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Abstract. Hardware counters play an essential role in understanding
the behavior of performance-critical applications, and inform any effort
to identify opportunities for performance optimization. However, as mod-
ern hardware is becoming increasingly complex, the number of counters
that are offered by the vendors increases and, in some cases, so does their
complexity.
In this paper we present a toolkit that is aimed to assist application de-
velopers, invested in performance analysis, by automatically categorizing
and disambiguating performance counters. We present and discuss the
set of micro-benchmarks and analyses that we developed as part of our
toolkit. We explain why they work and discuss the non-obvious reasons
why some of our early benchmark and analyses did not work, in an effort
to share with the rest of the community the wisdom we acquired from
negative results.

1 Introduction

Improving application performance requires that the people undertaking the ef-
fort understand what the performance bottlenecks are. A key step in the process
of understanding the factors that limit the performance of an application is the
examination of event counters which are recorded by the hardware during exe-
cution. Such counters can reveal the behavior of code segments with respect to
the hardware. In particular, modern hardware contains performance monitoring
units (PMU) that count the events that take place:

– inside CPU cores, e.g., cache misses and branch related events,
– off-core, e.g. power consumption, and bytes read/written from/to memory

controller,
– on completely separate hardware, such as network cards.

Many of these events have a rather straightforward meaning and can be
mapped directly to the behavior of an application. However, when developers
are interested in understanding the behavior of their code in great detail, the
events that are counted inside CPU cores can prove to be quite challenging for
two distinct reasons. First, the number of counters has been increasing over the



years. Developers interested in how branches inside their code affect performance,
or how good the cache locality of their memory access patterns is, would find
themselves confronted with multiple events that relate to these concepts. Second,
due to the increasing complexity of modern CPUs, many of the events that
provide detailed information have complex descriptions and contain multiple
flags that modify what exactly is being monitored. For example when measuring
requests that missed the level two (L2) cache, on an Intel Haswell-EP CPU a
developer can choose to count:

– Demand Data Read requests that miss L2 cache.
– All demand requests that miss the L2 cache.
– Requests from the L2 hardware prefetchers that miss the L2 cache.
– Requests from the L1/L2/L3 hardware prefetchers or Load software prefetches

that miss the L2 cache.
– All requests that miss the L2 cache.

Clearly, choosing the exact set of events and flags needed for understanding the
performance bottlenecks of an application by using such short descriptions of
such complex hardware is not ideal.

Abstraction layers, such as PAPI [1], offer derived events that map readily
to performance abstractions by offering combinations of actual native hardware
events. However, such derived events hide details that could provide useful in-
sights to the performance analyst.

In the rest of this paper we present the Counter Inspection Toolkit (CIT);
a collection of micro-benchmarks and analyses aimed to automatically group
hardware counters into logical groups based on what they are counting, and assist
performance conscious application developers understand how counters relate to
the behavior of code segments. We motivate the need for such a toolkit further by
discussing how seemingly simple code segments can lead to non-obvious counter
behavior, and discuss all the lessons learned as well as our observations on details
that can affect counter values and application performance.

In summary, this paper presents a body of work that aims to help developers
that care about performance and put effort in optimizing their applications,
but are not hardware wizards with a perfect understanding of chip design and
counter semantics.

2 Non-obvious code behavior

Let us consider the code shown in Figure 1 and try to reason about the number
of conditional branches that will execute as a function of the parameter size.

We should first note that this code segment is oversimplified for demonstra-
tive purposes, so we will assume that it has not been compiled with an aggressive
optimization level that would replace the whole loop with a simple expression
due to the simplicity of the operations performed by the code. By examining the
code it is natural to assess that every iteration executes one conditional branch



temp = 0;

do{

temp++;

if ( ( temp % 2 ) == 0 ) {

global_var += 2;

}

} while ( temp < size );

Fig. 1: Simple code segment

temp = 0;

do{

temp++;

random_number( result );

if ( ( result % 2 ) == 0 ) {

global_var += 2;

}

} while ( temp < size );

Fig. 2: Code segment with RNG

52 do{
53 temp++;

<310>: mov eax,DWORD PTR [...]
<316>: add eax,0x1
<319>: mov DWORD PTR [...],eax

54 if( ( temp % 2 ) == 0){

<325>: mov eax,DWORD PTR [...]
<331>: and eax,0x1
<334>: test eax,eax

<336>: jne 0x400e77 <353>

55 global_var += 2;
<338>: mov eax,DWORD PTR [...]
<344>: add eax,0x2
<347>: mov DWORD PTR [...],eax

56 }
57 } while( temp < size );

<353>: mov eax,DWORD PTR [...]
<359>: cmp eax,DWORD PTR [...]

