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PAPI
• Library that provides a consistent interface (and methodology) for hardware performance counters, 

found across the system: 
i. e., CPUs, GPUs, on-/off-chip Memory, Interconnects, I/O system, File System, Energy/Power, etc.

• PAPI enables software engineers to see, in near real time, the relation between  
SW performance and HW events across the entire compute system 

SUPPORTED  ARCHITECTURES:
• AMD, power
• ARM Cortex A8, A9, A15, ARM64
• CRAY: Gemini and Aries interconnects, power
• IBM Blue Gene Series, Q: 5D-Torus, I/O system, EMON power/energy
• IBM Power Series
• Intel Westmere, Sandy|Ivy Bridge, Haswell, Broadwell, Skylake, KNC, Knights Landing
• Intel KNC, Knights Landing power/energy
• Intel RAPL (power/energy); power capping
• InfiniBand
• Lustre FS
• NVIDIA Tesla, Kepler: CUDA support for multiple GPUs; PC Sampling
• NVIDIA NVML
• Virtual Environments: VMware, KVM
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I/O systems

PAPI currently has  >30 Components . . .. . .

PAPI has grown to support >30 
hardware components.

New Sustainability 
Challenge: 
• Volume of code exposed to 

changing requirements too large.
• C’s mechanisms(void *, function pointers, 

preprocessor macros) are too cumbersome 
for writing code that is both generic 
AND safe/easy-to-maintain.
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PAPI Software-defined Event (SDE) Support

GOAL Offer support for software-defined events (SDE) to extend 
PAPI's role as a standardizing layer for monitoring 
performance counters.

VISION Enable HPC software layers to expose SDEs that 
performance analysts can use to form a complete picture of 
the entire application performance.

BENEFIT HPC application scientists will be able to better understand 
the interaction of the different application layers, and the 
interaction with external libraries and runtimes.
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void *papi_sde_init(const char *lib_name);

Initializes internal data structures and returns an opaque handle that must be passed to all 
subsequent calls to PAPI SDE functions.

lib_name is  a string containing the name of the library.

int papi_sde_register_counter(void *handle, const char *event_name,
                              int mode, int type, void *counter);

Must be called for every program variable that the library wishes to register as an event.
handle is the opaque handle returned by papi_sde_init().
event_name is a string containing the name of the event being registered.
mode is an integer declaring whether a counter is read-only or read-write.
type is an enumeration of the type of the event.
counter is a pointer to the actual variable that serves as the counter for this event.

typedef long long (*papi_sde_fptr_t)(void *);
int papi_sde_register_fp_counter(void *handle, const char *event_name,

      int mode, int type, papi_sde_fptr_t fp_counter, void *param);

int papi_sde_describe_counter(void *handle, const char *event_name, 
                              const char *event_description);

Registers a function pointer to an accessor function provided by the library. Enables the user to export 
an event the value of which does not map to the value of a single program variable inside the library.

fp_counter is a pointer to the accessor function with return type ”long long int”. 
param is an opaque object that the library passes to PAPI, and PAPI passes it as a parameter 
to the accessor function.

Provides a description of the event which will be displayed by utilities such as papi_native_avail.
event_description is a string containing the description of the event.

int papi_sde_unregister_counter(void *handle, const char *event_name);

Can be called to unregister an event counter. Useful for implementing transient events.

int papi_sde_add_counter_to_group(void *handle, const char *event_name,
                           const char *group_name, uint32_t group_flags);

Adds a counter to a group so that logical groups can be formed out of multiple related event counters. 
Groups are first class citizens and can be recursively added to other groups. A group is automatically 
created the first time a counter is added to it.

group_name is a string containing the name of the group.
group_flags specifies if the group should report the sum, the min, or the max of the counters it contains.

Creates a counter whose memory is managed by PAPI (instead of the library)
handle is the opaque handle returned by papi_sde_init().
event_name is a string containing the name of the event being registered.
type is an enumeration of the type of the event.
counter_handle is a opaque handle that can be used to access the created counter

int papi_sde_create_counter(void *handle, const char *event_name,
                            int type, void *counter_handle);

Creates a counter whose memory is managed by PAPI (instead of the library)
counter_handle is the opaque handle returned by papi_sde_create_counter().
increment is the value to be added to the counter.

int papi_sde_inc_counter(void *counter_handle, long long increment);

Records an element
record_handle is the opaque handle returned by papi_sde_create_recorder().
typesize is the size of the new element in bytes.
value is a pointer to the new element.

int papi_sde_record(void *record_handle, size_t typesize, void *value);

Creates a counter which can record (log) a series of values. The memory of the recorder is 
handled internaly by PAPI.

handle is the opaque handle returned by papi_sde_init().
event_name is a string containing the name of the event being registered.
typesize is the size of each element (to be recorded) in bytes .
record_handle is a opaque handle that can be used to access the created recorder.

int papi_sde_create_recorder(void *handle, const char *event_name,
                             size_t typesize, void *record_handle);

PAPI SDE API
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Initializes internal data structures and returns an opaque handle that must be passed to all 
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param is an opaque object that the library passes to PAPI, and PAPI passes it as a parameter 
to the accessor function.

