
Research Paper

Distributed-memory lattice
H -matrix factorization

Ichitaro Yamazaki1 , Akihiro Ida2, Rio Yokota3

and Jack Dongarra4

Abstract
We parallelize the LU factorization of a hierarchical low-rank matrix (H -matrix) on a distributed-memory computer. This
is much more difficult than the H -matrix-vector multiplication due to the dataflow of the factorization, and it is much
harder than the parallelization of a dense matrix factorization due to the irregular hierarchical block structure of the
matrix. Block low-rank (BLR) format gets rid of the hierarchy and simplifies the parallelization, often increasing con-
currency. However, this comes at a price of losing the near-linear complexity of the H -matrix factorization. In this work,
we propose to factorize the matrix using a “lattice H -matrix” format that generalizes the BLR format by storing each of
the blocks (both diagonals and off-diagonals) in the H -matrix format. These blocks stored in the H -matrix format are
referred to as lattices. Thus, this lattice format aims to combine the parallel scalability of BLR factorization with the near-
linear complexity of H -matrix factorization. We first compare factorization performances using the H -matrix, BLR, and
lattice H -matrix formats under various conditions on a shared-memory computer. Our performance results show that
the lattice format has storage and computational complexities similar to those of the H -matrix format, and hence a much
lower cost of factorization than BLR. We then compare the BLR and lattice H -matrix factorization on distributed-
memory computers. Our performance results demonstrate that compared with BLR, the lattice format with the lower
cost of factorization may lead to faster factorization on the distributed-memory computer.

Keywords
boundary element method, LU factorization, distributed memory, hierarchical matrix, task programming

1. Introduction

High-frequency acoustic/electromagnetic scattering prob-

lems on large-scale distributed-memory computers are a

challenging problem from mathematical, algorithmic, and

high-performance computing perspectives. Such problems

must solve the dense, ill-conditioned, indefinite linear sys-

tem of equations, arising from the oscillatory Green’s func-

tion. To solve the linear system, a Krylov iterative solver,

combined with a preconditioner, is commonly used. To

reduce the computational and storage costs of the solver,

there are several structured low-rank formats to store the

coefficient matrix. These low-rank formats can signifi-

cantly reduce the required storage and computation for

performing the Krylov iteration (i.e. the matrix-vector mul-

tiplication) and for approximately factorizing the matrix to

compute the preconditioner.

In this article, we study the parallelization of these

low-rank matrix factorization on a distributed-memory

computer. This is more difficult than the low-rank

matrix-vector multiplication due to the dataflow of the

factorization, and it is more challenging than parallelizing

a dense matrix factorization due to the irregular hierarchi-

cal block structure of the matrix. We focus on the following

three low-rank matrix formats:

� The H -matrix format (Hackbusch, 1999) com-

presses only well-separated blocks (and has the

strong admissibility structure), leading to the near-

linear complexity of the factorization. However, it

has an irregular hierarchical block structure that is

1 Sandia National Laboratories, Computer Science Research Institute,

Albuquerque, NM, USA
2 Supercomputing Research Division, Information Technology Center,

The University of Tokyo, Tokyo, Japan
3 Tokyo Institute of Technology, Global Scientific Information and

Computing Center, Tokyo, Japan
4 Department of Electrical Engineering and Computer Science, The

University of Tennessee, Knoxville, TN, USA

Corresponding author:

Ichitaro Yamazaki, Sandia National Laboratories, Computer Science

Research Institute, Albuquerque, NM 87123, USA.

Emails: ic.yamazaki@gmail.com; iyamaza@sandia.gov

The International Journal of High
Performance Computing Applications
1–18
ª The Author(s) 2019
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/1094342019861139
journals.sagepub.com/home/hpc

https://orcid.org/0000-0002-6196-2508
https://orcid.org/0000-0002-6196-2508
https://orcid.org/0000-0001-7573-7873
https://orcid.org/0000-0001-7573-7873
mailto:ic.yamazaki@gmail.com; iyamaza@sandia.gov
https://sagepub.com/journals-permissions
https://doi.org/10.1177/1094342019861139
http://journals.sagepub.com/home/hpc
http://crossmark.crossref.org/dialog/?doi=10.1177%2F1094342019861139&domain=pdf&date_stamp=2019-08-01

difficult to parallelize on a distributed-memory

computer.

� The block low-rank (BLR) format (Amestoy et al.,

2015) abandons the hierarchy but compresses the

off-diagonal blocks. Although BLR could poten-

tially improve the factorization’s scalability, this

comes at the price of losing the near-linear complex-

ity of the H -matrix factorization.

� The “lattice H -matrix” format (Ida, 2018) gener-

alizes the BLR format and uses the H -matrix format

to store each of the blocks (both diagonals and off-

diagonals). These blocks stored in the H -matrix for-

mat are referred to as lattices.

Although the factorization algorithm based on the H -

matrix format or the BLR format has been previously

studied, factorizing the matrix using the lattice format is

new. The main contributions of the article are as follows:

� The new factorization algorithm based on the lattice

format combines the scalability of BLR with the

near-linear complexity of the H -matrix. To the best

of our knowledge, the lattice format is the first

attempt to balance the complexity and concurrency

of these two structured low-rank formats. The hier-

archical structure was previously embedded in a flat

structure (Chavez et al., 2017; Yu et al., 2017), but the

previous format did not consider the balance between

complexity and concurrency. This is the first time the

lattice format is used for factorizing the matrix.

� We compare the performance of factorization using

the H -matrix, BLR, and lattice formats under vari-

ous conditions on a shared-memory computer, and

using the BLR and lattice formats on distributed-

memory computers. This helps quantify the benefit

of the different formats and determines the condi-

tions under which a given format outperforms the

other formats. We hope that such studies are of inter-

ests to a wide range of audiences, including solver

developers and users.

� Our performance comparison includes different

combinations of message passing interface (MPI)

and OpenMP thread or task configurations. For

instance, dynamic task scheduling avoids the arti-

ficial synchronization and remedies the load

imbalance caused by a large lattice size. In con-

trast, without tasking, the synchronization point

exposes the load imbalance at the end of each

factorization phase.

The rest of the article is organized as follows. We first

provide the background and motivation for the current

work in Section 2. We then survey the related work in

Section 3. Finally, we describe our implementations of the

factorization algorithms on the shared-memory and

distributed-memory computers in Sections 4 and 5, respec-

tively. After analyzing the complexity of the new algorithm

in Section 6, we show the performance results in Section 7.

The final remarks are listed in Section 8.

2. Background and motivations

Here, we first formulate the dense linear system of equa-

tions for electrostatic field simulations based on the bound-

ary element method (BEM), which we solve for our

experiments (Section 2.1). We then describe the software

called HACApK (Ida et al., 2014) that we used to generate

the H -matrices in our study (Section 2.2).

2.1. Dense linear system for BEM analyses

The BEM analysis is a powerful tool for solving the bound-

ary value problems of partial differential equations and is

used in many scientific and engineering applications

including the studies of acoustics, electromagnetics, and

fracture and fluid mechanics.

Let H be a Hilbert space of functions on a surface

domain O � R3 and H
0

be the dual space of H. Given a

function f 2 H
0

and a kernel function K for a convolution

operator (i.e. K : R3 � O! R), we seek for the function

u 2 H in the integral equationZ
O

Kðx; yÞuðyÞdy ¼ f ð1Þ

In order to numerically solve the integral equation (1),

we discretize the domain O into elements Oh ¼
f!j : j 2 J g, where J is an index set. Using a weighted

residual method like the collocation method, the function u

is approximated in an n-dimensional subspace Hh � H .

Then, given a basis set ð’iÞi2I for Hh with an index set

I :¼ f1; � � � ; ng, the approximation uh 2 Hh to u is

expressed using a coefficient vector � ¼ ð�iÞi2I such that

uh ¼ Si2I �i’i. Since the supports of the basis, Oh
’i

:¼
supp ’i, are assembled from the sets !j, the integral equa-

tion (1) can be transformed to the following linear system

of equations:

A� ¼ b ð2Þ

For instance, in the case of the Galerkin method, the

entries of the coefficient matrix A are given by

aij ¼
Z
O

Z
O
�iðxÞKðx; yÞ�jðyÞ dx dy ð3Þ

for all i; j 2 I .

Given two index subsets I i; I j � I and the corre-

sponding subdomains defined by

Oh
J i

:¼ [
i2J i

supp ’i; Oh
J j

:¼ [
i2J j

supp ’i ð4Þ

we consider the pair ðI i; I jÞ “admissible” if the Euclidean

distance between Oh
I i

and Oh
I j

is sufficiently large com-

pared with their diameters, that is

min diamðOh
J i
Þ; diamðOh

J j
Þ

n o
� h distðOh

J i
;Oh

J j
Þ ð5Þ

2 The International Journal of High Performance Computing Applications XX(X)

where h is a positive constant scalar whose value depends

on both K and Oh. On the subdomain corresponding to the

admissible pairs, we assume that the kernel function can be

approximated to a certain accuracy by a degenerate kernel

such as

Kðx; yÞ ffi
Xr

n¼1

Kn
1ðxÞKn

2ðyÞ ð6Þ

where x 2 Oh
I i

, y 2 Oh
I j

, and r is a positive number. This

type of kernel function appears in many scientific and engi-

neering applications, including in the electric field and

mechanical analyses. Under this assumption, the double

integral in equation (3) can be split into two separate single

integrals with respect to x and y. Thus, for a pair of admis-

sible subdomains Oh
I i

and Oh
I j

(with a faraway interaction),

the corresponding dense submatrix Aj
J i�J j

can be approxi-

mated by its low-rank factorization. Furthermore, given the

admissible condition (5), it is possible to find a permutation

and a partition of the index set I such that after the per-

mutation and partition, many of large submatrices in A

become numerically low-rank.