<362>: jl 0x400e4c <310>

Fig. 3: Disassembled simple code.

52 do{
53 temp++;

<310>: mov eax,DWORD PTR [...]
<316>: add eax,0x1
<319>: mov DWORD PTR [...],eax

54 pseudo_random_generator();
<325>: mov eax,DWORD PTR [...]
...
<585>: mov DWORD PTR [...],eax

55 if ( ( result % 2 ) == 0 ){

<591>: mov eax,DWORD PTR [...]
<597>: and eax,0x1
<600>: test eax,eax

<602>: jne 0x400f81 <619>

56 global_var += 2;
<604>: mov eax,DWORD PTR [...]
<610>: add eax,0x2
<613>: mov DWORD PTR [...],eax

57 }
58 } while( temp < size );

<619>: mov eax,DWORD PTR [...]
<625>: cmp eax,DWORD PTR [...]

<628>: jl 0x400e4c <310>

Fig. 4: Disassembled code with RNG.

for the if statement and another for the termination condition of the while

statement.
Examining the assembler code, shown in Figure 3, annotated with the C code

by gdb, helps enforce the assessment since the two condition branches (“jne”
and “jl”) can be seen in the code and no other branch instruction is present.
The expectation can be verified experimentally by instrumenting the code with
PAPI to count the number of conditional branch instructions that are executed
by the loop, and indeed our experiments were in agreement with the theory.

Now, let us modify the previous program to include code that computes
a random number. For simplicity, the random number generator (RNG) code
is abstracted away in a macro that stores the random number in the variable
result without making any calls to functions that would add branches to the



execution. This variable is then used in the condition of the if statement as
shown in Figure 2.

Examining this new C code segment one could assess that the number of
conditional branches that will execute must remain the same since the control
flow of the code has not been affected by the modification. Furthermore, this
assessment seems to be enforced by the corresponding assembler code, shown
in Figure 4, since the types and relative positions of the conditional branch
instructions in the new code segment are the same as before.

However, when we performed the same experiment as before we found the
count of executed conditional branches to be equal to 2.5 × size, which at first
glance was surprising. An additional clue of what is happening, which might
originally seem further perplexing, comes from modifying the program again by
adding, seemingly irrelevant, work. In Figure 5, we show an example where we
modified the code shown in Figure 2 by adding another call to the RNG after
the branch (shown highlighted in red). Performing this change to the code makes
the number of executed conditional branches go back to two per iteration.

temp = 0;

do{

temp++;

random_number( result );

if ( (result % 2) == 0 ){

global_var += 2;

}

random number( result );

} while( temp < size);

Fig. 5: Code segment with RNG and redundant work

Further clues can be found by counting the number of misspredicted branches,
which turned out to be equal to 0.5 × size in the examples shown in Figures 2
and 5 which use the random number in the condition of the if statement, and
zero4 for the example shown in Figure 1 which uses an easy to predict variable
in the condition.

The final clue that helps explain this unintuitive discrepancy between these
codes is the difference between the number of retired conditional branches and
the number of executed conditional branches. Indeed, the number of retired con-
ditional branches is always two per iteration in all three examples. Consulting

4 The actual count is not zero, but rather a small number due to noise caused by
code not shown in the figures, such as the calls to PAPI start() and PAPI stop().
However, in our experiments this number did not grow when varying the variable
size, so for large iteration counts the fraction of misspredicted branches approaches
zero.



the documentation of the hardware vendor [2], one can see that branch predic-
tion leads to the instructions following the if branch to execute speculatively
and the count of executed instructions includes instructions whose results were
canceled due to a misprediction. On the other hand, at-retirement counting only
counts events that were committed to architectural state and ignores work that
was performed speculatively and later discarded. In other words, as shown in
Figures 3 and 4, since the branch due to the termination condition of the loop,
“jl”, is only a few instructions after the conditional branch of the if statement,
which is predicted, the “jl” instruction will execute speculatively. In the code
shown in Figure 1 the speculation has no effect, because the condition of the if

statement is very regular and thus it is always predicted correctly. However, in
the code shown in Figure 2 the random variable will cause the condition to be
misspredicted 50% of the time. Thus, in 50% of the iterations the instructions
that will execute speculatively (and among them the conditional branch “jl”)
will later have to be canceled, but they will be counted as executed neverthe-
less. This accounts for the extra 0.5 × size factor in the count of the executed
branches for this code (in comparison to the count of retired branches and in
comparison to the executed branches for the code of Figure 1.) To say it another
way, the “jne” branch (of the if statement) is the one misspredicted, but the
“jl” branch is the one with the 50% additional executions.

