Sustainability Challenges:

What Does It Take to Keep PAPI
Instrumental for the HPC Community?

Heike Jagode
Anthony Danalis, Jack Dongarra

2019 Collegeville Workshop on
Sustainable Scientific Software (CW3S19)

July 22-24, 2019

L

S
COMPUTING LABORATORY
e UNIVERSITY of TENNESSEE

https://collegeville.github.io/CW3S19/
https://collegeville.github.io/CW3S19/

PAPI

- Library that provides a consistent interface (and methodology) for hardware performance counters,
found across the system:
i. e., CPUs, GPUs, on-/off-chip Memory, Interconnects, I/O system, File System, Energy/Power, etc.
- PAPI enables software engineers to see, in near real time, the relation between
SW performance and HW events across the entire compute system

|CL~£J INNOVATIVE COMPUTING LABORATORY

PAPI

- Library that provides a consistent interface (and methodology) for hardware performance counters,
found across the system:
i. e., CPUs, GPUs, on-/off-chip Memory, Interconnects, I/O system, File System, Energy/Power, etc.
- PAPI enables software engineers to see, in near real time, the relation between
SW performance and HW events across the entire compute system

« AMD up to Zeppelin Zen AMDH ARM
CRANY

ARM Cortex A8, A9, A15, ARM64 THE SUPERCOMPUTER COMPANY

IBM Blue Gene Series
IBM Power Series, PCP for POWER9-uncore
Intel Sandyllvy Bridge, Haswell, Broadwell, Skylake, Kabylake, Cascadelake, KNC, KNL, KNM

<

NVIDIA.

°
<|l|

ICL{/ INNOVATIVE COMPUTING LABORATORY

PAPI

- Library that provides a consistent interface (and methodology) for hardware performance counters,
found across the system:
i. e., CPUs, GPUs, on-/off-chip Memory, Interconnects, I/O system, File System, Energy/Power, etc.
- PAPI enables software engineers to see, in near real time, the relation between
SW performance and HW events across the entire compute system

AMD 1
- AMD up to Zeppelin Zen, ARM
- AMD GPUs Vega CRAY”
« ARM Cortex A8’ Ag, A15, ARM64 THE SUPERCOMPUTER COMPANY
« CRAY: Gemini and Aries interconnects, power/energy
IBM Blue Gene Series, Q: 5D-Torus, I/0 system, EMON power/energy

IBM Power Series, PCP for POWER9-uncore
Intel Sandyllvy Bridge, Haswell, Broadwell, Skylake, Kabylake, Cascadelake, KNC, KNL, KNM

InfiniBand < inte@

Lustre FS
NVIDIA Tesla, Kepler, Maxwell, Pascal, Volta: support for multiple GPUs @
\ p

°
<|l|

NVIDIA: support for NVLink

NWVIDIA.

ICL{/ INNOVATIVE COMPUTING LABORATORY

PAPI

- Library that provides a consistent interface (and methodology) for hardware performance counters,
found across the system:
i. e., CPUs, GPUs, on-/off-chip Memory, Interconnects, I/O system, File System, Energy/Power, etc.
- PAPI enables software engineers to see, in near real time, the relation between
SW performance and HW events across the entire compute system

AMD 1
- AMD up to Zeppelin Zen, power for Fam17h ARM
- AMD GPUs Vega, power, temperature, fan CRAY”
« ARM Cortex A8, A9, A15, ARM64 THE SUPERCOMPUTER COMPANY
« CRAY: Gemini and Aries interconnects, power/energy
+ IBM Blue Gene Series, Q: 5D-Torus, I/0 system, EMON power/energy
- IBM Power Series, PCP for POWER9-uncore

« Intel Sandyllvy Bridge, Haswell, Broadwell, Skylake, Kabylake, Cascadelake, KNC, KNL, KNM
- Intel RAPL (power/energy), power capping

- InfiniBand < inte@

« Lustre FS
« NVIDIA Tesla, Kepler, Maxwell, Pascal, Volta: support for multiple GPUs @

+ NVIDIA: support for NVLink

- NVIDIA NVML (power/energy); power capping i/ -
« Virtual Environments: VMware, KVM NVIDUA.