2.2. HACApK linear solver

HACApK (Ida et al., 2014) is a software package that uses

the H -matrix format for solving dense linear systems of

equations from various applications. One such application

is the ppohBEM (Iwashita et al., 2017) open-source soft-

ware package that numerically solves the integral equations

for the BEM analysis. The numerical solution of the inte-

gral equations requires solving the dense linear system of

equation (2), for which ppohBEM relies on HACApK.

To compute the appropriate matrix permutation and par-

tition for generating the H -matrix, HACApK computes the

cluster tree T I based on the geometrical information asso-

ciated with the index set I . The index set is repeatedly

divided into disjoint subsets I d
i at each depth d of the tree

such that I ¼
P

iI
d
i . The clustering process continues

until each cluster size jI d
i j becomes sufficiently small.

We then compute the direct product of the cluster tree

T I with itself to create a block cluster tree T I �I .

The branches of T I �I are truncated such that

ðI i; I jÞ 2 T I �I is an admissible cluster pair, and the cor-

responding off-diagonal blocks of large dimensions

become low rank. The set L ðT I �I Þ contains all the block

clusters that have no branch and are called leaves. These

leaves represent the partition structure of the matrix A, as

shown in Figure 1(a), and we refer to the user-specified

minimum size of the leaves as the leaf size.

To compute the H -matrix representation of A,

HACApK generates a low-rank representation of each

admissible block of A by algebraically approximating the

degenerate kernel using adaptive cross approximation

(ACA) or ACAþ (Bebendorf and Rjasanow, 2003; Kurtz

et al., 2002). For each low-rank block given by B � VY T ,

the matrices V and Y are explicitly computed and stored.

Although the block cluster tree T I �I contains all the infor-

mation needed for the factorization, HACApK does not

keep the block cluster tree, the individual cluster tree T I ,

nor any interaction list between their nodes. The only kept

information is the leaves that coincide with the H -matrix

partition structure, and we use that information for factor-

izing the matrix.

3. Low-rank matrices

In this section, we survey existing low-rank matrix formats

and software packages that utilize such formats.

3.1. Partition structures

We define a partition structure M as a set of disjoint subsets

I i � I j of I � I , whose union spans the whole set

I � I . These index subsets I i � I j are assumed to be

appropriately chosen in I � I such that the corresponding

submatrices Aj
I i�I j

of A can be well approximated by low-

rank matrices. Figure 1 illustrates how a different low-rank

structured matrix can be generated from a different parti-

tion structure M for a given problem. In fact, we can gen-

erate these low-rank structures by controlling the parameter

h in the admissible condition (5) and the branch truncation

of the block cluster tree T I �I during the construction of

Figure 1. Conceptual diagram of the construction of represen-
tative low-rank structured matrices using different partition
structure M: (a) M H for a general H -matrix, (b) M W for an HSS,
(c) M L for a BLR, and (d) M LH for a lattice H -matrix. Blank boxes
show nonadmissible blocks. Blocks in light red indicate subma-
trices judged as low-rank, and blocks painted in deep red are
remaining non-admissible blocks calculated as dense submatrices.

(a) H - and H
2-matrix. (b) HSS, HODLR. (c) BLR. (d) Lattice

H -matrix. HSS: hierarchical semi-separable; BLR: block low-rank.

Yamazaki et al. 3

the H -matrix. Thus, these low-rank matrices can be

regarded as special types of the H -matrices.

Each partition structure has its own pros and cons. For

instance, the H -matrix has the most general low-rank

matrix structure, and it is an effective way of compressing

the matrix with small numerical ranks. However, the H -

matrix usually has the irregular partition structure M H o, as

shown in Figure 1(a), which makes it challenging to per-

form some matrix operations on distributed-memory com-

puters (e.g. LU factorization).

To ease the implementation and to improve the parallel

scalability of the distributed matrix operations, simpler parti-

tion structures have been proposed. For instance, by introdu-

cing the weak admissible condition—h ¼ 1 in the

admissible condition (5)—we can construct the partition

structure M W , which is used to generate the hierarchical

semi-separable matrix or the hierarchically off-diagonal

low-rank matrix, and is shown in Figure 1(b). Compared with

the H -matrix structure M H , the structure M W is simpler and

more convenient for performing certain matrix operations on

distributed-memory computers. However, this matrix struc-

ture assumes a weak admissibility condition, where all off-

diagonal blocks are assumed to be low-rank. When the weak

admissibility condition is applied to a 3-D or higher dimen-

sional problem, this structure leads to a higher asymptotic

complexity due to the larger ranks of off-diagonal blocks.

BLR, as shown in Figure 1(c), is another simpler matrix

structure. It has the lattice partition structure M L, but each

lattice is either low-rank or dense. Although the construc-

tion of the BLR matrix does not require the block cluster

tree T I �I used to construct the H -matrix, it can be con-

structed by truncating all branches of the cluster tree T I at

a certain depth level d. The memory complexity of the BLR

matrix is O ðn1:5Þ (Amestoy et al., 2017) and is higher than

O ðnlognÞ of the H -matrix (Hackbusch, 1999). However,

the BLR matrix is a simple, nonhierarchical, and effective

low-rank format, especially for distributed memory. For

instance, the lattice structure M L observed in the BLR

matrix is similar to the 2-D block layout used in many

dense matrix operations (e.g. Scalable Linear Algebra

PACKage (ScaLAPACK)), and it can use many of the

high-performance optimization techniques developed for

the dense matrix operations (Ida et al., 2018b).

Figure 1 also shows that the BLR format allows the

numerical nonsymmetry (e.g., numerical ranks of the

low-rank blocks, or the dense or low-rank block pattern,

can be different in the transpose of the matrix). In contrast,

the H -matrix format allows both the numerical and struc-

tural nonsymmetries. This irregular structure of the H -

matrix leads to the flexibility to effectively compress the

matrix but also poses the challenges when factorizing the

matrix on a distributed-memory computer.

Finally, Figure 1(d) shows the hybrid partition structure

M LH of the lattice H -matrix that we use in this article. It

combines the BLR’s lattice structure M L with the H -matrix

partition structure M H by introducing the lattice structure

on top of the H -matrix structure. In other words, the lattice

H -matrix utilizes the H -matrix format M H for each lattice

block in M L. These lattice blocks are then distributed

among the processes in a 2-D block cyclic fashion. This

structure is designed to balance the advantages of the H -

matrix and BLR formats: the high compressibility of the

H -matrix format and the parallel scalability of the BLR

format. Given a large enough size of the lattice, the lattice

H -matrix can reduce the computational and memory com-

plexities from O ðn2Þ and O ðn1:5Þ of the BLR format to

O ðnlog2nÞ and O ðnlognÞ of the H -matrix format, respec-

tively. Further, the lattice matrix format has the same com-

munication pattern as the BLR format, and it can utilize the

efficient communication schemes developed for dense

matrix operations. Finally, using the lattice H -matrix format

with a hybrid MPI-thread programming paradigm, the com-

plex matrix operations originating from the H -matrix struc-

ture are performed using the threaded computational kernels.

3.2. Software

Table 1 lists software packages implementing different

structured low-rank factorization methods. We do not

include analytical methods like the fast multipole method

(FMM) (Greengard and Rokhlin, 1987) because they can-

not be used for the factorization, which is the focus of this

article. In the figure, “Structure” categorizes the type of

admissibility condition (strong or weak) (Hackbusch,

1999) and classifies whether the blocks are subdivided

recursively or not (H or block, respectively); “Nested”

represents whether the bases are nested or not; and

“Implementation” shows the representative software

packages that implement these methods.

� geometry-oblivious FMM (GOFMM) (Yu et al.,

2017): In applications where the matrix is

Table 1. Structured low-rank factorization methods.a

Format Structure Nested Implementation

H -matrix Strong-H No HLIBpro, AHMED

H
2-matrix Strong-H Yes LORASP, H2lib

HSS Weak-H Yes STRUMPACK
BLR Strong-block No MUMPS-BLR,

HiCMA
Lattice
H -matrix

Strong-(H þ block) No HACApK

HSS: hierarchical semi-separable; BLR: block low-rank; HiCMA:
Hierarchical Computations on Manycore Architectures; MUMPS:
MUltifrontal Massively Parallel Sparse direct Solver.
aThe H -matrix (Hackbusch, 1999) and the H

2-matrix (Hackbusch et al.,
2000) have strong admissibility structure and compress only well-
separated blocks, while the HSS matrix (Chandrasekaran et al., 2006; Liu
et al., 2016; Wang et al., 2013) has weak admissibility where only the
diagonal blocks remain uncompressed. The BLR (Amestoy et al., 2015)

abandons the hierarchy but compresses the off-diagonal blocks. The H
2

and HSS matrices have nested bases, whereas the others do not. The
lattice H -matrix in the last row represents our current contribution.

4 The International Journal of High Performance Computing Applications XX(X)

manipulated (e.g. multiplied by another matrix or

averaged over), it is impossible to retrieve geometry

information—this is where GOFMM is useful. In

our application, geometry information is accessible,

and we exploit the information to achieve better

performance (e.g. matrix partitioning).

� inv-ASKIT (Yu et al., 2016): In applications where

the matrix comes from a kernel function in high

ambient dimensions but low intrinsic dimensions,

ASKIT is the state of the art. The weak admissibility

of ASKIT is a significant limitation for the oscilla-

tory kernels that we are dealing with. Our method

uses strong admissibility to prevent the numerical

ranks of the matrix blocks from growing with the

problem size.

� LoRaSp (Pouransari et al., 2017): Although it can be

used to solve the extended sparsified form of dense

matrices, LoRaSp is designed primarily for solving

sparse matrices. Our focus is on factorizing dense

matrices.

� STRUMPACK (Rouet et al., 2016): It is built on

established linear algebra libraries for distributed-

memory computers. STRUMPACK uses weak

admissibility and has the same limitation as ASKIT.