This explanation also covers the behavior of the code shown in Figure 5,
where the jne (if) branch is also misspredicted 50% of the time, but because of
the additional instructions between the if statement and the “jl” instruction,
the latter instruction is not executed speculatively because it is too far away.
I.e., the actual condition of the misspredicted branch, jne, is evaluated before
the speculation can reach that far, and that whole path is discarded.

The set of micro-benchmarks and analyses we are assembling together into
the Counter Inspection Toolkit—which is the focus of this paper—aim to high-
light such details in hardware counters and program execution and identify con-
nections between them.

3 Branch related events

One of the principal goals of this work is to automatically categorize native
events based on the higher level concept they count. In other words, if two events
have different counts for codes that stress different aspects of the architecture
then they belong in different groups, otherwise they are grouped together. This
might seem obvious, but keep in mind that in this work we are interested in
low level events which have flags that modify their behavior, and in some cases
multiple flags can be combined together leading to an combinatorial explosion
of possibilities. Therefore, we believe that it is useful for a tool that aims to
assist with performance analysis and understanding to offer developers a list
with a handful of concepts that relate to branches and the set of events and
corresponding flags that count each of these concepts.



For simplicity, in the rest of this paper, when we use the term “native event”
we will refer to an event with flags specified, not just the base event with default
flags. In the rest of this section we will discuss the effort to categorize events
that count branch related execution.

3.1 Design Choices

One of our design choices is to keep our micro-benchmarks in C, instead of as-
sembler. The reasoning is twofold. First, we want the benchmarks to be portable
between architectures with incompatible instruction sets. Second, and perhaps
more important, we want our benchmarks to be easy to read and comprehend
by application developers even if they are not comfortable with assembler code.
Meeting this design choice, however, can creates challenges, since the compiler
might try to rearrange code blocks to optimize execution, especially when opti-
mization flags are used. As an example consider the code shown in Figure 6.

do{

temp++;

random_number( result );

if( (result % 2) == 0 ){

global_var += 1;

}else {

global_var += 2;

}

} while( temp < size );

Fig. 6: Code with direct branch.

Since the control flow of the if-then-else statement demands that the two
blocks are mutually exclusive, one would expect that this code will be translated
to assembler that includes a conditional branch and a direct one (to choose
one block and skip the other.) This expectation turns out to be correct when
no optimizations are performed during compilation. In Figure 7 we show the
assembler code generated when the “-O0” flag was passed to the compiler and
one can clearly identify the highlighted conditional and unconditional jumps,
jne and jmp used to implement the mutual exclusion of the two blocks (as well
as the additional conditional jump, jl, for the loop termination condition.)

However, if aggressive optimization flags are passed to the compiler then the
resulting assembler code does not contain a direct branch, as can be seen in
Figure 8. This kind of discrepancies between what a developer assumes that the
compiler will do and what the compiler actually does has made it challenging
to uphold our design decision to write our micro-benchmarks in C, but so far
we have not found any impossible to overcome barrier. To address the specific



53 do{
...

56 if( (result % 2) == 0 ){
<588>: mov 0x200a5a(%rip),%eax
<594>: and $0x1,%eax
<597>: test %eax,%eax

<599>: jne 0x400e2e <618>

57 global_var += 1;
<601>: mov 0x200a21(%rip),%eax
<607>: add $0x1,%eax
<610>: mov %eax,0x200a18(%rip)

<616>: jmp 0x400e3d <633>

58 }else {
59 global_var += 2;

<618>: mov 0x200a10(%rip),%eax
<624>: add $0x2,%eax
<627>: mov %eax,0x200a07(%rip)

60 }
61 } while( temp < size );

<633>: mov 0x200a31(%rip),%eax
<639>: cmp -0x14(%rbp),%eax

<642>: jl 0x400cf7 <307>

Fig. 7: Assembler with -O0 flag.

