
GPUDirect MPI Communications and Optimizations to
Accelerate FFTs on Exascale Systems

Hejer Shaiek
hejer@icl.utk.edu

Innovative Computing Laboratory,
The University of Tennessee
Knoxville, Tennessee, USA

Stanimire Tomov
tomov@icl.utk.edu

Innovative Computing Laboratory,
The University of Tennessee
Knoxville, Tennessee, USA

Alan Ayala
aayala@icl.utk.edu

Innovative Computing Laboratory,
The University of Tennessee
Knoxville, Tennessee, USA

Azzam Haidar
azzamhaidar@nvidia.com

Nvidia Corporation
Santa Clara, California, USA

Jack Dongarra
dongarra@icl.utk.edu

Innovative Computing Laboratory,
The University of Tennessee
Knoxville, Tennessee, USA

ABSTRACT
Fast Fourier transforms (FFTs) are used in applications ranging from
molecular dynamics and spectrum estimation to machine learn-
ing, fast convolution and correlation, signal modulation, wireless
multimedia applications, and others. However, FFTs are memory
bound, and therefore, to accelerate them, it is crucial to avoid and
optimize the FFTs’ communications. To this end, we present a 3-D
FFT design for distributed graphics processing unit (GPU) systems
that: (1) efficiently uses GPUs’ high bandwidth, (2) reduces global
communications algorithmically, when possible, and (3) employs
GPUDirect technologies as well as MPI optimizations in the devel-
opment of high-performance FFTs for large-scale GPU-accelerated
systems. We show that these developments and optimizations lead
to very good strong scalability and a performance that is close to
90% of the theoretical peak.

KEYWORDS
GPU, GPUDirect, CUDA-Aware MPI, FFT, FFT-ECP, ECP
ACM Reference Format:
Hejer Shaiek, Stanimire Tomov, Alan Ayala, Azzam Haidar, and Jack Don-
garra. 2019. GPUDirect MPI Communications and Optimizations to Acceler-
ate FFTs on Exascale Systems. In Proceedings of EuroMPI ’19 Posters. , 4 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Fast Fourier transforms (FFTs) are among the most important ker-
nels used in numerous domain applications, including molecular
dynamics, cosmology, signal modulation, spectrum estimation, ma-
chine learning, and others. The Exascale Computing Project (ECP),
funded by the US Department of Energy (DOE), is focused on accel-
erating the delivery of an exascale-capable computing ecosystem.
This includes FFTs, as FFTs are present in the software stack for

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
EuroMPI ’19 Posters, September 11-13, 2019, Zurich, Switzerland
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Figure 1: Summit node architecture and connectivity.

almost all ECP applications. Indeed, FFT performance can affect the
application scalability on larger machines [1, 3, 4], and FFTs must
therefore be highly accelerated. Of interest are multi-dimensional
FFTs. A 3-D distributed FFT, for example, consists of three stages of
computation and Message Passing Interface (MPI) communications
between each of them. The computation itself is memory bound,
but the MPI communications are the biggest challenge.

The FFT developed under ECP is FFT-ECP [7]. FFT-ECP aspires to
be a new and sustainable high-performance FFT library for exascale
platforms that leverages the large investments in FFT software by
the broader HPC community. Indeed, there are many FFT libraries.
Analysis and performance comparisons of major FFTs on current
architectures are available in [8]. The results [8] motivated basing
the FFT-ECP design on FFTMPI [3], a CPU FFT library developed
by Sandia National Laboratory (SNL). In this work we describe the
latest efforts and experiences in porting the FFT-ECP computations
to graphics processing units (GPUs), as well as accelerating the MPI
communications using GPUDirect technologies. Figure 1 illustrates
a target architecture—the Summit supercomputer at Oak Ridge

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

EuroMPI ’19 Posters, September 11-13, 2019, Zurich, Switzerland Hejer Shaiek, Stanimire Tomov, Alan Ayala, Azzam Haidar, and Jack Dongarra

Figure 2: FFT-ECP framework design with flexible API

National Laboratory (ORNL). Shown are the node architecture and
connectivity. The goal is to design FFTs that reduce, as well as opti-
mize, communication on all connectivity and memory hierarchy
levels: (1) leverage the GPU’s 900 GB/s bandwidth, (2) reduce global
inter-node communications, and (3) employ GPUDirect technolo-
gies as well as MPI optimizations to efficiently communicate both
intra-node (through the 50 GB/s NVLinks) and inter-node (through
the 2 × 12.5 GB/s InfiniBand).