� Hierarchical Computations on Manycore Architec-

tures (HiCMA) (Akbudak et al., 2017) and the MUl-

tifrontal Massively Parallel Sparse direct Solver

(MUMPS)-BLR (Amestoy et al., 2015): Using BLR

instead of a hierarchical format, the library can

exploit many high-performance techniques devel-

oped for dense matrix operations, including efficient

parallel computation and communication schemes.

It is a powerful scalable approach, though the lack of

hierarchy may eventually limit their performance as

the problem size increases (e.g. the nonlinear com-

plexity). To improve the complexity, a multilevel

variant of BLR has been recently proposed, where

the matrix is recursively partitioned in the BLR for-

mat (Amestoy et al., 2018).

� Butterfly (Li et al., 2015): The butterfly algorithm is

in general the best approach to factorize the subma-

trices of an oscillatory kernel matrix on a single

process. However, prior work on the parallel scal-

ability of the butterfly algorithm (Poulson et al.,

2014) has shown that it has similar communication

complexity as fast Fourier transform.

� Hierarchical interpolative factorization (HIF) (Li

and Ying, 2016): Recently, HIF was extended to

handle strong admissibility (Minden et al., 2017) and

to run on a distributed-memory computer (Li and

Ying, 2016). However, these works have not been

combined to handle the strong admissibility on the

distributed-memory computer, and it cannot address

the goal of this work.

� HLIBpro (Aliaga et al., 2017; Kriemann, 2014):

HLIBpro can compute the LU factorization of a

H -matrix on a distributed-memory computer. The

parallel scalability of HLIBpro on a distributed-

memory computer has not yet been published. This

code does not offer the capability to combine the two

low-rank formats for balancing complexity and con-

currency like we do in the present work.

The performance comparison with other software

packages is of our interest but out of this article’s scope.

In the current article, we focus on comparing the perfor-

mance of a new lattice format with the BLR and H -matrix

formats in the same software framework.

4. Shared-memory implementation

We now describe the low-rank factorization algorithms that

we implemented for the shared-memory multicores. We first

introduce the basic dense block LU factorization algorithm,

on which all of our implementations are based (Section 4.1).

We then describe the two low-rank factorization algorithms,

that is, BLR LU (BLU) and hierarchical LU (HLU; Sections

4.2 and 4.3). The threaded computational kernels developed

in this section are used by each process for our distributed-

memory factorization in the next section.

The following three terms are used to describe our

implementations:

� “blocks” are the blocks in either the H -matrix or

BLR formats, and can be either dense or low-rank.

� “lattices” are the lattices in the lattice H -matrix for-

mat, and each of the lattice is stored in the H -matrix

format.

� “tiles” represent a logical partitioning of the matrix,

and are conceptually generated by splitting the

matrix along the diagonal blocks (i.e., in the BLR

format, the tiles coincide with the blocks).

The blocks are the physical submatrices of the matrix,

being stored either in the dense or low-rank format. In

(a) (b)

Figure 2. Dense block LU factorization, where nt is the number
of the blocks in the matrix row or column. (a) Dense block layout.
(b) Block LU factorization algorithm.

Yamazaki et al. 5

contrast, the tiles are the conceptual submatrices of the

matrix, being used only to describe our implementations.

4.1. Dense LU

Our LU factorization algorithm for the dense matrix first splits

the matrix into small blocks (typically into the square blocks of

the same sizes). Hence, the matrix is partitioned into the nt-by-

nt blocks. Each of the blocks is stored in column-major order in

a contiguous memory region (see Figure 2(a)). For accessing

the block using the block row and column indexes (e.g. Bi;j),

we create the nt-by-nt array of pointers, each of which points to

the beginning of the corresponding block.

The factorization algorithm is then broken into the com-

putational tasks that operate on the blocks. At each step, the

leading block column and row, referred to as the panel

column and row, respectively, are factorized by first fac-

torizing the diagonal block and then factorizing the off-

diagonal blocks. These panels are then used to update the

trailing submatrix block by block. As shown in Figure 2(b),

all the operations on the blocks can be performed using the

standard LAPACK or Basic Linear Algebra Subpro-

grams (BLAS) subroutines whose vendor-optimized

implementations are often available on their specific

hardware. We note that in this storage format, the blocks

coincide with the tiles.

To maintain the numerical stability of the LU factori-

zation, pivoting is needed, for example, PA ¼ LU is the

LU factorization of A where the matrices L and U are

the lower and upper triangular matrices, respectively, and

the matrix P pivots the rows of A. To maintain the numer-

ical stability of the factorization for matrices arising from

the kinds of applications, we are interested in, it was suf-

ficient to seek pivots only within the diagonal blocks (line

2 of Figure 2(b)).

These blocked algorithms for dense matrix factorization

have been studied to exploit the multicore architectures

(Buttari et al., 2009). These blocks (stored contiguously

in memory) can be loaded into the cache memory effi-

ciently and operated on with little risk of eviction. Thus,

the use of the block layout minimizes the number of cache

misses and maximizes the potential for prefetching. In

addition, operations on small blocks create fine-grained

parallelism that provides enough independent tasks to keep

a large number of threads, or processes, busy.

4.2. Block low-rank LU

In order to reduce the storage and computational cost of the

factorization, the BLR format compresses some of the off-

diagonal blocks into their low-rank representations (e.g.

Bk;j � V k;jY
T
k;j). To exploit the low-rank structures of the

off-diagonal blocks well, the diagonal blocks of the matrix

could have different dimensions.

The LU factorization of the BLR matrix is then computed

using the algorithm in Figure 2(b), where some of the off-

diagonal blocks are now low-rank. For instance, on line 4 of

Figure 2(b), if the off-diagonal block of the panel column (or

row) is low rank, then the triangular solve with the upper

(or lower) factor of the diagonal block is applied to its Y k;j

(or V i;k) matrix (i.e. Y k;j :¼ Y k;jU
	1
k;k or V i;k :¼ L	1

k;k V i;k).

Then, to update Bi;j on line 8 (i.e. Bi;j :¼ Bi;j 	 Li;kUk;j),

each of the three blocks involved, Bi;j, Li;k , and U k;j, can be

either dense or low-rank, giving eight potential configura-

tions for the updating kernel. We update these blocks to

minimize the floating-point operation (FLOP) count. For

instance, to update a dense ni-by-nj block using two low-

rank blocks, Bi;j :¼ Bi;j 	 ðV i;kY T
i;kÞðV k;jY

T
k;jÞ, we first com-

pute the small ri;k-by-rk;j matrix T :¼ Y T
i;kV k;j, where ri;k

and rk;j are the respective numerical ranks of the updating

blocks Li;k and Uk;j. We then multiply T with either V i;k or

Y T
k;j, depending on the required FLOP counts. Finally, Bi;j is

updated with the low-rank matrix, for example,

Bi;j :¼ Bi;j 	 V i;kðTY T
k;jÞ. Compared with the dense-block

update that requires OðninjnkÞ FLOPs, the low-rank update

only requires Oðninjminðri;k ; rk;jÞÞ FLOPs. As a result, the

low-rank compression can significantly reduce the FLOP

count when the blocks have small ranks (i.e. ri;k ; rk;j
 nk).

Similarly, to update a dense block using a low-rank block

and a dense block, we first merge the dense block into the

low-rank block, for example, Bi;j :¼ Bi;j 	 V i;kðY T
i;kBk;jÞ.

For updating a low-rank block, we first compute the low-

rank representation of the update, that is, Bi;j :¼ Bi;j 	 �V i;j
�Y

T

i;j

(similar to the dense-block update, this low-rank representa-

tion is computed by minimizing the flop count). Hence, after

the update, Bi;j can be represented as Bi;j ¼ V̂ i;jŶ
T

i;j, where

V̂ i;j ¼ ½V i;j;	�V i;j� and Ŷ i;j ¼ ½Y i;j; �Y i;j�, and V i;jY
T
i;j is the

original low-rank representation of Bi;j before the update.

To avoid the increase in the numerical rank and the

storage, we use ACA (Bebendorf and Rjasanow, 2003;

Kurtz et al., 2002) to recompress the low-rank block after

each update. As shown in Figure 3, ACA only needs to

Figure 3. ACA algorithm. ACA: adaptive cross approximation.

6 The International Journal of High Performance Computing Applications XX(X)

generate the pivot rows and columns and does not need to

explicitly form the dense representation of the low-rank

block. Hence, at each step of ACA, we compute the pivot

row (or column) by multiplying the corresponding row of

Ŷ i;j (or V̂ i;j) with V̂ i;j (or Ŷ
T

i;j). Figure 4 illustrates these

updating schemes.

To recompress the low-rank blocks, we also implemen-

ted an option that computes the QR and LQ factorization of

V̂ i;j and Ŷ
T

i;j, respectively. The algorithm then multiplies

two small resulting triangular matrices and computes the

singular-value decomposition (SVD) of the resulting

matrix to recompress the block before truncating the sin-

gular values to satisfy the specified accuracy. Nevertheless,

this second approach has a higher computational complex-

ity than ACA, and LAPACK’s dgesvd can be slow, or fail,

to converge for our numerically low-rank blocks.1

4.3. Hierarchical matrix LU (HLU)

Our next implementation directly factorizes the H -matrix,

following the same LU factorization procedure in Figure

2(b). The only difference is that unlike in the BLR format,

the H -matrix blocks are no longer coincide with the tiles

(as illustrated in Figure 5). Hence, at each step of the fac-

torization, when we are computing the off-diagonal blocks

of the lower-triangular matrix, we need to apply the trian-

gular solve to the corresponding parts of the H -matrix

blocks, and some of the blocks may span multiple tiles.

In order to access individual tiles within each of the H -

matrix blocks, we create several auxiliary integer arrays. In

particular, though the boundaries of these blocks are still

aligned with the diagonal blocks, and hence with the

boundaries of tiles, each block may span multiple tiles.