53 do{

...

56 if( (result % 2) == 0 ){

<424>: mov 0x200a82(%rip),%eax

<430>: test $0x1,%al

<432>: je 0x400c08 <136>

57 global_var += 1;

<136>: mov 0x200b76(%rip),%eax

<142>: add $0x1,%eax

<145>: mov %eax,0x200b6d(%rip)

58 }else {

59 global_var += 2;

<438>: mov 0x200a48(%rip),%eax

<444>: add $0x2,%eax

<447>: mov %eax,0x200a3f(%rip)

60 }

61 } while( temp < size );

<151>: mov 0x200b97(%rip),%eax

<157>: cmp %ebx,%eax

<159>: jge 0x400d53 <467>

<453>: mov 0x200a69(%rip),%eax

<459>: cmp %ebx,%eax

<461>: jl 0x400c25 <165>

Fig. 8: Assembler with -O3 flag.

problem discussed above, we wrote a micro-benchmark (shown in Figure 10(f))
that contains a goto statement and has a control flow graph that cannot be
simplified by the compiler.

3.2 Controlling Branch Misprediction

The codes we showed in Figures 2, 5 and 6 all contain if statements with
conditions that compare the last bit of a random variable against zero. When
a program does that, then the expected rate of branch misprediction is 50%.
Because of this, as we discussed in Section 2, the count of executed conditional
branches for the code in Figure 2 was equal to 2 × 0.5 + 3 × 0.5 = 2.5 per
iteration. Going a step further, we can control the rate of branch misprediction
by changing the condition to the one shown in Figure 9. This allows us to control
the rate of misprediction by assigning different values to the variable K.

Increasing the value of K leads to more branches evaluating to false than
true (assuming a reasonable random number generator and an iteration count
that is not trivially small.) Therefore, we can expect the branch prediction unit
to tend to predict false more often than true. A naive approximation would be
to assume that as soon as K > 2 the branch prediction unit will always predict
false. If that were the case then the count of executed conditional branches



temp = 0;

do{

temp++;

random_number( result );

if ( (result % K) == 0 ){

global_var += 2;

}

} while( temp < size );

Fig. 9: Code with variable misprediction rate

for the code in Figure 9 would be equal to 2.0 × K−1.0
K

+ 3.0 × 1
K

per iteration,
since only one out of K iterations would be mispredicted (and thus only one out
of K iterations would speculatively execute an additional conditional jump.) In
Figure 10 we plot this curve and the experimentally measured count of executed
conditional branches for this code.
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Fig. 10: Controling the misprediction rate

As can be seen in the graph, when K = 2 the code degenerates to the original
micro-benchmark where the misprediction rate was 50% and thus the condi-



tional branches that execute are 2.5. Also, as the value of K grows (and thus the
condition rarely evaluates to true), the measured value converges to the naive
prediction, but for intermediate values the measured value is slightly above the
curve. This suggests that the branch prediction unit tries to identify patterns
in the random values instead of merely falling back to always predicting false,
just because false is more frequent. Interestingly, this non-naive behavior of the
branch prediction unit leads to more mispredictions than the naive approach of
always predicting false would have led to.

3.3 Event Categories

As we mentioned earlier, one of the goals of this work is to automatically cat-
egorize native events based on the hardware features they measure. The main
categories for branch related instructions are the following five:

CE: Conditional Branches Executed. This type of event counts the num-
ber of times a branch instruction that depends on a condition is executed
by the hardware. Such instructions are generated from high level language
statements that affect the control flow, such as IF, or loops – where the
conditional branch is used for the termination of the loop. Examples from
the x86 instruction set are je/jne for “jump if (not) equal”, jge for “jump
if greater or equal”, jl for “jump if lesser”, and so on. Note that the in-
struction is counted as executed even if it executed speculatively, based on
the misprediction of a previous branch (as discussed in section 2). Also, a
branch does not have to be taken to be considered executed. For example the
branch if( 0 == 1 ) will never be taken but the hardware will still execute
it to decide not to take it (assuming the compiler did not optimize it away.)

CR: Conditional Branches Retired. This type of event is similar to the one
above, but the execution of the branch has to be committed to architectural
state for it to be counted as retired. This means that it has to either not be
part of speculative execution, or the speculation has to be proven correct.

