

10-6

10-4

10-2

100

102

 0 50 100 150 200 250 300 350

Runtime of Solvers:

0.0261 sec

0.0224 sec

0.0084 sec

0.0165 sec

0.1875 sec

0.0409 sec

0.0305 sec

0.0290 sec

R
e

si
d

u
a

l

Iteration

PAPI SDE Recorder: Residual per Iteration (LAPLACE2D_47: 2209-by-2209 with 10857 nonzeros)

BICG
BICGSTAB

CG
CGS

GMRES
IDR

QMR
TFQMR

10-10

10-8

10-6

10-4

10-2

100

102

104

106

 0 100 200 300 400 500 600 700 800 900 1000

Runtime of Solvers:

0.1312 sec

0.0956 sec

0.0404 sec

0.1120 sec

0.6497 sec

0.2999 sec

0.1725 sec

0.1910 sec

R
e

si
d

u
a

l

Iteration

PAPI SDE Recorder: Residual per Iteration (662_bus: 662-by-662 with 2474 nonzeros)

BICG
BICGSTAB

CG
CGS

GMRES
IDR

QMR
TFQMR

SDEs in MAGMA-SPARSE: Power Network Problem

Matrix from: https://sparse.tamu.edu/HB/662_bus

symmetric and positive-definite matrix

555
1110
2.4019e+03
6.4937e-10
9.5568e-02

784
1568
2.4019e+03
5.8935e-10
1.1197e-01

880
1760
2.4019e+03
7.2674e-10
1.7255e-01

sde:::MAGMA::numiter:
sde:::MAGMA::SpmvCount:
sde:::MAGMA::InitialResidual:
sde:::MAGMA::FinalResidual:
sde:::MAGMA::SolverRuntime:

… … …

IterativeResidual:CNT:
BICGSTAB = 555
CGS = 784
QMR = 880… …

PAPI Framework: Challenges
1999

2019

PAPI Framework: Challenges
1999

2019

• PAPI has been in constant flux
• “extended” with new CPUs
• “redesigned” for HW Components 

(GPUs, networks, I/O, power, etc.)
• “upgraded” with SDEs

PAPI Framework: Challenges
• PAPI has been in constant flux

• “extended” with new CPUs
• “redesigned” for HW Components 

(GPUs, networks, I/O, power, etc.)
• “upgraded” with SDEs

• PAPI’s initial intended purpose (CPUs)
differs from today’s (system + SDEs)

• Counters are not of fixed type anymore
• SDEs go beyond notion of a “counter”

1999

2019

Path forward: PAPI++
Need for a more efficient and flexible software design!

Development of a new C++ performance API (PAPI++) from the
ground up:
• Use of modern programming language for more generic AND

safe/easy-to-maintain code
• PAPI++ code base will be more compact

• Multiple components will be handled by C++ templating
• Minimize volume of code exposed to changing requirements

• PAPI’s vast test suite will be handled by C++ templating
• Allow for more flexible counter types
• PAPI++ is meant to be PAPI’s replacement

3rd Party Tools applying PAPI

ECP Projects
Other Tools not directly part of ECP