Hence, we again have the nt-by-nt array of pointers, but

each entry of the array now points to the beginning of the

block that the corresponding tile belongs to. We also have

the additional array that specifies the offsets into the block

for each tile. Using these offsets for the panel factorization,

the triangular solve with the diagonal block can be applied

to the specific part of the off-diagonal blocks. We also store

the first and last (both column and row) tile indexes of the

block. Hence, after applying the triangular solve to each

block, we can move to the next block. Figure 6 shows the

pseudocode of our subroutine that computes the off-diag-

onal blocks of the lower-triangular factor.

After the panel factorization, the trailing submatrix is

updated block by block. The main difference between BLU

and H -matrix LU (HLU) is that, as illustrated in Figure 7,

HLU may update a block using multiple blocks, each of

which can be either dense or compressed. It is not difficult

to update a dense block using multiple blocks, but it is a

challenge to update a low-rank block, that is,

V̂ Ŷ
T

:¼ VY T 	 �V �Y . This is because explicitly generating

the updating blocks �V and �Y as in Section 4.2 could sig-

nificantly increase the memory cost (e.g. if �V has a small

dense block and a large low-rank block, then the low-rank

block needs to be converted to a dense block).

Thus, to update the low-rank block, we compress the low-

rank block V̂ Ŷ
T

by performing ACA without explicitly

forming the blocks V̂ or Ŷ . Namely, at each step of ACA,

we first generate the row of V̂ , corresponding to the pivot

row (or the pivot column of Ŷ
T

). We then generate the new

row of the low-rank block by multiplying this pivot row of V̂

with the blocks in Ŷ
T

(or the column of Ŷ
T

with the blocks

in V̂). In contrast, the SVD-based recompression kernel,

developed for BLU in Section 4.2, requires the explicit gen-

eration of �V and �Y , and is difficult to be used for HLU.

Figure 4. Illustration of BLR update of a low-rank block. BLR:
block low-rank.

Figure 5. Data structure used for storing the H -matrix, where
solid and dashed lines show the block and tile boundaries,
respectively. The matrix is stored by blocks, while the tiles are
conceptual and only used by our factorization algorithms. We
have a pointer for each tile such that we can access the corre-
sponding part of the block (e.g., the part of the block colored in
grey or pink). These pointers are useful because the blocks are
updated by the tiles in each panel. For example, the grey tiles are
used for the panel factorization and update for the second step of
the factorization.

Yamazaki et al. 7

In addition, some of the H -matrix blocks may be parts

of both the panel and the trailing submatrix. In this case, we

only update the part of the block belonging to the trailing

submatrix, and then recompress only the trailing part of the

block if the block is low rank. For example, in Figure 7, the

low-rank block VY T is part of the panel row and the trailing

submatrix. After the update, this low-rank block is given by

V̂ Ŷ
T

where V̂ ¼ ½V ;	�V � and Ŷ ¼ ½Y ; Y �, and	�V contains

the trailing submatrix update. Hence, the top part of �V
(belonging to the panel row or the previously computed

rows of the upper-triangular factor) is zero. We then update

the block by accumulating the updates 	�V into V. Namely,

the updated block is given by V̂ Y T where V̂ :¼ V 	 �V . We

also looked at applying ACA to recompress the whole low-

rank block V̂ Ŷ
T

. However, the first approach requires less

computation, and it maintains the consistency of the fac-

torization since it only updates the trailing submatrix part

of the low-rank block, while the second approach updates

the whole block—including the part of the block that has

been already used to update the trailing submatrix. As a

result, the first approach can lead to a higher accuracy of

the factorization.

We emphasize that though the triangular solve and the

trailing submatrix update are performed per panel, the

computational tasks are performed on the blocks and not

on the tiles.

4.4. Task-based implementation

We use OpenMP task-based programming model to factor-

ize the low-rank matrix on a shared-memory computer.

OpenMP’s task scheduling has also been used to develop

parallel numerical software, including Parallel Linear

Algebra Software for Multicore Architectures, for dense

linear algebra subroutines (YarKhan et al., 2017).

To define the data dependencies among the OpenMP

tasks, we typically specify the task’s required data using

its memory location. In contrast, we cannot use the memory

pointers to keep track of the data dependencies of the low-

rank factorization because we dynamically free and reallo-

cate the compressed blocks, as their numerical ranks can

change after each update. Instead, we used a separate nt-by-

nt integer array to keep track of the task dependencies of the

factorization. The task-based programming may reduce the

CPU cores’ idling time by removing the unnecessary syn-

chronization points. This could be critical, especially for

the low-rank factorization that performs the tasks with vari-

able computational costs.

5. Distributed-memory implementation

We now extend our shared-memory implementations of

low-rank factorization to run on the distributed-memory

computers.

5.1. Block low-rank LU

To parallelize the BLU factorization on distributed-

memory computers, we arrange the processes on a p-by-q

2-D grid and distribute the blocks in a 2-D cyclic fashion

among the processes. Then, to factorize the matrix, each

process updates and factorizes only its local blocks. This

parallelization scheme is used in many popular linear alge-

bra packages including the ScaLAPACK for factorizing

dense matrices and leads to a simple but efficient commu-

nication pattern.

Namely, to communicate the blocks, we create two sub-

communicators for each process: one for the processes in

the same column of the process grid and the other for the

processes in the same row. Then, at each factorization

step, the lower and upper triangular factors of the diagonal

Figure 6. Subroutine to compute the off-diagonal blocks of the
lower-triangular factor L at the k-th step of factorization. When
the (i, k)-th tile is a part of a dense block B, getTileB (i, k)
returns the pointer to the beginning of the tile. When the tile is a
part of a low-rank block B ¼ VYT, getTileY (i, k) returns
the pointer to the part of YT, corresponding to the tile. Then,

getBlockMb (i, k) and getBlockRank (i, k) return
the row dimension and the numerical rank of the block that the
(i, k)-th tile belongs to, respectively, while getTileNb (i, k)
returns the column dimension of the tile. Finally,getEndI(i,k)
returns the last row tile index of the block that the (i, k)-th tile
belongs to.

Figure 7. Updating a low-rank H -matrix block that is part of
panel and trailing submatrix (where the H -matrix format allows
the nonsymmetric partition structure). (a) Block layout. (b) Block
update.

8 The International Journal of High Performance Computing Applications XX(X)

block are broadcasted using these two sub-communicators

along the row and column process grid, respectively. Once

the diagonal factor is received and the off-diagonal block

of the lower or upper triangular factor is computed, the

computed block is broadcasted to the processes in the

same row or column of the process grid, respectively.

Thus, each process sends the blocks only to p and q pro-

cesses (e.g. 2
ffiffiffiffiffi
np
p

processes on a square grid).

The 2-D cyclic distribution of the blocks also helps

maintain the processes’ load balance when small enough

blocks are used. However, a smaller block size also

increases the total communication latency cost and may

lower the performance of the BLAS or LAPACK subrou-

tine to perform the local computation. Therefore, the block

or the leave size needs to be carefully selected.

To extend our task-based implementation of the shared-

memory BLU to utilize distributed-memory computers,

we insert OpenMP tasks that call MPI_Bcast to broad-

cast the blocks using the sub-communicators. Once sched-

uled to be executed, our communication task is blocked

until the corresponding communication task is scheduled

on other processes, leading to the idling time of the core.

In order to reduce the number of idling cores, we reduce

the number of communication tasks by having each com-

munication task send all the local off-diagonal blocks of

the panel column or row.

Although the multiple broadcasts may be executed in

parallel, the number of the communication tasks that may

be executed at the same time is bounded by the number of

threads. Hence, we create a separate communicator for

each thread and use the communicators in a round-robin

fashion at each step of factorization.

We note that the OpenMP runtime manages the depen-

dency graph of only the local tasks, and avoids explicitly

forming the global dependency graph of the factorization,

which can be a significant overhead on the runtime system.

5.2. Lattice H -matrix LU

As it has been discussed throughout the article, there are

trade-offs between BLU and HLU. For instance, compared

to BLU, HLU has lower storage and arithmetic complexities,

but it is more difficult to distribute the H -matrix blocks

among the processes for parallel scalability. The distribution

may lead to a load imbalance, an irregular communication

pattern, or a higher communication cost than that of BLU.

For instance, some blocks of the panel in the H -matrix may

need to be sent to different sets of processes, or some blocks

may need to be sent to all the processes. Thus, it is a chal-

lenge to implement HLU on a distributed-memory com-

puter. In contrast, though BLU has higher storage and

arithmetic complexities, it has a more regular communica-

tion pattern that is easier to optimize for parallel scalability.

To combine the advantages of HLU and BLU, we store the

matrix in the lattice H -matrix format that generalizes the

BLR format. Linke in the BLR format, the matrix is still

distributed in the 2-D block cyclic fashion, but each block,

referred to as lattice, is now stored in the H -matrix format.

This eases the parallelization because we can use the threaded

computational kernels for the HLU factorization from Sec-

tion 4.3 to perform the complex matrix operations originating

from the H -matrix structure, while we have the same regular

communication pattern as the distributed BLU in Section 5.1.

Since each of the lattices is stored as an H -matrix, the lattice

matrix LU (LLU) factorization enjoys the high compressibil-

ity of the lattices (similar to the HLU factorization), leading to

the lower costs of the factorization compared to BLU.

Our implementation of the distributed-memory LLU is

an extension of the shared-memory HLU (as described in

Section 4.3). In other words, the trailing submatrix is

updated and recompressed block by block (and not tile by

tile) using the panel. Alternatively, we could factorize the

matrix lattice by lattice (e.g., first factorize the whole diag-

onal lattice, then broadcast the diagonal lattice to compute

the off-diagonal lattices, and finally broadcast the off-diag-

onal lattices to update the remaining lattices). It is also

possible to update the matrix using blocks (broadcast the

whole block only after all the updates and triangular solves

are applied instead of sending a part of the block belonging

to the panel at a time). Compared to updating with blocks or

lattices, our approach leads to a higher communication

latency costs (the same latency cost as BLU), but it

increases the parallelism and simplifies the algorithm.