ICL{J INNOVATIVE COMPUTING LABORATORY

PAPI’s original job:

PAP| Framework: 1999 - 2009

hardware counters, found on a

) *\L \IAPI " :L \ | A1 diverse collection of modern
- -Leve H i
ow-Leve Igh-.ev microprocessors, in a portable

PAPI manner.
PORTABLE LAYER

PAPI HARDWARE SPECIFIC LAYER

Kernel Extension

Operating System

A

Performance Counter Hardware

ICL@UF INNOVATIVE COMPUTING LABORATORY

PAP| Framework: 1999 - 2009

Low-Level API

PAPI’s original job:

Address the problem of accessing
hardware counters, found on a
diverse collection of modern
microprocessors, in a portable

PAPI manner.
PORTABLE LAYER Why?

High-Level API

« Too many different interfaces
from different CPU vendors

* Interfaces poorly documented

« Performance counters poorly

Operating System documented (or not documented)

Performance Counter Hardware * Number of counters (offered by
vendors) has vastly increased
over the years, and so has their
complexity

« No standardized way to access
these counters

PAPI HARDWARE SPECIFIC LAYER

Kernel Extension

A

ICL‘(}JUF INNOVATIVE COMPUTING LABORATORY

PAP| Framework: 1999 - 2009

Low-Level API

PAPI’s original job:

Address the problem of accessing
hardware counters, found on a
diverse collection of modern
microprocessors, in a portable

PAPI manner.
PORTABLE LAYER Why?

High-Level API

« Too many different interfaces
from different CPU vendors

* Interfaces poorly documented

« Performance counters poorly

Operating System documented (or not documented)

Performance Counter Hardware * Number of counters (offered by
vendors) has vastly increased
over the years, and so has their
complexity

« No standardized way to access
these counters

N

PAPI HARDWARE SPECIFIC LAYER

Kernel Extension

A

ICL‘(}JUF INNOVATIVE COMPUTING LABORATORY

PAP| Framework: 2009

High-Level API

Challenge:

Tools to measure application performance in
increasingly complex systems MUST also
increase the richness of their measurements
to provide insights into the increasingly intricate
ways in which SW and HW interact!

Low-Level API

PAPI
PORTABLE LAYER

Developer API
N\

PAPI Component:

’ OS + Kernel Ext.

A

Q. 4
- _B#&fformance Counter Hardware

ICL@UF INNOVATIVE COMPUTING LABORATORY

PAP| Framework: 2009 - 2018
increasingly complex systems MUST also
increase the richness of their measurements
Low-LeveI API High-LeveI API ways in which SW and HW interact!
PAPI Redesign of

Tools to measure application performance in
N N N N to provide insights into the increasingly intricate
PORTABLE LAYER PAPI to PAPI-Components:

Developer API Developer API
N AN

PAPI Component:
GPUs

PAPI Coniponent:
CPUs

OS + Kernel Ext.

A

<
Performance Counter Hardware

ICLL\\JUI' INNOVATIVE COMPUTING LABORATORY

— Chal Ienge :
increase the richness of their measurements

Tools to measure application performance in
N N N N to provide insights into the increasingly intricate

PAPI Framework: 2009 - 2018
increasingly complex systems MUST also
Low-Level API High-Level API ways in which SW and HW interact!

PAPI Redesign of
PORTABLE LAYER PAPI to PAPI-Components:
Developer API Developer API Developer API
NN\ AN N

PAPI Component:
GPUs

PAPI Component:
CPUs

OS + Kernel Ext.

I Component:
NETWORKS

A

<
Performance Counter Hardware

ICL@UF INNOVATIVE COMPUTING LABORATORY

PAPI Framework: 2009 - 2018

Low-Level API

PAPI
PORTABLE LAYER

Developer API Developer API
NI\ NI\

P1 PAPI Component:
e CPUs

OS + Kernel Ext.