T: Conditional Branches Taken. This type of event counts only the branches
where the condition evaluated to true and the branch was actually taken.
For this type of event the differentiation between executed and retired

is micro-architecture specific, as not all CPUs, even from the same vendor,
offer both versions.

D: Direct Branches Executed. This type of event counts the number of times
an unconditional branch instruction is executed by the hardware. Such in-
structions are commonly generated from compilers to support the control
flow of IF-THEN-ELSE statements, or to translate high level language state-
ments such as goto.

M: Branches Misspredicted. This type of event counts the number of times
the branch prediction hardware made a wrong prediction. For example, if it
predicts that a branch will be taken, because it predicts that the condition
will evaluate to true, but it is not taken because the condition turns out to
be false.



In order to categorize the native events of an architecture in these five groups
we wrote a set of micro-benchmarks that all contain branch instructions, some
of which are shown in Figure 11. As can be seen from the figure the benchmarks
share many similarities, but they also diverge from one another. As a result, an
event that falls in any of the five categories (CE, CR, T, D, M) should give a
set of values, when measured for the different benchmarks, that is not the same
across all benchmarks. Furthermore, depending on the category of the event, the
set of values for the different benchmarks will be different.

In the following section we will discuss the different approaches we tried in
our effort to automate the classification of different events based on the output
of these benchmarks and the lessons we learned.

3.4 Analysis of benchmark results

The basic methodology behind all the different analysis techniques we have tried
relies on varying the iteration count, which is controlled by the variable size,
and running each benchmark multiple times – for each native event – so that we
get a curve from each benchmark for each event.

Our first attempt to associate events with categories was by using the Pearson
correlation coefficient. The idea was that a given benchmark stresses a particular
category of events, therefore each benchmark would produce a growing curve for
the events that belong to this category and a flat curve for all others. Let us
take the code shown in Figure 10(a) as an example, and let us call it bench1, for
simplicity. Now, consider that for every possible native event on a system, we
make multiple runs of bench1, every time setting a different value to the variable
size. In the resulting data sets we should witness a correlation between the
control variable size and the measured variable, only for events that measure
conditional branches (CE and CR) and taken branches (T) – since these are
the only categories of branch events bench1 is expected to trigger. While the
correlation coefficient does distinguish the relevant events from the majority
of the irrelevant ones, it proved to be a very crude tool unfit for automatic
categorization. There are two reasons for this failure. First, we witnessed a few
false positives due to noise, and multiple false positives due to events that are
completely unrelated to branches (i.e., number of executed instructions), but
are legitimately correlated with the iteration count. Second, this technique has
a fundamental flaw in that most of our micro-benchmarks trigger events from
more than one branch categories at the same time and this technique is unable
to differentiate between them.

A better solution is to use the data from each benchmark to calculate a
slope for each event using Least Squares Fitting. Each of our benchmarks is
expected to trigger a known number of events in each category, per iteration,
as shown in the captions in Figure 11. Taking again bench1 as an example and
running it multiple times (while varying size) for each native event will generate
a unique data set for that event. Consider now that we have such a data set by
running bench1 and measuring event Ei (e.g. “BR_INST_EXEC:TAKEN_COND”).
Fitting this data set using least squares will generate a measured slope, βm.



do{

if ( temp < (size/2) ){

global_var2 += 2;

}

random_number( result );

temp++;

}while( temp < size );

(a): {2, 2, 1.5, 0, 0}

do{

global_var2 += 2;

if ( temp < global_var2 ){

global_var1 += 2;

}

random_number( result );

temp++;

}while( temp < size );

(b): {2, 2, 1, 0, 0}

do{

global_var2 += 2;

if ( temp > global_var2 ){

global_var1 += 2;

}

random_number( result );

temp++;

}while( temp < size );

(c): {2, 2, 2, 0, 0}

do{

random_number( result );

global_var2 += 2;

if ( (result % 2) == 0 ){

global_var1 += 2;

}

random_number( result );

temp++;

}while( temp < size );

(d): {2, 2, 1.5, 0, 0.5}

do{

random_number( result );

global_var2 += 2;

if ( (result % 2) == 0 ){

global_var1 += 2;

}

temp++;

}while( temp < size );

(e): {2.5, 2, 1.5, 0, 0.5}

do{

global_var2 += 2;

if ( temp < global_var2 ){

global_var1 += 2;

goto zz;

}

random_number( result );

zz: temp++;

random_number( result );

}while( temp < size );

(f): {2, 2, 1, 1, 0}

do{

global_var2 += 2;

temp++;

}while( temp < size );

(g): {1, 1, 1, 0, 0}

Fig. 11: Benchmark kernels and their expected values for the branch event cate-
gories (CE, CR, T, D, M).