6. Arithmetic complexity

In order to understand the arithmetic complexity of the

lattice H -matrix factorization, in Table 2, we show the

complexities for the five computational kernels needed for

the factorization.2 With the strong admissibility of the

lattice H -matrix format, the ranks of the low-rank blocks

are assumed to be independent of the problem size. For the

lattice farther away from the diagonal, the sizes of the

blocks in the H -matrix format typically increase and,

eventually, the lattice contains only one low-rank block.

With the strong admissibility, the number of lattices in the

H -matrix format along each lattice-row or lattice-column

is assumed to be independent of the matrix size n.

If the size of the lattice, l, is set to be constant, the total

complexity of gemm(low-rank) will become O ðn3Þ. If the

lattice size is set such that l ¼ O ð ffiffiffinp Þo (as in the block size

for BLR) (Amestoy et al., 2017), the leading term will again

be the gemm(low-rank), which in this case has a complexity

of O ðn2Þ. If the lattice size is set such that l ¼ O ðnÞ (i.e. the

number of lattice n
‘ is constant and independent of n), the

number of calls to all functions becomes O ð1Þ, and the over-

all complexity of the method will be reduced to O ðnlog2nÞ.3

7. Performance results

7.1. Experimental setups

Our test matrices come from electrostatic field simulations

with perfect conductors with the shape of a sphere (see

Yamazaki et al. 9

Figure 8). The surface of the conductor was divided into

triangular elements, and the induced electrical charge on

the surface was calculated using an indirect BEM with a

single layer potential formulation and step functions as the

base function. The matrix name represents its dimension.

For instance, 100ts is a matrix of dimension 105.

In our attempt to make a fair comparison between BLU,

HLU, and LLU performance, we generated the lattice par-

tition of the matrix from the H -matrix partition generated

by HACApK. For instance, since the H -matrix does not

use nested bases, we generate a BLR matrix from an H -

matrix by simply subdividing the off-diagonal blocks of the

H -matrix along the diagonal blocks such that they match

the sizes of the corresponding diagonal blocks. For a low-

rank block given by B � VY T , we first duplicate the cor-

responding parts of V and Y among the blocks, and then

recompress each block using ACA, as illustrated in

Figure 9. After the recompression, we store these matrices,

V and YT, in one contiguous memory for each block.

Similarly, to generate the lattice H -matrix for LLU,

starting from the top left block of the H -matrix, we group

the diagonal blocks into the diagonal lattice such that the

size of each diagonal lattice is the smallest integer that is at

least the specified lattice size (the diagonal blocks are not

subdivided). The off-diagonal blocks of the H -matrix are

then grouped into the off-diagonal lattices by splitting them

along the corresponding diagonal lattices.

All experiments were in double precision. During the

factorization (so as to not introduce additional errors), we

used the same threshold for ACA as that used to generate

the matrix, i.e., approximately k B	 VY T k� t k B k. We

set the threshold to be t¼ 10	3 unless otherwise specified

(this threshold is used and validated for the electrostatic

field simulations) (Ida et al., 2014; Tominaga et al.,

2017; Ida et al., 2018a;). The right-hand side vector b is

set such that b :¼ A�x with �x :¼ 1.

We conducted our experiments either on the Edison

supercomputer at the National Energy Research Scientific

Computing Center or on the Reedbush-L supercomputer at

the University of Tokyo. Each node of Edison has two 12-

core Intel Ivy Bridge CPUs at 2.4 GHz and 64 GB of main

memory. These compute nodes are connected by the Cray

Aries interconnect with Dragonfly topology with 23.7 TB/s

of global bandwidth. Each node of Reedbush has two 18-

core Intel Xeon Broadwell-EP CPUs at 2.1 GHz and 256

GB of main memory. These nodes are connected by the 4�
InfiniBand EDR with 2� 100 Gbit/s.

On Edison, we complied HACApK and our solver using

the Cray Fortran and Cþþ compilers ftn and CC, respec-

tively, linking to Cray MPICH version 7.7.0. On Reedbush,

we used Intel’s MPI compiler mpiifort and mpiicpc

version 18.1.163. On both systems, the code was compiled

using the -O3 optimization flag and linked to sequential

MKL version 2018.1.163.

7.2. Parallel performance with OpenMP

We first study the performance of the threaded BLU and

HLU factorization on the shared-memory CPUs. One of the

critical parameters that affects the factorization perfor-

mance is the leaf size that specifies the minimum size of

the diagonal blocks in the matrix (see Section 2.2).

Figure 10 illustrates the effects of the leaf size on the

factorization performance. A larger leaf size tends to

increase both the computational and storage costs of the

BLU factorization, but it also improves the performance of

the BLAS and LAPACK subroutines used for the local

computation. In many cases, BLU obtained the fastest

Table 2. Arithmetic complexity of the lattice H -matrix
factorization based on the five functions: (1) getrf (H) for the
LU factorization of the diagonal lattices; (2) and (3) trsm for
factorizing the off-diagonal blocks in the panels by triangular
solves where trsm(low-rank) and trsm(H) are trsm for the
lattices in the low rank and H -matrix formats, respectively; and
(4) and (5) gemm(low-rank) and gemm(H) for updating the
trailing lattices.a

Function
Number
of calls Complexity Total complexity

getrf (H) O ðn=lÞ O ðllog2lÞ O ððn=lÞ � ðllog2lÞÞ
trsm (low-rank) O ððn=lÞ2Þ O ðlÞ O ððn=lÞ2 � lÞ
trsm (H) O ðn=lÞ O ðlloglÞ O ððn=lÞ � ðlloglÞÞ
gemm (low-rank) O ððn=lÞ3Þ O ðlÞ O ððn=lÞ3 � lÞ
gemm (H) O ððn=lÞ2Þ O ðllog2lÞ O ððn=lÞ2 � ðllog2lÞÞ

FLOP: floating-point operation.
aIn the table, n is the size of the matrix A and l is the lattice size, while “# of
calls” is the number of times the given function is called, “Complexity” is
the arithmetic complexity of each function call, and “Total complexity” is
the product of these two. With the strong admissibility of the lattice H -
matrix format, the rank r is assumed to be constant, and it does not appear
in the complexity estimates. The cost of recompressing the low-rank
blocks is included in gemm update (e.g. O ð‘rÞ FLOPs for recompression,

compared with O ð‘r2Þ FLOPs for update).

Figure 8. H -matrix partition for 100ts.

Figure 9. H -matrix block to BLR block conversion. BLR: block
low-rank.

10 The International Journal of High Performance Computing Applications XX(X)

factorization time using a leaf size that is larger than the

leaf size that obtained the minimum storage or computa-

tion. The optimal leaf size also tends to increase with

the increase in the matrix dimension. Overall, for our

test matrices, the leaf size of
ffiffiffiffiffi
5n
p

was a good choice for

BLU, and that is what we use for the rest of the experi-

ments (it has been shown that the block size of

Oð ffiffiffiffiffiffiffiffic � np Þ obtains the optimal complexity bound for

BLU when c is set to be the maximum rank of the

blocks) (Amestoy et al., 2018).

In contrast, HLU’s factorization time was less sensitive

to the leaf size. Hence, we use the fixed leaf size of 300 for

the rest of the experiments. With these choices of leaf sizes

(that obtain the near-optimal performance of each algo-

rithm), BLU’s leaf sizes were often larger than that of

HLU. Overall, though many of the BLR blocks had lower

ranks than the original H -matrix blocks, BLR’s storage

cost was still higher than that of the H -matrix.

Figure 11 shows the relative FLOP counts for different

phases of the factorization. We see that the FLOP count is

dominated by the trailing submatrix update that is well

suited for the parallelization. Table 3 then compares the

thread scalabilities of the BLU and HLU factorizations.

Since we used a fixed leaf size for HLU, its scalability was

lower than BLU’s for small matrices. For instance, for the

matrix 1ts, there were only three diagonal blocks for HLU.

On the other hand, for a large matrix, HLU was often faster

than BLU due to HLU’s lower computational cost. As a

reference, Table 3 also shows the performance of the dense

LU factorization subroutine dgetrf from the threaded

MKL. Although dgetrf scaled slightly better than BLU

or HLU, BLU still obtained the speedups of 17:4� and

14:3� over dgetrf on 6 and 24 cores, respectively, while

HLU’s respective speedups were 36:5� and 28:2�.

Tables 4 and 5 compare the performance of threaded

BLU and HLU for different test matrices using all available

cores on the node. BLU required much greater storage, and

it failed to factorize a large matrix because its storage cost

300 500 700 900 1100 1300 1500

leaf size

300 500 700 900 1100 1300 1500

leaf size

300 500 700 900 1100 1300 1500

leaf size

10 -1

10 0

10 1

10 2

10 3

10 4

tim
e

(s
)

0

10

20

30

40

50

60

70

80

90

(a) (b) (c)

co
m

pu
te

 c
os

t (
Tf

lo
p)

HLU(212ts)

HLU(100ts)

HLU(10ts)

0

10

20

30

40

50

60

st
or

ag
e

co
st

 (G
B)

BLU(212ts)
BLU(100ts)
BLU(10ts)

Figure 10. Effects of the leaf sizes on the factorization time, and the computational and storage costs of the factorization (on one node
of Edison). Legends are shared among all three figures. (a) Time (s). (b) Compute (tetraFLOPs). (c) Storage (GB).