A

4
Performance Counter Hardware

ICL‘Q\JUF INNOVATIVE COMPUTING LABORATORY

High-Level API

Developer API
NN\

Challenge:

Tools to measure application performance in
increasingly complex systems MUST also
increase the richness of their measurements
to provide insights into the increasingly intricate
ways in which SW and HW interact!

Redesign of
PAPI to PAPI-Components:

« Decouple CPU details from PAPI
Portable Layer

« Support stand-alone components

PAP| Framework: 2009 - 2018

hardware components.
New Sustainability
NV MV Challenge:
Low-Level API High-Level API

PAPI
PORTABLE LAYER

Developer API Developer API Developer API
N AN AN

PAPI Component: | PAPI Component:
GPUs I/0 systems

PAPI Component:
CPUs

OS + Kernel Ext.

PI Component:
NETWORKS

A

<
Performance Counter Hardware

PAPI currently has >30 Components

icL.> 0. NNOVATIVE COMPUTING LABORATORY

PAPI Framework: 2009 - 2018

Low-Level API High-Level API

PAPI
PORTABLE LAYER

Developer API Developer API Developer API
N VN N N\ NN\

PAPI Component:
CPUs

OS + Kernel Ext.

A

<
Performance Counter Hardware

PAPI has grown to support >30
hardware components.

New Sustainability
Challenge:

« Volume of code exposed to
changing requirements too large.

« C’s mechanismS(void *. function pointers,
preprocessor macros) are 100 cumbersome
for writing code that is both generic
AND safe/easy-to-maintain.

Pl currently has >30 Componen

ICL@U» NNOVATIVE COMPUTING LABORATORY

PAPI Framework: 2018 - present

Low-LeveI API

PAPI
PORTABLE LAYER

ngh Level API

SDE LAYER

Devﬂ)pjr\ A;I\ Develo r API De\ﬁl\o r API

PAPI Component: | PAPI Component: | PAPI Component: | PAPI Component:
NETWORKS

OS + Kernel Ext.

1

Registered Library SDEs Perf Counter Hardware

PAPI currently has >30 Components

NNOVATIVE COMPUTING LABORATORY

PAPI Software-defined Event (SDE) Support

Offer support for software-defined events (SDE) to extend
PAPI's role as a standardizing layer for monitoring
performance counters.

Enable HPC software layers to expose SDEs that
performance analysts can use to form a complete picture of
the entire application performance.

HPC application scientists will be able to better understand
the interaction of the different application layers, and the
interaction with external libraries and runtimes.

ICL@ INNOVATIVE COMPUTING LABORATORY

PAPI Framework: 2018 - present

Low-LeveI API

PAPI
PORTABLE LAYER

ngh Level API

SDE LAYER

Devﬂ)pjr\ A;I\ Develo r API De\ﬁl\o r API

PAPI Component: | PAPI Component: | PAPI Component: | PAPI Component:
NETWORKS

OS + Kernel Ext.

1

Registered Library SDEs Perf Counter Hardware

PAPI currently has >30 Components

NNOVATIVE COMPUTING LABORATORY

PAPI SDE API

papi_sde_init(1lib_name) ;

Initializes internal data structures and returns an opaque handle that must be passed to all
subsequent calls to PAPI SDE functions.
lib_name is a string containing the name of the library.

papi_sde_register_counter (handle,
mode, type,

event name,
counter) ;

Must be called for every program variable that the library wishes to register as an event.
handle is the opaque handle returned by papi_sde init().
event_name is a string containing the name of the event being registered.
mode is an integer declaring whether a counter is read-only or read-write.
type is an enumeration of the type of the event.
counter is a pointer to the actual variable that serves as the counter for this event.

typedef (*papi_sde_fptr t) ()
papi_sde_register_ fp counter(handle, event name,
mode, type, fp_counter, param) ;

Registers a function pointer to an accessor function provided by the library. Enables the user to export
an event the value of which does not map to the value of a single program variable inside the library.

