
PAPI's new Software-Defined
Events for in-depth

Performance Analysis

13th Parallel Tools Workshop

Anthony Danalis, Heike Jagode, Jack Dongarra

Dresden, Germany

Sep. 2-3, 2019

Motivating example: Fork-Join parallelism

...

...

...
● Fork-Join chain x 20 Tasks per fork.
● Memory bound kernel, with good cache locality.

Motivating example: Fork-Join parallelism (x20)

...

...

...
● 20 Independent Fork-Join chains x 20 Tasks per fork.
● Memory bound kernel, with good cache locality.
● 20 Cores on testing platform.

...
...

...

...

...

...

...

...

...

...

Typical task scheduling queue design

Core 0Core 0 Core 1Core 1 Core 2Core 2 Core NCore N

Core local queues

…

Shared Global queue
(overflow)

Core 0Core 0 Core 1Core 1 Core 2Core 2 Core NCore N

Core local queues

…

Shared Global queue
(overflow)

Thread Local Queues => High Locality
Overflow & Work Stealing => Load Balance

Shared Global queue
(overflow)

Typical task scheduling queue design

Execution time vs Local Queue Length

Execution time vs Local Queue Length

Tasks fit in local queues

Execution time vs Local Queue Length

Tasks fit in local queues

Queues too small

Execution time vs Local Queue Length (zoom)

Execution time vs Local Queue Length (zoom 2)

Execution time vs Local Queue Length (zoom 3)

Execution time vs Local Queue Length (zoom 4)

Execution time vs Local Queue Length (zoom 5)

Execution time vs Local Queue Length (combined)

L2 Cache Misses (L3 show same pattern)

Failed Stealing Attempts

Successful Close Stealing

Successful Close & Far Stealing

Successful Shared Queue Stealing

Successful Local + Shared Queue Stealing

Unanswered questions

Q: So, what causes the bump?

Q: How did you measure all these things?

Unanswered questions

Q: So, what causes the bump?

A: I don’t know!

Q: How did you measure all these things?

Unanswered questions

Q: So, what causes the bump?

A: I don’t know!

Q: How did you measure all these things?

A: I am glad you asked…

Unanswered questions

Q: So, what causes the bump?

A: I don’t know!

Q: How did you measure all these things?

A: I am glad you asked… with PAPI SDEs of course!

Facts about PAPI Software Defined Events

• New measurement possibilities:
 Tasks stolen, matrix residuals, partial results reached, arguments passed to functions

• Any tool can read PAPI SDEs:
 SDEs from a library can be read with PAPI_start()/PAPI_stop()/PAPI_read().

• Low overhead:
 Performance critical codes can implement SDEs with zero overhead

• Rich feature set:
 Pull-mode & push-mode, read-write counters, sampling/overflowing, counters, groups, recordings, statistics,
thread safety, custom callbacks

Facts about PAPI Software Defined Events

• New measurement possibilities:
 Tasks stolen, matrix residuals, partial results reached, arguments passed to functions

• Any tool can read PAPI SDEs:
 SDEs from a library can be read with PAPI_start()/PAPI_stop()/PAPI_read().

• Low overhead:
 Performance critical codes can implement SDEs with zero overhead

• Rich feature set:
 Pull-mode & push-mode, read-write counters, sampling/overflowing, counters, groups, recordings, statistics,
thread safety, custom callbacks

Facts about PAPI Software Defined Events

• New measurement possibilities:
 Tasks stolen, matrix residuals, partial results reached, arguments passed to functions

• Any tool can read PAPI SDEs:
 SDEs from a library can be read with PAPI_start()/PAPI_stop()/PAPI_read().

• Low overhead:
 Performance critical codes can implement SDEs with zero overhead

• Rich feature set:
 Pull-mode & push-mode, read-write counters, sampling/overflowing, counters, groups, recordings, statistics,
thread safety, custom callbacks

Facts about PAPI Software Defined Events

• New measurement possibilities:
 Tasks stolen, matrix residuals, partial results reached, arguments passed to functions

• Any tool can read PAPI SDEs:
 SDEs from a library can be read with PAPI_start()/PAPI_stop()/PAPI_read().

• Low overhead:
 Performance critical codes can implement SDEs with zero overhead

• Easy to use, with rich feature set:
 Pull-mode & push-mode, read-write counters, sampling/overflowing, counters, groups, recordings, statistics,
thread safety, custom callbacks

What was missing from existing infrastructure?

Events that occurred inside the software stack

There is no standardized way for a software layer to export information about its
behavior such that other, independently developed, software layers can read it.

HPC Application

Math library

Task runtime

MPI

Libibverbs RDMA completion

One Sided Communication

Data Dependency

Distributed Factorization

Quantum Chemistry Method

Stock HPCToolkit

Stock HPCToolkit (zoom)

Pull mode: Low overhead (down to zero)

register_counter(&x)

Application

PAPI

Library w/ SDEsX+=7;X++;

Pull mode: Low overhead (down to zero)

register_counter(&x)

Application

PAPI

Library w/ SDEs

PAPI_read()

*(&x)

The application reads whenever it deems necessary.