BLU BLU BLU BLUHLU HLU

HLU
HLU

1ts 10ts 100ts 150ts
0

0.2

0.4

0.6

0.8

1

Fl
op

 c
ou

nt
 o

ve
r B

LU
's

 to
ta

l

Diag Facto
Panel
Update(compress)
Update(dense)
Compress

Figure 11. Breakdown of the FLOP counts needed for different
phases of factorization (diagonal factorization, computation of off-
diagonal blocks in the panel, updating either compressed or dense
blocks, and ACA), relative to the total FLOP count for BLR. FLOP:
floating-point operation; BLR: block low-rank; ACA: adaptive
cross approximation.

Yamazaki et al. 11

exceeded the memory available on the node. Overall, HLU

was often faster than BLU—especially for a large matrix—

while using less memory.

7.3. Accuracy tests

Tables 4 and 5 also show the relative residual norms and the

error norms of BLU and HLU, respectively. The residual

norm tends to increase with a smaller value of the leaf size.

Since for the best performance, BLU prefers a larger leaf

size than HLU, BLU’s residual norms were often smaller

than that of HLU.

Figure 12 shows the effects of the leaf and lattice sizes

on the residual norms of LLU. The residual norm tends to

increase with a smaller value of the leaf size or with a larger

value of lattice size. As we increase the lattice size, LLU

becomes closer to HLU; LLU becomes closer to BLU as

we decrease the lattice size. Overall, LLU’s accuracy is

between those of HLU and BLU.

Table 3. Performance of the shared-memory factorization on Edison.a

Number of threads

BLU HLU dgetrf

1ts 10ts 100ts 1ts 10ts 100ts 1ts 10ts 100ts

1 0.06 16.2 892 0.07 14.4 426 34.8 (21) — —
6 0.03 3.0 172 0.05 2.8 82 6.8 (110) 2990 (114) —
12 0.02 1.6 94 0.06 1.5 45 3.8 (195) 1595 (214) —
24 0.02 0.9 63 0.06 1.0 32 2.7 (280) 902 (378) —

BLU: block low-rank LU.
aThe factorization time in seconds using different numbers of threads on one node of Edison. For the results with MKL’s dgetrf, we also show the
obtained gigaFLOP/s in parenthesis.

Table 4. Shared-memory BLU performance on Edison using 24
threads: “rel. res.” and “rel. err.” show the relative residual and

error norms 109 � jjb	 Axjj=ðnjjbjjÞ and 102 � jjx	 �xjj=jjxjj,
respectively, while GB (A) and GB (LU) are the respective storage
costs for the original H -matrix and its LU factors in gigabytes.a

t¼ 10	3

10t 100t 150t 212t 338t

GB (A) 0.55 12.1 25.3 — —
GB (LU) 0.55 12.1 25.3 — —

teraFLOPs 0.26 10.0 29.1 — —

Time (s) 0.93 63.3 157.0 — —

Gflop/s 279.6 158.0 185.4 — —

rel. res. 3.3 0.35 0.23 — —
rel. err. 0.15 0.35 0.40 — —

t¼ 10	5

10t 100t 150t 212t 338t

GB (A) 0.57 12.8 26.5 — —
GB (LU) 0.57 12.9 26.5 — —

teraFLOPs 0.27 11.8 32.9 — —

Time (s) 1.04 71.1 174.0 — —

Gflop/s 259.6 166.0 189.1 — —

rel. res. 0.06 0.02 0.01 — —
rel. err. .003 0.02 0.02 — —

BLU: block low-rank LU.
aBLU failed for 212t and 338t to excessive memory.

Table 5. Shared-memory HLU performance on Edison using 24
threads (similarly to the BLU results in Table 4).

t¼ 10	3

10t 100t 150t 212t 338t

GB (A) 0.55 4.4 6.7 12.6 14.9
GB (LU) 0.55 4.4 6.7 12.6 15.0

teraFLOPs 0.26 2.8 6.6 14.4 27.7

Time (s) 1.02 32.5 98.0 196.0 504.0

Gflop/s 254.9 86.2 67.3 73.5 55.0

rel. res. 10.0 3.1 3.1 1.9 1.5
rel. err. 0.2 1.7 3.4 3.0 5.3

t¼ 10	5

10t 100t 150t 212t 338t

GB (A) 0.56 4.8 7.4 13.6 16.8
GB (LU) 0.56 4.8 7.4 13.6 16.8

teraFLOPs 0.28 4.8 12.1 25.2 56.1

Time (s) 0.92 41.3 117.0 252.0 722.0

Gflop/s 304.3 116.2 103.4 100.0 77.7

rel. res. 0.04 0.03 0.17 0.24 0.35
rel. err. 0.01 0.01 0.57 1.29 4.0

BLU: block low-rank LU.

12 The International Journal of High Performance Computing Applications XX(X)

In Section 7.5, we will show that a single Krylov

iteration can reduce the residual norms of BLU, HLU,

and LLU below the accuracy required by the underlying

physical problems.

7.4. Computational and storage costs

Figure 13 shows the computational and storage costs of

BLU and HLU for varying matrix dimension. The differ-

ence between the costs of the two algorithms tends to

increase with the increase in the matrix dimension. The

cost of the new LLU is between those of BLU and HLU,

depending on the lattice size used. For these experiments,

we used the lattice size of n=10. We discuss the effect of the

lattice size in Section 7.5.

7.5. Parallel performance with MPI

We now compare the performance of BLU and the new

lattice LU (LLU) on the distributed-memory computers.

In Tables 6 and 7, we first study the effects of the lattice

size with the increasing number of processes (e.g. the stor-

age or computational cost per process). For LLU, we fixed

the leaf size for the H -matrix format used to store each of

the lattices (i.e., 300). Though the factorization costs did

not significantly change using different lattice sizes, the

shortest factorization time was obtained using a smaller

lattice size on a greater number of processes. For the

remaining experiments, we use the lattice size of n
c
ffiffiffiffi
np
p with

c ¼ 10, reducing the lattice size with the increasing number

of processes to maintain the parallel scalability (using a

smaller lattice size, the lattice H -matrix becomes closer

to BLR).

To accommodate the large storage costs of BLU, we

conducted the remaining experiments on Reedbush.

Figure 14 shows the load imbalance among the processes

for computing BLU and LLU. Since LLU’s lattice size is

larger than BLU’s block size, LLU had a greater load

imbalance, especially with a larger process count.

One of our motivations for using OpenMP tasks is to

reduce the effects of the load imbalance on LLU’s or

BLU’s parallel scalability. Figure 15 shows the perfor-

mance of LLU using three different MPI/OpenMP config-

urations, that is, (1) flat-MPI with one process per core, (2)

MPIþOpenMP with one process per socket and one thread

396 792 1583 3165 6329 12657 25313 50625

lattice size

10-10

10-9

10-8
re

si
du

al
 n

or
m

leaf size=300
leaf size=500
leaf size=700

Figure 12. Effects of leaf and lattice sizes on LLU’s residual norm
for 100ts matrix.

0 2 4

Matrix size 105 Matrix size 105

0

10

20

30

40

50

60

70

80

Tf
lo

p

O(n2)

O(n*log2(n))

0 2 4
0

10

20

30

40

50

60

G
B

BLU
LLU
HLU

O(n1.5)

O(n*log(n))

Figure 13. Computational and storage costs with varying matrix

sizes (the leaf size is set to be
ffiffiffiffiffi
5n
p

and 300 for BLU and HLU,
respectively, while for LLU, we used the leaf size of 300 and the
lattice size of n=ð10

ffiffiffiffiffi
np
p Þ. The low-rank compression greatly

reduces the costs of the factorization, for example, for the
matrices in this figure, the dense factorization would require the
computational costs of 0:7, 667, 2250, 6352, and 25; 743 tera-
FLOPs, and the storage costs of 0:8, 80, 180, 360, and 914 GB.
BLU: block low-rank LU.

Table 6. Effects of lattice size for 338ts using 12 threads per process on Edison (block size is fixed at 300).

Number of process

Lattice size/100

(a) Factorization time (s) (b) Computational cost (teraFLOPs) (c) Storage cost (GB)

13 26 52 78 104 13 26 52 78 104 13 26 52 78 104

4 — 375 330 340 348 — 8.0 8.7 8.8 8.8 — 5.1 5.4 5.6 5.6
8 — 361 286 260 247 — 4.0 4.1 4.0 3.8 — 2.6 2.6 2.6 2.5
16 274 196 177 172 181 2.5 2.8 3.0 3.4 3.2 1.6 1.9 2.1 2.2 2.3
32 167 142 135 140 140 1.3 1.5 1.8 1.6 1.6 0.9 1.1 1.2 1.2 1.2

Yamazaki et al. 13

per core but with a synchronization among the local threads

before each phase of factorization, and (3) MPIþ OpenMP

tasks. We see that the hybrid MPI/OpenMP programming

often reduces the cost of inter-process communication,

performing better than the flat-MPI. The performance can

be further improved using tasks that avoid artificial syn-

chronization points (obtain better core utilization by

increasing the parallelism and overlapping communica-

tion with computation). For the remaining experiments,

we use OpenMP tasks for both BLU and LLU. Overall, in

Table 7. Effects of lattice size for human4 using 12 threads per process on Edison (block size is fixed at 300).

Number of process

Lattice size/100

(a) Factorization time (s) (b) Computational cost (teraFLOPs) (c) Storage cost (GB)

12 24 48 72 96 12 24 48 72 96 12 24 48 72 96

4 — 358 309 310 313 — 8.1 8.2 9.3 8.8 — 4.4 4.4 4.8 4.6
8 409 269 215 207 205 4.4 4.1 4.0 4.5 4.1 2.4 2.2 2.2 2.4 2.3
16 260 187 155 147 152 2.5 2.8 2.9 3.3 3.1 1.4 1.6 1.7 1.8 1.8
32 228 160 126 117 120 1.3 1.4 1.4 1.8 1.5 0.7 0.8 0.8 1.0 0.9

72144 288 432 576

Number of cores

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

M
Fl

op
s

LLU
BLU

72144 288 432 576

Number of cores

0
10
20
30
40
50
60
70
80
90

100
110
120
130

(a)

(b)

G
B

72144 288 432 576

Number of cores

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

C
om

pu
ta

tio
n

im
ba

la
nc

e

LLU
BLU

72144 288 432 576

Number of cores

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

M
em

or
y

im
ba

la
nc

e

Figure 14. Strong parallel scaling for 338ts with 18 threads per
process on Reedbush. The imbalance is the ratio of the maximum
and the minimum loads among the processes. (a) Average com-
putational and storage costs. The error bars show the minimum
and maximum costs among the processes. (b) Computational and
storage imbalances.