£p_counter is a pointer to the accessor function with return type "long long int".
param is an opaque object that the library passes to PAPI, and PAPI passes it as a parameter
to the accessor function.

papi_sde_unregister_counter(handle, event_name) ;

Can be called to unregister an event counter. Useful for implementing transient events.

papi_sde describe_counter (handle,
event description) ;

event_name,

Provides a description of the event which will be displayed by utilities such as papi_native_avail.
event_description is a string containing the description of the event.

papi_sde_add_ counter_to_group (handle,
group_name,

event_ name,
group_flags) ;

Adds a counter to a group so that logical groups can be formed out of multiple related event counters.
Groups are first class citizens and can be recursively added to other groups. A group is automatically
created the first time a counter is added to it.

group_name is a string containing the name of the group.

group_flags specifies if the group should report the sum, the min, or the max of the counters it contains.

icL

INNOVATIVE COMPUTING LABORATORY

papi_sde create_counter(handle,
type, counter_handle) ;

event name,

Creates a counter whose memory is managed by PAPI (instead of the library)
handle is the opaque handle returned by papi_sde init().
event_name is a string containing the name of the event being registered.
type is an enumeration of the type of the event.
counter_handle is a opaque handle that can be used to access the created counter

papi_sde_inc_counter(counter_handle, increment) ;

Creates a counter whose memory is managed by PAPI (instead of the library)

counter_handle is the opaque handle returned by papi_sde_create_counter ().
increment is the value to be added to the counter.

papi_sde create_recorder (handle, event_ name,

typesize, record handle) ;

Creates a counter which can record (log) a series of values. The memory of the recorder is
handled internaly by PAPI.

handle is the opaque handle returned by papi_sde_init().

event_name is a string containing the name of the event being registered.
typesize is the size of each element (to be recorded) in bytes .

record_handle is a opaque handle that can be used to access the created recorder.

‘ papi_sde_ record(record handle, typesize, value) ;

Records an element
record_handle is the opaque handle returned by papi_sde_create_recorder ().
typesize isthe size of the new element in bytes.
value is a pointer to the new element.

PAPI SDE API

papi_sde_init(lib_name) ;

Initializes internal data structures and returns an opaque handle that must be passed to all
subsequent calls to PAPI SDE functions.
lib_name is a string containing the name of the library.

papi_sde_register_counter (handle,
mode, type,

event name,
counter) ;

Must be called for every program variable that the library wishes to register as an event.
handle is the opaque handle returned by papi_sde init().
event_name is a string containing the name of the event being registered.
mode is an integer declaring whether a counter is read-only or read-write.
type is an enumeration of the type of the event.
counter is a pointer to the actual variable that serves as the counter for this event.

typedef (*papi_sde_fptr t) ()
papi_sde_register_ fp counter(handle, event name,
mode, type, fp_counter, param) ;

Registers a function pointer to an accessor function provided by the library. Enables the user to export
an event the value of which does not map to the value of a single program variable inside the library.

£p_counter is a pointer to the accessor function with return type "long long int".
param is an opaque object that the library passes to PAPI, and PAPI passes it as a parameter
to the accessor function.

papi_sde_unregister_counter(handle, event_name) ;

Can be called to unregister an event counter. Useful for implementing transient events.

papi_sde describe_counter (handle,
event description) ;

event_name,

Provides a description of the event which will be displayed by utilities such as papi_native_avail.
event_description is a string containing the description of the event.

papi_sde_add_ counter_to_group (handle,
group_name,

event_ name,
group_flags) ;

Adds a counter to a group so that logical groups can be formed out of multiple related event counters.
Groups are first class citizens and can be recursively added to other groups. A group is automatically
created the first time a counter is added to it.

group_name is a string containing the name of the group.

group_flags specifies if the group should report the sum, the min, or the max of the counters it contains.

icL

INNOVATIVE COMPUTING LABORATORY

papi_sde create_counter(handle,
type, counter_handle) ;

event name,

Creates a counter whose memory is managed by PAPI (instead of the library)
handle is the opaque handle returned by papi_sde init().
event_name is a string containing the name of the event being registered.
type is an enumeration of the type of the event.
counter_handle is a opaque handle that can be used to access the created counter

papi_sde_inc_counter(counter_handle, increment) ;