Then this slope can be compared with the expected slope, βe, for each event
category, so for bench1 we would compare βm against the values 2, 2 and 1.5
– as shown in the caption of Figure 10(a). If βm matches one of these values,
then the event Ei belongs to the corresponding category. Using the example



of “BR_INST_EXEC:TAKEN_COND”, we expect the measured slope to match the
value 1.5 which reveals that this event belongs to the category “T (conditional
branches taken).”

4 Cache related events

The level at which a code is reusing the caches of a CPU usually has a sub-
stantial effect on performance. To help assess how well cache reuse is achieved
by an application, hardware vendors offer multiple events that count different
behaviors of the cache hierarchy. Unfortunately, the complexity of modern cache
subsystems has led to multiple such events, some times with non-obvious names
and functionality.

To assist developers in choosing which event to use, and understanding what
each event measures, we used micro-benchmarks that stress the cache subsystem.
The key idea underlying our codes is to control the way memory is accessed, as
well as the amount of memory that is accessed and observe how the measured
events change.

We use a technique known as pointer chaining (or pointer chasing), which is
common in the benchmark literature [3, 9, 12]. The basic idea is to use an array
of integers, each long enough to hold a pointer (uint64_t). Then, each element
of the array is made to point to another element of the array following a random
pattern. This creates a “pointer chain”. After this setup phase, the program can
start a “pointer chase” where the first element of the array is accessed and the
value it contains becomes the next element to be accessed and so on.

The setup of the array can happen off-line, so even an expensive pseudo-
random number generator (RNG) can be used, such as the function random(),
commonly found in POSIX and BSD systems, which employs a non-linear, ad-
ditive feedback and has a period of ≈ 16 · (231 − 1). Using such an RNG the
generated pattern becomes exceedingly difficult for the prefetching hardware to
guess.

Figures 12 and 13 show the results of running our memory access benchmark
with a variable array size while measuring the value of different events. As can
be seen, the values of the different events show sharp transitions from 0% to
100% at the boundaries of the different caches—in this example, L1=32KB,
L2=256KB and L3=32MB. These sharp transitions can function as signatures
that enable us to categorize events based on whether they measure a hit or a
miss, and which cache level they relate to.

Another interesting behavior that we can probe with our micro-benchmarks
is prefetching. One can assume that when a miss occurs, the cache fetches more
consecutive lines than the one requested speculatively, expecting spatial locality
in future memory accesses. If this is the case, then altering the minimum distance
between memory accesses (i.e., changing the size of our minimum accessible unit)
should result in a different hit rate. In Figure 14 we show three curves that
corresponding to three different minimum unit sizes, on an architecture where
the actual L2 line size is 64B. Indeed, even when the buffer size exceeds the
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Fig. 13: Cache MISS related events.

size of the L2 (256KB), for small unit sizes the hit rate remains surprisingly
high. However, when the unit size increases, which means that the additional
consecutive lines are never accessed, the hit rate sharply drops to a very small
value when the buffer size exceeds the size of the L2 cache.

Figure 15 shows a different experiment that also tests aspects of prefetching.
Here, we kept the minimum unit size constant (128B) across runs, but we altered
the way we created the pointer chains. Namely, regardless of the buffer size,
the buffer is segmented into logical blocks and each block has each own chain.
Therefore, all the elements in the first block are accessed first, then all the
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Fig. 14: Effect of unit size on L2 hit ratio.
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Fig. 15: Effect of block size on L2 hit ratio.

elements in the second block, and so on. The rationale behind this design is to
restrict the number of operating system pages in each block, so that the number
of TLB misses are minimized during pointer chasing (since TLB misses are often
more expensive than cache misses, and pollute the L3 cache, and thus affect the
behavior of the memory hierarchy.) As the size of the logical blocks grows it
increases the pressure on the cache prefetcher since more and more pages need
to be monitored. Indeed, as can be seen in Figure 15, when the number of pages
per block (ppb) is 16 or less, the hit rate remains high even past the size of the
L2 cache (≈ 30%). However, as the number of pages per block grows beyond 32,



even for values barely above 32, the cache hit rate drops quickly, all the way to
almost zero. This behavior, can then be used to categorize events that relate to
cache prefetching.