2 FFT DESIGN FOR GPUS
FFT-ECP is based on FFTMPI and follows the same algorithmic
patterns (see Figure 2). Data transpositions create contiguous vec-
tors (pencils) in the x , y, and z directions, and call an external FFT
library for the 1-D FFT calculations on the corresponding pencils.
One of the most important features of FFTMPI is the flexibility of
input and output data layout. That flexibility is kept in FFT-ECP.
The algorithm works as follows: given a 3-D tensor A = {ai, j,k }
distributed on P processors, the first step is to make the data be-
longing to the first dimension available on the same processor (i.e.,
∀j0,k0,∃ process Pl s.t. ai, j0,k0 ∈ Pl for ∀i) so that the computation
of the first dimension can start on Pl . After it is finished, data is
transposed again and 1-D FFTs are computed along the second
dimension, and the same goes for the last one. Then, if necessary, a
final step of communication is performed to build the output layout.

Packing 0.91%

Unpacking 0.72%

FFT computation 1.03 %

MPI communication 97.34%
Packing 9.65%

Unpacking 29.13%

FFT computation 11.77%

MPI communication 49.45%

CPU GPU

0.72s

0.14s

0.43s

0.17s

0.71s

0.017s

0.74s

Accelerate

local operations
using GPUs

43 x

Figure 3: Profile of a 3-D FFT of size 10243 on 4 CPU nodes—
using 128 MPI processes, i.e., 32 MPIs per node, 16 MPIs per
socket (Left) vs. 4 GPU nodes—using 24 MPI processes, i.e., 6
MPIs per node, 3 MPI per socket, 1 GPUs per MPI (Right)

A typical profile of running 3-D FFTs on multi-core CPUs (e.g.,
Summit) is given on Figure 3, Left. The times reported (in seconds)
are for double complex arithmetic performing Forward FFT, starting
from brick distribution and ending with the same brick distribution
over the processes. The local FFT operations (within anMPI process)
are memory bound and take about 50% of the time, in this case.
Included are local packing, unpacking, and 1-D FFTs (using any

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

p2p	
 enabled	

cuda-­‐aware	
 MPI	

p2p	
 disabled	

G
B

/s

same socket cross socket same socket cross socket
 unidirectional bidirectional

Peak

Figure 4: Bandwidth Benchmark for different types of p2p
with message size = 40MB

CPU FFT library that gives best performance, e.g., Intel MKL FFT,
FFTW, or any other). The other 50% are in MPI communications.

Note that the local computations are memory bound and can
therefore benefit from GPUs’ high bandwidth (900 GB/s). To lever-
age this, we ported all operations to the GPU: packing and unpack-
ing using the fast matrix transpositions available in MAGMA [6],
and the 1-D FFTs using cuFFT [2] fromNVIDIA. This accelerated the
local operations 43×, in this case. MPI communications remained
about the same, using CUDA-Aware MPI from IBM (Spectrum MPI)
doing GPUDirect communication.

Other versions were also developed to support different user
interfaces (e.g., data starting from the CPU memory). In general,
any version that involves movement of data to the CPU memory
was significantly slower due to the costly data movements (through
the 50 GB/s NVLinks vs. the 900 GB/s GPU bandwidth).

3 COMMUNICATION REDUCTION IN FFTS
The current bottleneck in FFTs are MPI communications. As illus-
trated on Figure 3, Right, MPI communications take more than 97%
of the total time.

To optimize communications, we developed benchmarks and
tested different mechanisms for transferring data. Figure 4 sum-
marizes the comparison for GPUDirect Peer to Peer (P2P) commu-
nications. The comparisons are when a GPU communicates with
GPUs on the same socket, cross socket GPUs, unidirectional and
bidirectional, and using Nvidia GPUDirect technologies in single
process versus CUDA-aware MPI communications from different
MPI processes. This helped identify drawbacks, summarized in the
conclusions, as some of these communications are far away from
the theoretical peaks. Similar benchmarks and studies were per-
formed on All2All communications. The best performing versions
were selected to achieve the results in Figure 3, Right, and in general
for the tuning of the FFT-ECP library.