72 144 216 288 360 432 504

Number of cores

0

5

10

15

20

25

30

35

40

45

50

Fa
ct

or
iz

at
io

n
tim

e
(s

)
2.7x 2.4x

2.2x
2.5x 2.3x 2.3x 2.3x

BLU(MPI+task)
LLU(flat-MPI)
LLU(MPI+OMP)
LLU(MPI+task)

Figure 15. Effects of MPI/OpenMP configurations on the fac-
torization time for the matrix 100ts with 18 threads per pro-
cess on Reedbush. MPI: message passing interface.

72 144 288 432 576

Number of cores

0

50

100

150

200

250

300

350

400

450

500

550

F
ac

to
riz

at
io

n
tim

e
(s

)

1.3x

1.7x

1.9x
2.0x

1.3x
ScaLAPACK
time (s) 7000 3680 2610 2040

BLU

LLU

Figure 16. Strong parallel scaling for 338ts with 18 threads per
process on Reedbush. For the ScaLAPACK’s pdgetrf runs, we
launched one process per core. ScaLAPACK: Scalable Linear
Algebra PACKage.

14 The International Journal of High Performance Computing Applications XX(X)

Figures 15 and 16, LLU’s respective speedups over BLU

were up to 2:7� and 2:0�.

Table 8 summarizes our findings by comparing the BLU

and LLU performance for different test matrices. Com-

pared to BLU, LLU reduces both the factorization time and

the memory requirement. If BLU used the same amount of

storage as LLU or used the leaf size that obtains the min-

imum storage or computation, then BLU’s factorization

time would increase significantly (see Figure 10).

Figure 10 also shows that after one iteration of the

BiConjugate Gradient Stabilized (van der Vorst, 1992), the

residual and error norms with BLU and LLU are both

below those required by the underlying physical problems.

In addition, the triangular solve with BLU is often more

scalable but is more expensive (due to its higher storage

cost) than that with LLU.

8. Conclusion

To factorize an H -matrix on a distributed-memory com-

puter, we introduced a novel lattice LU (LLU) factorization

algorithm. The algorithm partitions the matrix into 2-D

H -submatrices called lattices and distributes the lattices

in a 2-D cyclic pattern. Compared with the standard

H -matrix factorization, the lattice simplifies both the com-

munication pattern and the parallel computation, while

compared with the BLR layout, the lattice reduces both the

storage and computational costs. Our experimental results

demonstrate that the LLU can reduce the factorization time

over BLU while using less storage.

We are working to improve the parallel performance of

LLU (e.g. accumulating multiple updates before compres-

sion, using task priority for reducing idling time, and exam-

ining the potential of other runtime systems). Although the

low-rank compression reduces the communication volume,

communication can still be the parallel performance bottle-

neck. We are looking to reduce this bottleneck by integrat-

ing other techniques (e.g. 2.5-D factorization) (Solomonik

and Demmel, 2011). To improve the scalability, we are also

investigating the techniques to reduce load imbalance (e.g.,

adaptively adjusting the lattice size based on the trailing

submatrix size, or selecting the appropriate processor grid

to reduce the load imbalance).

To maintain the strong-scale parallel performance of

LLU, we reduced the lattice size on a larger number of

processes (such that LLU is never slower than BLU). How-

ever, this increases the total factorization costs as we

increase the process count, and thus the strong scaling is

still a challenge. Our complexity analysis shows that to

obtain linear complexity, the lattice size needs to be pro-

portional to the problem size. It may be possible to improve

the strong scaling by adopting the techniques used in FMM

(Yokota et al., 2014) and multigrid (Gahvari et al., 2013)

such as redundantly computing the coarse blocks. Another

critical parameter is the leaf size. For our experiment with

LLU, we used the leaf size that obtained a good HLU

performance. We are examining the effects of the lattice

size on the optimal leaf size for LLU’s performance.

We would like to extend our study by comparing our

solvers with other existing software packages (including

the distributed-memory HLU). For our performance com-

parison, we used the matrix partition generated by

HACApK, which the existing algebraic linear solver

packages may not be able to directly use. However, our

layered interface allows any partition structure to be

imported into our solver, and our solver can be used as

an algebraic solver.

Other future work includes using the factors as a pre-

conditioner, accelerating the factorization process using

GPUs, and experiments with larger matrices, for which

Table 8. Factorization performance on Reedbush (4 processes with 18 threads per process).a

BLU LLU

100ts 150ts 212ts 288ts 338ts 100ts 150ts 212ts 288ts 338ts

Time (s) 45 112 263 417 505 17 70 115 334 384
--
Memory, total (GB) 12.1 25.3 43.4 48.5 60.2 4.5 6.9 12.9 12.6 15.4
Memory, min–max 3.0–3.0 6.3–6.4 11–11 12–12 15–15 0.8–1.4 1–2 2–5 2–5 2–6
--
teraFLOPs, total 10.0 29.1 61.8 59.8 77.8 2.9 6.6 14.2 21.4 26.9
teraFLOPs, min–max 2.4–2.6 7.2–7.5 15–16 14–16 19–20 0.5–0.9 1–2 2–5 3–8 4–10

iter, time (s) 1, 2.0 1, 3.9 1, 6.4 1, 8.2 1, 10.2 1, 1.1 1, 2.8 1, 4.5 1, 8.0 1, 10.0
Relative residual norm 0.23 0.15 0.24 4.0 4.6 53.4 18.7 16.2 20.7 13.9
Relative error norm 0.04 0.04 0.11 2.8 3.9 5.8 3.1 5.2 10.2 84.5

--
Memory reduction/BLU — — — — — 3.3� 3.2� 2.2� 1.5� 1.5�
Time speedup/BLU — — — — — 2.6� 1.6� 2.2� 1.2� 1.3�

BLU: block low-rank LU; FLOP: floating-point operation.
aFor the memory and FLOP costs (GB and teraFLOP/s), we show the minimum and maximum among the processes. The relative residual and error

norms were computed as 1015 � jjb	 Axjj=ðnjjbjjÞ and 107 � jjx	 �xjj=jjxjj, respectively, after the BiCG iterations.

Yamazaki et al. 15

compared with BLU, LLU is expected to obtain the lower

costs and the shorter time of factorization.

Authors’ note

This work was done while the author is at the University of

Tennessee, Knoxville, TN, USA. Sandia National Labora-

tories is a multimission laboratory managed and operated

by National Technology and Engineering Solutions of San-

dia, LLC, a wholly owned subsidiary of Honeywell Inter-

national, Inc., for the U.S. Department of Energy National

Nuclear Security Administration under contract de-

na0003525. This article describes objective technical

results and analysis. Any subjective views or opinions that

might be expressed in the article do not necessarily repre-

sent the views of the U.S. Department of Energy or the

United States Government.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest

with respect to the research, authorship, and/or publication

of this article.

Funding

The author(s) disclosed receipt of the following financial

support for the research, authorship, and/or publication of

this article: This work was supported in part by Joint

Usage/Research Center for Interdisciplinary Large-Scale

Information Infrastructures and High Performance Com-

puting Infrastructure in Japan (Project ID: jh170057); JSPS

KAKENHI under grant numbers #17K19962, #17H01749,

and #18H03248; the National Science Foundation under

grant no 1740250; the Exascale Computing Project (17-

SC-20-SC), a collaborative effort of the U.S. Department

of Energy Office of Science and the National Nuclear Secu-

rity Administration, under prime contract #DE-AC05-

00OR22725; and UT Battelle subaward #4000152412.

ORCID iD

Ichitaro Yamazaki https://orcid.org/0000-0002-6196-

2508

Rio Yokota https://orcid.org/0000-0001-7573-7873

Notes

1. We are investigating the other LAPACK SVD solvers

dgesdd and dgesvdx that can compute a subset of

singular values

2. The assumption about the constant rank holds for many

applications of our interests, but may not hold for other

applications (e.g., [Engquist and Ying, 2011]).

3. Recently, the complexity of the weak-admissibility lat-

tice H -matrix factorization has been independently ana-

lyzed (Amestoy et al., 2018), while we use the strong

admissibility in this article.

References

Akbudak K, Ltaief H, Mikhalev A, et al. (2017) Tile low rank

Cholesky factorization for climate/weather modeling applica-

tions on manycore architectures. In: Proceedings of High Per-

formance Computing - 32nd International Conference, ISC

High Performance 2017 (eds Kunkel JM, Yokota R, Balaji P

and Keyes DE), Frankfurt, Germany, 18–22 June 2017, vol

10266. pp. 22–40.

Aliaga JI, Carratalá-Sáez R, Kriemann R, et al. (2017) Task-

parallel LU factorization of hierarchical matrices using

OmpSs. In: Proceedings of the IEEE International Parallel

and Distributed Processing Symposium Workshops,

IPDPSW’17.

Amestoy P, Ashcraft C, Boiteau O, et al. (2015) Improving multi-

frontal methods by means of block low-rank representations.

SIAM Journal on Scientific Computing 37: A1451–A1474.

Amestoy P, Buttari A, L ‘excellent JY, et al. (2018) Bridging the

gap between flat and hierarchical low-rank matrix formats: the

multilevel BLR format. Technical Report hal-01774642, Uni-

versity of Manchester.