Creates a counter whose memory is managed by PAPI (instead of the library)

counter_handle is the opaque handle returned by papi_sde_create_counter ().
increment is the value to be added to the counter.

papi_sde create_recorder (handle, event_ name,

record handle) ;

typesize,

Creates a counter which can record (log) a series of values. The memory of the recorder is
handled internaly by PAPI.

handle is the opaque handle returned by papi_sde_init().

event_name is a string containing the name of the event being registered.
typesize is the size of each element (to be recorded) in bytes .

record_handle is a opaque handle that can be used to access the created recorder.

‘ papi_sde_ record(record handle, typesize, value) ;

Records an element
record_handle is the opaque handle returned by papi_sde_create_recorder ().
typesize isthe size of the new element in bytes.
value is a pointer to the new element.

Advanced PAPI SDE API offers a
variety of feature:
single events, recorders,

function pointers,
statistics,
groups, ...

SDEs in MAGMA-SPARSE

Single-value SDEs: Simple register one counter via:

int papi sde register counter(.., const char *event name,..,

void *counter) ;

MAGMA::numiter Number of iterations until convergence attained
MAGMA::SpmvCount Number of sparse matrix-vector multiplications
MAGMA::InitialResidual Initial residual

MAGMA::FinalResidual Final residual

MAGMA::SolverRuntime Total run-time of the solver

ICbga INNOVATIVE COMPUTING LABORATORY

SDEs in MAGMA-SPARSE

Single-value SDEs: Simple register one counter via:

int papi sde register counter(.., const char *event name,..,

void *counter) ;

MAGMA::numiter Number of iterations until convergence attained
MAGMA::SpmvCount Number of sparse matrix-vector multiplications
MAGMA::InitialResidual Initial residual

MAGMA::FinalResidual Final residual

MAGMA::SolverRuntime Total run-time of the solver

Multi-value SDEs: Create a recorder to log multiple values for one SDE:

int papi sde create recorder(.., const char *event name,..,

void *record handle);

int papi sde record(void *record handle,.., void *value);

MAGMA::IterativeResidual Recorder of all residuals until convergence
ICL@ INNOVATIVE COMPUTING LABORATORY

SDEs in MAGMA-SPARSE: Power Network Problem

: ::numiter:

¢tMAGMA: : SpmvCount:
¢tMAGMA::InitialResidual:
¢tMAGMA: :FinalResidual:
¢:MAGMA: : SolverRuntime:

icL

INNOVATIVE COMPUTING LABORATORY

555

1110
2.4019e+03
6.4937e-10
9.5568e-02

symmetric and positive-definite matrix

784 880
(X X J 1568 (XX J 1760 (XX J
2.4019e+03 2.4019e+03
5.8935e-10 7.2674e-10
1.1197e-01 1.7255e-01
BICG
BICGSTAB ——
CG
CGS =
GMRES
IDR
QMR ——
TFQMR ——

Matrix from: https://sparse.tamu.edu/HB/662_bus

SDEs in MAGMA-SPARSE: Power Network Problem

555

1110
2.4019e+03
6.4937e-10
9.5568e-02

symmetric and positive-definite matrix

784 880

(X X J 1568 (XX J 1760 (XX J
2.4019e+03 2.4019e+03
5.8935e-10 7.2674e-10
1.1197e-01 1.7255e-01

PAPI SDE Recorder: Residual per lteration (662_bus: 662-by-662 with 2474 nonzeros)