We achieved the best performance with a combination of P2P
Spectrum MPI communications for FFTs on up to four Summit
nodes, and Spectrum MPI All2All for more than four Summit nodes.
This is illustrated on Figure 5. Note that the code also has very
good, strong scalability. The computations are in double complex
arithmetic and the gigaFLOP/s rate reported assumes 5N 3loд2N 3

floating-point operations (FLOPs), where N is the size for the N 3

3-D FFT performed. This computation also starts from bricks and

GPUDirect MPI Communications and Optimizations to Accelerate FFTs on Exascale Systems EuroMPI ’19 Posters, September 11-13, 2019, Zurich, Switzerland

0	

200	

400	

600	

800	

1000	

1200	

1400	

2	
 4	
 8	
 16	
 32	

G
flo

p/
s P2P	

A2Av	

of Summit nodes

Figure 5: Strong scalability on 3D FFTs of size 10243, compar-
ing the use of All2All vs. P2P MPI communications using
CUDA 9.1 and Spectrum MPI 10.2

ends up with the same brick distribution over the MPI processes
(on the GPUs’ memories).

To further reduce communications, we explored algorithmic 3-
D FFT variations that can reduce communications. In particular,
we looked into ways to reduce the stages of communication. For
example, this can be done with so called slab decompositions, where
a process will get the data needed for two directions of 1-D FFTs,
thus avoiding the step of communications between the two. This
can save between 25% and 50% of the total time.

This can be further extended, for example, by testing whether
all the data fits in the memory of a single GPU, and if that is the
case, we can send all the data to a single GPU, do the 3-D transform
without any communication and send it back to build the output
data layout requested by the the user. Other extensions are to do
this agglomeration to a single node, or a subset of the compute
resources.

Figure 6 illustrates the effect of using slab decompositions to
reduce communications, and hence to increase performance. The
starting splitting is based on bricks, so the pencil decomposition
results in four communication stages: transpose in x, transpose in y,
transpose in z, and move back to the original brick decomposition.
The slab decomposition on the other hand results in only three
stages: move to x-y slabs, transpose in z, and move back to the
original brick decomposition. This is a theoretical 25% reduction
in communications that results in a corresponding 25% increase
in performance. For 8 and 16 nodes, speedup is 35% and 32%, re-
spectively, and goes down as the number of nodes used grows. The
effect becomes negative at 128 nodes due to lack of parallelism (at
128 the number of MPIs/GPUs used is 768).

Note the results in Figures 5 and 6 differ by up to 20% perfor-
mance degradation when CUDA and MPI were updated on Summit.
With the new MPI we also do not see the positive effect of selecting
proper GPU network affinities as we used to when using Spectrum
MPI 10.2 [7]. GPU affinity was an important tuning parameter.

0

500

1000

1500

2000

2500

3000

3500

2 4 8 16 32 64 128

pencilAll2All
slabsAll2All

34%

34%

24%

5%

-20%

of Summit nodes

22%25%

G
flo

p/
s

Figure 6: Strong scalability on 3D FFTs of size 10243, compar-
ing the use of slab vs. pencil decompositions using CUDA
10.1 and Spectrum MPI 10.3

4 CONCLUSIONS AND FUTURE DIRECTIONS
FFT-ECP has achieved significant acceleration of 3-D FFTs using
GPUs. Results show very good scalability, including strong scala-
bility, due to highly optimized and reduced MPI communications.
Locally, on a GPU, we have accelerated the FFT operations about
40× compared to the multi-core CPU counterpart (using V100 GPUs
vs. Power9 CPUs on the Summit supercomputer at ORNL). This
acceleration uses the high bandwidth that GPUs provide (up to 900
GB/s). At this stage, the FFT computation is dominated (97% and
above) by MPI communications, so any further improvement in
the overall speed will come from the development of CUDA-aware
MPI optimizations.