4.1 Assisting developers with code optimization

As we mentioned earlier, one of the main driving forces behind this work is to as-
sist performance conscious application developers in understanding the behavior
of the hardware so they can optimize their codes. As a result, we are interested
in behaviors that are demonstrated by micro-benchmarks and can be used to
make design decisions in larger applications.

32KBFits in L1
No

Eviction

offset=0
Cascading
Eviction

offset=1
Minimal
Eviction

36KB

36KB

Fig. 16: Access patterns with and without offset.

Consider a system with an L1 cache of size 32KB and an application that
accesses a buffer of size 32KB (or less), such that smaller blocks, e.g., 4KB, are
accessed one after the other sequentially—instead of the application accessing
elements spread out in the whole 32KB buffer. Consider also that after the code
accesses the last block, it goes back to the beginning of the buffer and accesses
all the blocks again, and this loop continues for many iterations. This behavior
is shown schematically in the first line of Figure 16. Since the buffer fully fits in
the L1 cache there will be good cache reuse and therefore low average memory
access time. This case is shown graphically in the first line of Figure 16. However,
if we grow the buffer to 32+4 = 36KB something interesting happens. When the
application now accesses the last block, which does not fit in the L1 cache along
with all previous ones, 4KB from the previously accessed data has to be evicted.
Since the very first block was the least recently used (LRU) data, and since LRU
is a popular replacement policy, the cache will evict the whole first 4KB block.
As a consequence, when the code comes around to access the first block again,



that block will not be in the L1 cache. Even worse, these new accesses to the
first block will evict the second block, which is now the least recently used one.
As the code continues, each block will evict the next, and every memory access
will lead to a miss in the L1 cache, so it will be served at the latency of the L2
cache. This behavior is shown in the second line of Figure 16.

However, if the application was written by someone aware of this behavior,
much better locality could have been achieved. Specifically, if after the last 4KB
block is accessed the code skips the first block and accesses all others, leaving the
first block for last, then this cascading series of evictions would be interrupted
and most of the blocks would be served from the L1 leading to a much lower
average access time, as shown in the last line of Figure 16. Hereafter, we will use
the term offset=1 to describe this approach. Growing the buffer by another 4KB
block would defeat this technique, but using offset=2 would still work, as would
larger offsets for larger buffers. The efficiency of this technique is demonstrated
in the performance graph shown in Figure 17, where we show the result of using
these access patterns on a machine with L1 latency ≈ 1ns and L2 latency ≈ 4ns.
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Fig. 17: Cache replacement and access pattern.

5 Categorizing events automatically

As we discussed in Section 3.4 the count of branch events grows linearly as we
increase the iteration count of our benchmarks. Cache events however, tend to
follow step functions that jump abruptly between extreme values. Nevertheless,
there are ways to automatically categorize events from both groups, by turning
the information we generate through our benchmarks into signatures. In Table 1
we show the expected values for the branch event categories we described in



Section 3.3 for all the benchmarks we showed in Figure 11. As it is easy to see
from the table, no two rows are identical. Therefore, if for every event that we
test we use the results of all benchmarks together, then we obtain a signature
that is unique for each event category.

To make the concept of the signature clearer, consider, as an example, that
we perform a test where we run these seven benchmarks and in every run we
measure the native event “BR_INST_EXEC:ALL_COND.” Each benchmark has to
be run multiple times, varying the iteration count. Subsequently, we process
the measurements taken from each benchmark to obtain a slope. If the slope
values we obtain from the different benchmarks are “2, 2, 2, 2, 2.5, 2, 1” then by
consulting this table we can uniquely identify this native event as belonging to
the category “CE (conditional branches executed)”.

bench1 bench2 bench3 bench4 bench5 bench6 bench7

CE 2 2 2 2 2.5 2 1

CR 2 2 2 2 2 2 1

T 1.5 1 2 1.5 1.5 1 1

D 0 0 0 0 0 1 0

M 0 0 0 0.5 0.5 0 0

Table 1: Expected values for different branch event categories across multiple
benchmarks.