Provides a description of the event which will be displayed by utilities such as papi_native_avail.
event_description is a string containing the description of the event.

int papi_sde_unregister_counter(void *handle, const char *event_name);

Can be called to unregister an event counter. Useful for implementing transient events.

int papi_sde_add_counter_to_group(void *handle, const char *event_name,
                           const char *group_name, uint32_t group_flags);
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Creates a counter whose memory is managed by PAPI (instead of the library)
handle is the opaque handle returned by papi_sde_init().
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counter_handle is a opaque handle that can be used to access the created counter

int papi_sde_create_counter(void *handle, const char *event_name,
                            int type, void *counter_handle);

Creates a counter whose memory is managed by PAPI (instead of the library)
counter_handle is the opaque handle returned by papi_sde_create_counter().
increment is the value to be added to the counter.

int papi_sde_inc_counter(void *counter_handle, long long increment);

Records an element
record_handle is the opaque handle returned by papi_sde_create_recorder().
typesize is the size of the new element in bytes.
value is a pointer to the new element.

int papi_sde_record(void *record_handle, size_t typesize, void *value);

Creates a counter which can record (log) a series of values. The memory of the recorder is 
handled internaly by PAPI.

handle is the opaque handle returned by papi_sde_init().
event_name is a string containing the name of the event being registered.
typesize is the size of each element (to be recorded) in bytes .
record_handle is a opaque handle that can be used to access the created recorder.

int papi_sde_create_recorder(void *handle, const char *event_name,
                             size_t typesize, void *record_handle);

PAPI SDE API

Advanced PAPI SDE API offers a 
variety of feature:

• single events, recorders,
• function pointers,
• statistics,
• groups, …



SDEs in MAGMA-SPARSE

Single-value SDEs:  Simple register one counter via: 
int papi_sde_register_counter( …, const char *event_name,…,  
                               void *counter);

MAGMA performance metrics Description
MAGMA::numiter Number of iterations until convergence attained
MAGMA::SpmvCount Number of sparse matrix-vector multiplications
MAGMA::InitialResidual Initial residual 
MAGMA::FinalResidual Final residual 
MAGMA::SolverRuntime Total run-time of the solver



SDEs in MAGMA-SPARSE

Single-value SDEs:  Simple register one counter via: 

Multi-value SDEs:  Create a recorder to log multiple values for one SDE:
int papi_sde_create_recorder( …, const char *event_name,…,  
                              void *record_handle); 

int papi_sde_record( void *record_handle,…, void *value);

MAGMA performance metrics Description
MAGMA::IterativeResidual Recorder of all residuals until convergence

int papi_sde_register_counter( …, const char *event_name,…,  
                               void *counter);

MAGMA performance metrics Description
MAGMA::numiter Number of iterations until convergence attained
MAGMA::SpmvCount Number of sparse matrix-vector multiplications
MAGMA::InitialResidual Initial residual 
MAGMA::FinalResidual Final residual 
MAGMA::SolverRuntime Total run-time of the solver
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PAPI Framework: Challenges
• PAPI has been in constant flux

• “extended” with new CPUs
• “redesigned” for HW Components 

(GPUs, networks, I/O, power, etc.)
• “upgraded” with SDEs

• PAPI’s initial intended purpose (CPUs) 
differs from today’s (system + SDEs)

• Counters are not of fixed type anymore
• SDEs go beyond notion of a “counter”

1999
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Path forward: PAPI++
Need for a more efficient and flexible software design!

Development of a new C++ performance API (PAPI++) from the 
ground up:
• Use of modern programming language for more generic AND 

safe/easy-to-maintain code
• PAPI++ code base will be more compact

• Multiple components will be handled by C++ templating
• Minimize volume of code exposed to changing requirements

• PAPI’s vast test suite will be handled by C++ templating
• Allow for more flexible counter types
• PAPI++ is meant to be PAPI’s replacement



3rd Party Tools applying PAPI

ECP Projects
Other Tools not directly part of ECP