Figure 4 shows that there are areas that need improvement, es-
pecially in the cross-socket GPU Direct communications for both
uni- and bi-directional communications. Furthermore, there is per-
formance degradation between MPI Spectrum versions 10.2 and
10.3. Performance loss of 20%, as illustrated in Figures 5 and 6, is
significant and needs to be addressed.

Current performance can be best described by the bandwidth
achieved through a node. For example, performance on a 10243 3-D
FFT is about 400 gigaFLOP/s on 8 nodes. One can compute that
data is sent from the node at a 21.8 GB/s rate: the formula is Bytes
sent (= 16 × 10243/8) over the time to send (= 0.98 × (5 × 1.0243 ×
loд2 (10243)/400)/4, where 4 represents the four stages used). Note
that the node also receives about the same amount of data at the
same time, so the bi-directional bandwidth achieved is 43.6 GB/s
out of 50 GB/s, which is 87.2% of the theoretical peak.

Future work will concentrate on MPI optimizations for strong
scaling on many nodes, optimizations for a single node for cross-
socket communications, and algorithmic optimizations based on
slab partitions, or other reductions of the computational resources
used that can lead to reduced communications. More versions and
support for different FFT features are being added in FFT-ECP.
Application-specific optimizations and use of mixed-precision calcu-
lations [5] that can result in additional acceleration due to reduced
communications are also of interest.

EuroMPI ’19 Posters, September 11-13, 2019, Zurich, Switzerland Hejer Shaiek, Stanimire Tomov, Alan Ayala, Azzam Haidar, and Jack Dongarra

ACKNOWLEDGMENTS
This research was supported by the Exascale Computing Project
(ECP), Project Number: 17-SC-20-SC, a collaborative effort of two
DOE organizations (the Office of Science and the National Nuclear
Security Administration) responsible for the planning and prepara-
tion of a capable exascale ecosystem.

REFERENCES
[1] JD Emberson, N. Frontiere, S. Habib, K. Heitmann, A. Pope, and E. Rangel. 2018.

Arrival of First Summit Nodes: HACC Testing on Phase I System. Technical Report
MS ECP-ADSE01-40/ExaSky. Exascale Computing Project (ECP).

[2] CUDA Nvidia. 2018. CUFFT library.
[3] Steven Plimpton, Axel Kohlmeyer, Paul Coffman, and Phil Blood. 2018. fftMPI, a

library for performing 2d and 3d FFTs in parallel. Technical Report. Sandia National
Lab.(SNL-NM), Albuquerque, NM (United States).

[4] Steven J. Plimpton. [n.d.]. FFTs for (mostly) Particle Codes within the DOE Exascale
Computing Project, 2017. ([n. d.]).

[5] Anumeena Sorna, Xiaohe Cheng, Eduardo F. D’Azevedo, Kwai Wong, and Stan-
imire Tomov. 2018. Optimizing the Fast Fourier Transform Using Mixed Precision
on Tensor Core Hardware. 2018 IEEE 25th International Conference on High Perfor-
mance Computing Workshops (HiPCW) (2018), 3–7.

[6] S. Tomov, J. Dongarra, and M. Baboulin. 2010. Towards Dense Linear Algebra for
Hybrid GPU Accelerated Manycore Systems. Parellel Comput. Syst. Appl. 36, 5-6
(2010), 232–240. DOI: 10.1016/j.parco.2009.12.005.

[7] Stanimire Tomov, Azzam Haidar, Alan Ayala, Daniel Schultz, and Jack Dongarra.
2019. Design and Implementation for FFT-ECP on Distributed Accelerated Systems.
ECP WBS 2.3.3.09 Milestone Report FFT-ECP ST-MS-10-1410. Innovative Comput-
ing Laboratory, University of Tennessee. revision 04-2019.

[8] Stanimire Tomov, Azzam Haidar, Daniel Schultz, and Jack Dongarra. 2018. Eval-
uation and Design of FFT for Distributed Accelerated Systems. ECP WBS 2.3.3.09
Milestone Report FFT-ECP ST-MS-10-1216. Innovative Computing Laboratory,
University of Tennessee. revision 10-2018.

http://dx.doi.org/10.1016/j.parco.2009.12.005

	Abstract
	1 Introduction
	2 FFT design for GPUs
	3 Communication reduction in FFTs
	4 Conclusions and Future Directions
	Acknowledgments
	References