In reality, our measurement will contain noise, so the values acquired from
measurements are unlikely to exactly match the values in this table. To address
the noise and suppress irrelevant native events whose measurements happen to
have a slope similar to an expected one, we also incorporated the correlation co-
efficient (r2) of the fitting into our “slope goodness function”, which is presented
below.

goodness = e−2·(βm·r2−βe)
2

(1)

We chose this formula because it has the shape of the normal curve, which
is forgiving for small variations, but quickly becomes punishing for larger ones.
As a result, when the measured slope, βm, is close to the expected slope βe and
the correlation coefficient, r2, is very close to one (indicating a good fit), then
this formula will produce a number very close to one. However, if the measured
slope diverges from the expected slope, or if the correlation coefficient is low,
then the formula will produce a number close to zero5.

5 Other, more sophisticated goodness functions, such as Pearson’s χ2 test [13], could
be used to assist in the analysis of the measurements, but in our experiments we
found that the simple formula in Equation 1 is sufficient.



For each native event Ei the seven different benchmarks will produce seven
different measured slopes, β1

m, β
2
m · · ·β7

m. Using this formula we can compare
these slopes against the different rows of Table 1 and get a quantitative assess-
ment of the proximity of event Ei to the category represented by each row.

As we mentioned earlier, the benchmarks that stress cache related events
do not produce slopes, but rather step functions. However, these step functions
can be readily converted to signatures, if we ignore the multiple values at each
plateau and we only keep the actual transitions, which as we showed in Figures 12
and 13 are unique for each cache event category.

As part of our research effort we also developed an LSTM neural network
that we trained to recognize the patterns produced by our benchmarks and it
proved to by fairly successful when we tried it on architectures other than the
one we trained it on (i.e., we trained it on Intel x86 and used it on IBM power8),
but the details of this approach our outside the scope of this paper.

Using our benchmarks along with the analysis described in this section pro-
duces an automatic categorization of events in a system where the user does
not already know which native events belong to each category. Conversly, in a
system where the user knows what each native event is supposed to measure,
our automatic event categorization can be used for verification of specific native
events.

6 Related Work

There are several tools and APIs for accessing hardware counters. PAPI [1] is
one of the most widespread, part due to its strength as a cross-platform and
cross-architecture API. PAPI provides short descriptions of the events that can
be measured, but these descriptions are not always self-explanatory, especially so
for application developers that are not experts on a given architecture. For Linux
platforms the perf tool [11] makes use of the perf event API which is part of the
Linux kernel. perf event is even more low-level and the information returned
requires considerable interpretation to be useful to application developers.

Further, processor vendors supply tools for reading performance counter re-
sults such as Intel VTune [16], Intel VTune Amplifier, Intel PTU [8], and AMD’s
CodeAnalyst [5], but none of these tools and APIs come with a set of bench-
marks whose behavior is easy to understand and yet demonstrate behaviors of
the underlying hardware that affect application performance.

The closest to the work presented in this paper is the likwid lightweight
performance tools project [15]. In addition to allowing accessing of performance
counters through direct access to the hardware, likwid offers a set of micro-
benchmarks that stress different aspects of the hardware. However, unlike our
work, these micro-benchmarks are written in a custom low level language that
maps directly to x86 assembler and are aimed at calibrating the tool, not to
educate application developers about the higher level meaning of different events,
or discover the meaning of events on diverse architectures.



In terms of system benchmarks, there are multiple offerings [10, 4, 12, 9,
14, 18, 17, 6, 7] aiming to achieve different goals, such as analyzing the micro-
architecture of a specific platform in great detail sacrificing performance, or
offering an extendable base of micro-kernels so that more complex benchmarks
can be built on top of them. While we have learned valuable lessons from several
of these efforts, and we have borrowed techniques, such as the pointer chaining,
none of these benchmarks was developed having in mind the goals of character-
izing hardware events to provide application developers with a more intuitive
high-level understanding of the concepts that are being counted.

7 Conclusions

In this paper we presented our work on the Counter Inspection Toolkit; a collec-
tion of micro-benchmarks and analyses developed in an effort to categorize and
abstract hardware events and map them to higher level performance concepts.
The driving force in this effort has been our desire to illuminate the way for
application developers that are keen on performance optimization, but are not
experts on every esoteric detail of the latest hardware micro-architecture.

We discussed several interesting and non-obvious findings, we demonstrated
the feasibility of categorizing events into logical groups, and discussed how auto-
matic analyses can be employed to assist in this categorization. In future work,
we are planning to extend the toolkit by adding multi-threaded benchmarks that
stress parts of the hardware that related to resource sharing. We also plan to
publicly release the code.
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