X+=7;X++;

Simplest SDE code (library side)

static long long local_var;

void small_test_init(void){

 local_var = 0;

 papi_handle_t *handle = papi_sde_init(”TEST");

 papi_sde_register_counter(handle, ”Evnt",
 PAPI_SDE_RO|PAPI_SDE_DELTA,
 PAPI_SDE_long_long,
 &local_var);

 ...
}

SDE code for registering a callback function

sometype_t *data;

void small_test_init(void){

 data = ...

 papi_handle_t *handle = papi_sde_init(”TEST");

 papi_sde_register_fp_counter(handle, "Evnt",

 PAPI_SDE_RO|PAPI_SDE_DELTA,

 PAPI_SDE_long_long,

 accessor, data);

 ...
}

Push mode: Determinism and Precision

create_counter()

Application

PAPI

Library w/ SDEs

PAPI_overflow(callback)

Push mode: Determinism and Precision

create_counter()

Application

PAPI

Library w/ SDEs

PAPI_overflow(callback)

callback()

inc_counter()

The library notifies the application when something happens.

SDE code for creating a counter (push mode)

void *counter_handle;

void small_test_init(void){

 papi_handle_t *handle = papi_sde_init(”TEST");

 papi_sde_create_counter(handle, "Evnt",

 PAPI_SDE_long_long,

 &counter_handle);

 ...
}

SDE code for creating a recorder (push mode)

void *recorder_handle;

void small_test_init(void){

 papi_handle_t *handle = papi_sde_init(”TEST");

 papi_sde_create_recorder(handle, "RCRDR",

 sizeof(double),

 cmpr_func_ptr,

 &recorder_handle);

 ...
}

SDE code for updating created counters/recorders

void *counter_handle;
void *recorder_handle;

void push_test_dowork(void){

 double val;

 long long increment = 3;

 val = perform_useful_work();

 papi_sde_inc_counter(counter_handle, increment);

 papi_sde_record(recorder_handle, sizeof(val), &val);
}

Accessing a recorder: data pointer

void *recorder_handle;

void small_test_init(void){

 papi_handle_t *handle = papi_sde_init(”TEST");

 papi_sde_create_recorder(handle, "RCRDR",

 sizeof(double),

 cmpr_func_ptr,

 &recorder_handle);

 ...
}

sde:::TEST::RCRDR

Accessing a recorder: element count

void *recorder_handle;

void small_test_init(void){

 papi_handle_t *handle = papi_sde_init(”TEST");

 papi_sde_create_recorder(handle, "RCRDR",

 sizeof(double),

 cmpr_func_ptr,

 &recorder_handle);

 ...
}

sde:::TEST::RCRDR
sde:::TEST::RCRDR:CNT

Accessing a recorder: simple statistics

void *recorder_handle;

void small_test_init(void){

 papi_handle_t *handle = papi_sde_init(”TEST");

 papi_sde_create_recorder(handle, "RCRDR",

 sizeof(double),

 cmpr_func_ptr,

 &recorder_handle);

 ...
}

sde:::TEST::RCRDR
sde:::TEST::RCRDR:CNT
sde:::TEST::RCRDR:MIN
sde:::TEST::RCRDR:Q1
sde:::TEST::RCRDR:MED
sde:::TEST::RCRDR:Q3
sde:::TEST::RCRDR:MAX

Accessing a recorder: simple statistics

void *recorder_handle;

void small_test_init(void){

 papi_handle_t *handle = papi_sde_init(”TEST");

 papi_sde_create_recorder(handle, "RCRDR",

 sizeof(double),

 cmpr_func_ptr,

 &recorder_handle);

 ...
}

sde:::TEST::RCRDR
sde:::TEST::RCRDR:CNT
sde:::TEST::RCRDR:MIN
sde:::TEST::RCRDR:Q1
sde:::TEST::RCRDR:MED
sde:::TEST::RCRDR:Q3
sde:::TEST::RCRDR:MAX

Wouldn’t it be great if PAPI

had a C++ interface?

Linking applications without libpapi.so

create_counter()

Application

Weak symbols

Library w/ SDEs

inc_counter()

PAPI SDE component comes with a weak symbols header

return 0; return 0;

Performance overheads in simple benchmark

46

Performance overhead in PaRSEC

47

Performance overhead in HPCG

48

Performance overhead in HPCG (zoom)

49

Acquiring insight from SDEs

● Idle time (by measuring hardware counters like stall cycles)
– Could be due to inevitable memory traffic.

● Idle time (by measuring SDEs from runtime)
– Great opportunity for “investigative callback”

– callback must be runtime-aware

● Concurrent idle time
– Unique insight about application design flaws

– Additional context can lead to app. redesign

Acquiring insight from SDEs

● Idle time (by measuring hardware counters like stall cycles)
– Could be due to inevitable memory traffic.

● Idle time (by measuring SDEs from runtime)
– Great opportunity for “investigative callback”

– callback must be runtime-aware

● Concurrent idle time
– Unique insight about application design flaws

– Additional context can lead to app. redesign

Acquiring insight from SDEs

● Idle time (by measuring hardware counters like stall cycles)
– Could be due to inevitable memory traffic.

● Idle time (by measuring SDEs from runtime)
– Great opportunity for “investigative callback”

– callback must be runtime-aware

● Concurrent idle time
– Unique insight about application design flaws

– Additional context can lead to app. redesign

Open Problem for our Community:

What information to associate with CONCR_IDLE, or TASKS_STOLEN?
– Code location
– Hardware events (e.g. cache misses)
– List of all threads’ activity
– Patterns in history (e.g. last task before stealing event)
– Patterns in call-path/stack/originating thread

How do we associate useful
context information with SDEs?

Conclusions

● Libraries/runtimes generate multiple useful software “events”.

● PAPI SDE allows any software layer to export events.

● SDEs can be read using the standard PAPI functionality.

● SDEs have minimal to zero performance overhead.

● SDEs call for new types of analysis by tools.

● PAPI++ soon at a repo near you.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Example usage: Ready tasks in runtimes_clipboard0
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Simplest SDE code
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Performance-overhead of recording_clipboard8
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