! ! ! ! ! BICG
BICGSTAB =——
CG

CGS =
GMRES
IDR =
QMR =
TFQMR =

Runtime of Solvers:
0.0956 sec
0.1120 sec
0.2999 sec

0.1725 sec
0.1910 sec

sde: : :MAGMA: :numiter:
sde: : :MAGMA: : SpmvCount:
sde:: :MAGMA::InitialResidual:
sde: : :MAGMA: :FinalResidual:
sde: : :MAGMA: : SolverRuntime:
108 T
IterativeResidual:CNT: .
BICGSTAB = 555 "
CGS = 784 o
OMR = 880
(X 1) (X 1) ol W
10° -\l
" ©
: 2 o2
' i
107
10°®
10°®
10—10 \
0 100

icL

INNOVATIVE COMPUTING LABORATORY

200

300

400

500 600 700 800 900 1000
Iteration

Matrix from: https://sparse.tamu.edu/HB/662_bus

PAPI Framework: Challenges
ot 30 oon

A\ \ VRV,
Low-Level API High-Level API

PAPI
PORTABLE LAYER

PAPI HARDWARE SPECIFIC LAYER
. Kerr

Operating System

Performance Counter Hardware

2019

\ \f \c’ AY B VY 4

SDE API Low-Level API High-Level API

Ay,

PAPI PAPI
SDE LAYER PORTABLE LAYER

SDEs
Ubrary Interface

 Registered Libeary SDES

icLL>ur INNOVATIVE COMF f y P ,

PAPI Framework: Challenges

_ 1999 « PAPI has been in constant flux

A A « “extended” with new CPUs
Low-Level API High-Level API . “redesigned” for HW COmponentS
PAPI (GPUs, networks, 1/O, power, etc.)

PORTABLE LAYER by -
« “upgraded” with SDEs
PAPI HARDWARE SPECIFIC LAYER

Kernel Extension

Operating System

Performance Counter Hardware

- L -

PAPI
PORTABLE LAYER

Devdopar API

N lr\ N r\
PAPI Component: | PAPI Com PAPI Component: | PAPI
GPUs CPUs NI'IWORKS
OS + Kemel &t.

ww%

PAPI currently has >30 Components
ICLL\\JUI' INNOVATIVE COMF y p

PAPI Framework: Challenges

— 1999 « PAPI has been in constant flux
« “extended” with new CPUs
L, - “redesigned” for HW Components

PORTABLE LAYER (GPUs, networ.ks, I/O, power, etc.)
« “upgraded” with SDEs

o et - PAP/’s initial intended purpose (CPUs)
differs from today’s (system + SDEs)

« Counters are not of fixed type anymore

- SDEs go beyond notion of a “counter”

Operating System

Performance Counter Hardware

PAPI
PORTABLE LAYER

DevcloparAPl

DAPI | ’__,J 3 one ponent: | PAPI Component: | PAPI Component:
GF SDEs CPUs |f__'14f'_"i/ﬂi,ii.‘.": :
Libeary m 0S + Kemel Bt
Registered Library SDES

PAPI currently has >30 Components

icLL>ur INNOVATIVE COMF

Path forward: PAPI++

Development of a new C++ performance APl (PAPI++) from the
ground up:

Use of modern programming language for more generic AND
safe/easy-to-maintain code

PAPIl++ code base will be more compact
Minimize volume of code exposed to changing requirements

- Allow for more flexible counter types
PAPI++ is meant to be PAPI’s replacement

ICL@ INNOVATIVE COMPUTING LABORATORY

3rd Party Tools applying PAPI

- ECP Projects

Other Tools not directly part of ECP

ECP DTE ECP LLNL-ATDM ECP SNL-ATDM ECP Proteas
(PaRSEC) (Caliper) (Kokkos) (TAU)

UTK LLVM SNL University of Oregon
http://icl.utk.edu/parsec/ github.com/LLNL/caliper-compiler https:/github.com/kokkos http://tau.uoregon.edu/
ECP HPCToolkit .

. } Vampir Scalasca
(HPCTQOI'klt) Score-P TU Dresgen FZ Juelich, TU Darmstadt
Rice University
http:/hpctoolkit.org http:/score-p.org http:/www.vampir.eu/ http://scalasca.org/
CrayPAT Open|Speedshop SvPablo ompP

Cray Open|SpeedShop RENCI at UNC LMU Munich

https://pubs.cray.com/ https:/openspeedshop.org/ www.renci.org/research/pablo http://www.ompp-tool.com/

INNGVATIVE

COMIPUTING LABORATORY
e UNIVERSITY of TENNESSEE