Amestoy P, Buttari A, L’Excellent J, et al. (2017) On the com-

plexity of the block low-rank multifrontal factorization. SIAM

Journal on Scientific Computing 39(4): A1710–A1740.

Bebendorf M and Rjasanow S (2003) Adaptive low-rank approx-

imation of collocation matrices. Computing 70: 1–24.

Buttari A, Langou J, Kurzak J, et al. (2009) A class of parallel

tiled linear algebra algorithms for multicore architectures.

Parallel Computing 35: 38–53.

Chandrasekaran S, Gu M and Pals T (2006) A fast ULV decom-

position solver for hierarchically semiseparable representa-

tions. SIAM Journal on Matrix Analysis and Applications

28(3): 603–622.

Chavez G, Turkiyyah G, Zampini S, et al. (2018) Parallel accel-

erated cyclic reduction preconditioner for three-dimensional

elliptic PDEs with variable coefficients. Journal of Computa-

tional and Applied Mathematics 344: 760–781.

Engquist B and Ying L (2011) Sweeping preconditioner for the

Helmholtz equation: Hierarchical matrix representation.

Communications on Pure and Applied Mathematics 64:

697–735.

Gahvari H, Gropp W, Jordan KE, et al. (2013) Systematic reduc-

tion of data movement in algebraic multigrid solvers. In: In

Proceedings of IEEE 27th International Parallel and Distrib-

uted Processing Symposium Workshops and PhD Forum.

Greengard L and Rokhlin V (1987) A fast algorithm for particle

simulations. Journal of Computational Physics 73(2):

325–348.

Hackbusch W (1999) A sparse matrix arithmetic based on H -

matrices, part I: introduction to H -matrices. Computing 62:

89–108.

Hackbusch W, Khoromskij B and Sauter SA (2000) On H
2-

matrices. In: Bungartz H, Hoppe R and Zenger C (eds.) Lec-

tures on Applied Mathematics. Berlin, Heidelberg: Springer.

Ida A (2018) Lattice H -matrices on distributed-memory systems.

In: Proceedings of the International Parallel and Distributed

Processing Symposium.

16 The International Journal of High Performance Computing Applications XX(X)

https://orcid.org/0000-0002-6196-2508
https://orcid.org/0000-0002-6196-2508
https://orcid.org/0000-0002-6196-2508
https://orcid.org/0000-0002-6196-2508
https://orcid.org/0000-0001-7573-7873
https://orcid.org/0000-0001-7573-7873
https://orcid.org/0000-0001-7573-7873

Ida A, Ataka T, Takahashi Y, et al. (2018a) Application of

improved H -matrices in micromagnetic simulations of spin

torque oscillator. IEEE Transactions on Magnetics 54.

Ida A, Iwashita T, Mifune T, et al. (2014) Parallel hierarchical

matrices with adaptive cross approximation on symmetric

multiprocessing clusters. Journal of Information Processing

22: 642–650.

Ida A, Nakashima H and Kawai M (2018b) Parallel hierarchical

matrices with block low-rank representation on distributed

memory computer systems. In: Proceedings of the Interna-

tional Conference on High Performance Computing in Asia-

Pacific Region. ACM, pp. 232–240.

Iwashita T, Ida A, Mifune T, et al. (2017) Software framework for

parallel BEM analyses with H -matrices using MPI and

OpenMP. In: Proceedings of the International Conference

on Computational Science, pp. 12–14.

Kriemann R (2014) H-LU factorization on many-core systems. In:

Computing and Visualization in Science. Berlin Heidelberg:

Springer.

Kurtz S, Rain O and Rjasanow S (2002) The adaptive cross-

approximation technique for the 3-D boundary-element

method. IEEE Transactions on Magnetics 38: 421–424.

Li Y and Ying L (2016) Distributed-memory hierarchical inter-

polative factorization. arXiv:1607.00346v1.

Li Y, Yang H, Martin ER, et al. (2015) Butterfly factorization

Multiscale Modeling and Simulation 13(2): 714–732

Liu X, Xia J and de Hoop MV (2016) Parallel randomized and

matrix-free direct solvers for large structured dense linear sys-

tems. SIAM Journal on Scientific Computing 38(5):

S508–S538.

Minden V, Ho KL, Damle A, et al. (2017) A recursive skeletoni-

zation factorization based on strong admissiblity. Multiscale

Modeling and Simulation 15(2): 768–796.

Poulson J, Demanet L, Maxwell N, et al. (2014) A parallel butter-

fly algorithm. SIAM Journal on Scientific Computing 36(1):

C49–C65.

Pouransari H, Coulier P and Darve E (2017) Fast hierarchical

solvers for sparse matrices using extended sparsification and

low-rank approximation. SIAM Journal on Scientific Comput-

ing 39(3): A797–A830.

Rouet FH, Li XS, Ghysels P, et al. (2016) A distributed-memory

package for dense hierarchically semi-separable matrix com-

putations using randomization. ACM Transactions on Mathe-

matical Software 42(4): Article 27.

Solomonik E and Demmel J (2011) Communication-optimal

parallel 2.5D matrix multiplication and LU factorization

algorithms. In: Proceedings of the 17th International Confer-

ence on Parallel Processing - Volume Part II, Euro-Par’11,

pp. 90–109.

Tominaga N, Mifune T, Ida A, et al. (2017) Application of hier-

archical matrices to large-scale electromagnetic field analyses

of coils wound with coated conductors. IEEE Transactions on

Applied Superconductivity 28.

van der Vorst HA (1992) Bi-CGSTAB: a fast and smoothly con-

verging variant of Bi-CG for the solution of nonsymmetric

linear systems. SIAM Journal on Scientific and Statistical

Computing 13: 631–644.

Wang S, Li XS, Xia J, et al. (2013) Efficient scalable algorithms

for solving dense linear systems with hierarchically semisepar-

able structures. SIAM Journal on Scientific Computing 35(6):

C519–C544.

YarKhan A, Kurzak J, Luszczek P, et al. (2017) Porting the

PLASMA numerical library to the OpenMP standard. Interna-

tional Journal of Parallel Programming 45(3): 612–633.

Yokota R, Turkiyyah G and Keyes D (2014) Communication

complexity of the fast multipole method and its algebraic

variants. Supercomputing Frontiers and Innovations 1(1):

63–84.

Yu CD, Levitt J, Reiz S, et al. (2017) Geometry-oblivious FMM

for compressing dense SPD matrices. In: Proceedings of the

2017 ACM/IEEE International Conference for High Perfor-

mance Computing, Networking, Storage and Analysis.

Yu CD, March WB, Xiao B, et al. (2016) INV-ASKIT: a parallel

fast direct solver for kernel matrices. In: Proceedings of the

2016 IEEE International Parallel and Distributed Processing

Symposium.

Author biographies

Ichitaro Yamazaki received his PhD degree in computer

science from the University of California at Davis in 2008.

He is currently a research scientist at the Sandia National

Laboratories, where his interests lie in high-performance

computing, especially for linear algebra and scientific com-

puting. Before joining the Sandia National Laboratories, he

has also worked in the Innovative Computing Laboratory at

the University of Tennessee at Knoxville as a research scien-

tist from 2011 to 2019, and in Scientific Computing Group at

Lawrence Berkeley National Laboratory from 2008 to 2011,

as a postdoctoral researcher.

Akihiro Ida was born in Japan in 1971. He received B.Math

and M.E. degrees from Nagoya University in 1994 and

1996, respectively. In 2008, he awarded him a Ph.D. degree

in mathematics. In 2000–2012, he researched and devel-

oped linear solvers at VINAS Co., Ltd. In 2012–2015, he

worked as an assistant professor in the Academic Center

for Computing and Media Studies, Kyoto University. He

currently works as an associate professor in the Informa-

tion Technology Center, The University of Tokyo. His

research interests include discretization methods for inte-

grodifferential equations, numerical linear algebra, and

high-performance computing.

Rio Yokota is an associate professor at the Global Scientific

Information and Computing Center, Tokyo Institute of

Technology. His work focuses on hierarchical low-rank

approximations and scalable deep learning. He was one

of the early adapters of GPU computing, and was one of

the first people to receive the ACM Gordon Bell prize using

a GPU-based system in 2009.

Yamazaki et al. 17

Jack Dongarra holds an appointment at the University of

Tennessee, Oak Ridge National Laboratory, and the

University of Manchester. He specializes in numerical

algorithms in linear algebra, parallel computing, use of

advanced-computer architectures, programming metho-

dology, and tools for parallel computers. He was

awarded the IEEE Sid Fernbach Award in 2004; in

2008, he was the recipient of the first IEEE Medal of

Excellence in Scalable Computing; in 2010, he was the

first recipient of the SIAM Special Interest Group on

Supercomputing’s award for Career Achievement; in

2011, he was the recipient of the IEEE IPDPS Charles

Babbage Award; and in 2013, he received the ACM/

IEEE Ken Kennedy Award. He is a Fellow of the

AAAS, ACM, IEEE, and SIAM and a member of the

National Academy of Engineering.

18 The International Journal of High Performance Computing Applications XX(X)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 266
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 175
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50286
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 266
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 175
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50286
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 900
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 175
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50286
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU <FEFF005500730065002000740068006500730065002000530061006700650020007300740061006e0064006100720064002000730065007400740069006e0067007300200066006f00720020006300720065006100740069006e006700200077006500620020005000440046002000660069006c00650073002e002000540068006500730065002000730065007400740069006e0067007300200063006f006e006600690067007500720065006400200066006f00720020004100630072006f006200610074002000760037002e0030002e00200043007200650061007400650064002000620079002000540072006f00790020004f00740073002000610074002000530061006700650020005500530020006f006e002000310031002f00310030002f0032003000300036002e000d000d003200300030005000500049002f003600300030005000500049002f004a0050004500470020004d0065006400690075006d002f00430043004900540054002000470072006f0075007000200034>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [288 288]
 /PageSize [612.000 792.000]
>> setpagedevice

