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Dense Linear Algebra in Applications

Dense Linear Algebra (DLA) is needed in a wide variety of science and
engineering applications:

Linear systems: Solve Ax =b

«  Computational electromagnetics, material science, applications using
boundary integral equations, airflow past wings, fluid flow around ship
and other offshore constructions, and many more

 Least squares: Find x to minimize || Ax-b ||

«  Computational statistics (e.g., linear least squares or ordinary least squares),
econometrics, control theory, signal processing, curve fitting, and many more

 Eigenproblems: Solve Ax =A x

«  Computational chemistry, quantum mechanics, material science, face recognition,
PCA, data-mining, marketing, Google Page Rank, spectral clustering, vibrational
analysis, compression, and many more

- SVD: A=UZV*(Au=ovandA' =0u)
« Information retrieval, web search, signal processing, big data analytics, low rank
matrix approximation, total least squares minimization, pseudo-inverse, and many more
 Many variations depending on structure of A

«  Acan be symmetric, positive definite, tridiagonal, Hessenberg, banded,
sparse with dense blocks, etc.

* DLA s crucial to the development of sparse solvers

eceecoceocce




Dense Linear Algebra in Applications

Dense Linear Algebra (DLA) is needed in a wide variety of science and

engineering applications: Provided in MAGMA 2.5

Linear systems: Solve Ax =b | |FEATURES AND SUPPORT
» MAGMA 2.5 For CUDA

«  Computational electromagnetics, material science, applications using

boundary integral equations, airflow past wings, fluid flow around ship > cIMAGMA 1.4 For OpenCL _
and other offshore constructions, and many more » MAGMA MIC 1.4 ror Intel Xeon Phi
. " . . l
* Least squares: Find x to minimize || Ax-b || U oonCl don P
«  Computational statistics (e.g., linear least squares or ordinary least squares), O U RIEEEEETs
econometrics, control theory, signal processing, curve fitting, and many more ® ® @ CEigenvalue problem solvers
¢ EigenprOblemS: Solve Ax=AX o o Auxiliary BLAS
o Batched LA
« Computational chemistry, quantum mechanics, material science, face recognition, L | e ® SparselA
PCA, data-mining, marketing, Google Page Rank, spectral clustering, vibrational o ® @ CPUGPU Interface
analysis, compression, and many more : .
® @ @ (Multipleprecision support

¢ SVD: A = U Z V* (AU =0V and A*V = Gu) @ NEW Mixed precision (including FP16)

Non-GPU-resident factorizations

« Information retrieval, web search, signal processing, big data analytics, low rank ®
matrix approximation, total least squares minimization, pseudo-inverse, and many more ® NeEw L L
« Many variations depending on structure of A ® o e ‘Mullicoreandmult-GPUsupport :
@ NEW MAGMA Analytics/MagmaDNN 0.2 = S
* Acan be symmetric, positive definite, tridiagonal, Hessenberg, banded, ® ® @ LAPACKtesting o
sparse with dense blocks, etc. GG -
* DLA s crucial to the development of sparse solvers o o Windows
o o Mac 0S

~—— http://icl.cs.utk.edu/magma
https://bitbucket.org/icl/magma




Why use GPUs in HPC?

PERFORMANCE & ENERGY EFFICIENCY
MAGMA 2.5 LU factorization in double precision arithmetic

Intel Xeon E5-2650 v3 (Haswell) NVIDIA Kepler GPU NVIDIA Pascal GPU NVIDIA Volta GPU
2x10 cores @ 2.30 GHz m 15MP x 192 @ 0.88 GHz m 56 MP x 64 @ 1.19 GHz V100 80 MP x 64 @ 1.38 GHz
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What about accelerated LA for Data Analytics?

« Traditional libraries like MAGMA can be used as backend to accelerate the LA computations
In data analytics applications

 Need support for
1) New data layouts, 2) Acceleration for small matrix computations, 3) Data analytics tools

Need data processing and analysis support for Small matrices, tensors, and batched
Data that is multidimensional / relational computations

Fixed-size
batches

batches

Variable-size

Dynamic batches

matrix 3 order tensor

Tensors



Data Analytics and LA on many small matrices

* Machine learning,
« Data mining,

* High-order FEM,
* Numerical LA,

* Graph analysis,

Data Analytics and associated with it Linear Algebra on small LA
problems are needed in many applications:

* Neuroscience,

* Astrophysics,

¢ Quantum chemistry,

*  Multi-physics problems,
« Signal processing, etc.

Sparse/Dense solvers & preconditioners

Machine learning

Convolution

Pooling

Output (

Convolution Fully Output
connected predictions

= [ _———
& U o,
1]y -—% dog 0.0

L] H N — 1|

Convolution of Filters F; (feature detection) and input image D:

For every filter F, and every channel, the computation for
every pixel value O, , is a tensor contraction:

On,k = EDk.iFn.i

Plenty of parallelism; small operations that must be batched
With data “reshape” the computation can be transformed into
a batched GEMM (for efficiency; among other approaches)

Sparse / Dense Matrix DAG-based factorization

System m=) Batched LAPACK
111 A12 AlB A14_ i Y-, ,,,,,,:i @
A, ®0 0 Single calls to
“N\N\A ’ => Batched BLAS
Ay .
A41

Applications using high-order FEM

«  Matrix-free basis evaluation needs efficient tensor contractions,
Cil,i2,i3 = EAk,ilBk,iz,zs
k

«  Within ECP CEED Project, designed MAGMA batched methods
to split the computation in many small high-intensity GEMMs,
grouped together (batched) for efficient execution:

Batch_{ C,; = AT B,,, for range of i3 }



Machine learning / Artificial Intelligence

 Give computers the ability to “learn”

Human brain vs. supercomputer ?
« Soon we may not have to program computers

— We will train them instead ! Y =

> >l o) 7:40/12:44

See part of GTC18 Keynote from NVIDIA CEO Jensen Huang
https://www.youtube.com/watch?v=0a__ wkSmWUw

https://www.scienceabc.com/humans/the-human-brain-vs-supercomputers-which-one-wins.htm|




MagmaDNN - Data Analytics Tool

» MagmaDNN 0.2 — HP Data analytics and ML Provided in MAGMA 2.5
GPU-accelerated numerical software using MAGMA as FEATURES AND SUPPORT
computational backend to accelerate its LA computations » MAGMA 2.5 For CUDA

» ciIMAGMA 1.4 ror OpenCL
. . . » MAGMA MIC 1.4 rorIntel Xeon Phi

» Open source; looking for feedback and contributions T
Started with students from REU/RECSEM program - ”":" "”f nearystem soers
https://bitbucket.org/icl/magmadnn ®© ©® @ Eigenvalue problemsolvers

o o Auxiliary BLAS

o Batched LA

o @® SparselA

® @ @ CPU/GPUInterface

® @ o (Multipleprecisionsupport

@ NEW Mixed precision (including FP16)
® Non-GPU-resident factorizations
@ NEW GPU-only factorizations

® @ o Multicoreandmulti-GPU support
@ NEW MAGMA Analytics/MagmaDNN 0.2
® @ o LAPACKtesting

® @ o Linux

o o Windows

o o Mac 0S

SRV http://icl.cs.utk.edu/magma https://bitbucket.org/icl/magmadnn




MagmaDNN - Data Analytics Tool

» MagmaDNN 0.2 — HP Data analytics and ML Provided in MAGMA 2.5
GPU-accelerated numerical software using MAGMA as FEATURES AND SUPPORT
computational backend to accelerate its LA computations » MAGMA 2.5 For CUDA

» ciIMAGMA 1.4 ror OpenCL
» MAGMA MIC 1.4 rorIntel Xeon Phi

A ntel .
‘ [)Pe"cli(eonphI

» Open source; looking for feedback and contributions
Started with students from REU/RECSEM program

cup

. . ® @ @ Linearsystemsolvers
https://bitbucket.org/icl/magmadnn ®© © @ Eigenvalue problemsolvers
e o Auxiliary BLAS
» MagmaDNN 0.2 main functionalities N za““edL;A
. O o parse
> Tensors and tensor operations o © ® CPUIGHnterface

> Deep |earning primitiveS: ® @ Multiple precision support

P

Fully-connected layers, convolutional layers, o e RS
l. I t t Ia ers and 0 t tla O Non-GPU-resident factorizations
pooling layers, activation layers, utput layers. . 6PU-anly factorizations
» SGD back-propagation training © @ @ Multicoreandmulti-GPUsupport
» Established adapters for calling CuDNN ® new MAGMA Analytics/MagmaDNN 0.2
» Winograd convolutions to accelerate CNNs © o o LiPAKesig
. . @) Li
> Mixed-precision (FP16-FP32) FFT SR
» Hyperparameter optimization framework o o Mac 05
» MNIST and CIFAR-10 benchmarks using MagmaDNN
» Performance comparisons, accuracy validations, etc. (w\ TensorFlow, Theano, and PyTorch)

SN VS http://icl.cs.utk.edu/magma https://bitbucket.org/icl/magmadnn




Fully connected layers with MagmaDNN

Fully-connected 3-layer Neural Network example

AN

7

X 50%
SO
SOF

input layer

:
{

)

tput layer

hidden layer 1 hidden layer 2

» Data (input, output, NN weights, etc.) is handled

through tensor abstractions
/I 2d tensor for n_images and n_features in the corresponding dimensions
Tensor<float> Images = Tensor<float>({n_images, n_features});

Support for various layers:

Fully connected (FCLayer), convolution, activation, flatten,
pooling, input, output, etc. layers

/I Create layers for the network

FCLayer<float> *FC1 = new FCLayer<float>(&inputLayer, 128);
ActivationLayer<float> *actv1 = new ActivationLayer<float>(FC1, SIGMOID);
FCLayer<float> *FC2 = new FCLayer<float>(actv1, n_output_classes);

> Support networks — composed of layers

std::vector<Layer<float>*> vec_layer;
vec_layer.push_back(&inputLayer);
vec_layer.push_back(FC1);
vec_layer.push_back(actv1);
vec_layer.push_back(FC2);



Convolutional network layers

» Layers are typically 3D volumes

» Handled through tensors
Convolution Network (ConvNet) example

» Each layer transforms 3D tensor to 3D tensor
/ é?o%?&éﬁu ' > Layers support the forward and backward pass
5 algorithms for the training
L / » Support for optimization solvers (GD and derivatives)

» Gradient Descent (GD)
» Stochastic Gradient Descent (SGD)
» Mini-Batch Gradient Descent (MB-GD)



How to accelerate on manycore GPU and CPUs?

» Convolutions can be accelerated in various ways:
» Unfold and GEMM

> FFT
Convolution Network (COI‘IVNet) example > Winograd minimal Fast Convolution

. . . L. m n k M
filtering — reduction e
to batched GEMMs
U
3136 512 256 16

/—>
9 3136 512 512 16

10 3136 512 512 16
l l 11 784 512 512 16
12 784 512 512 16
13 784 512 512 16

12544 64 3 1
12544 64 64 1
12544 128 64 4
12544 128 128 4
8
8

6272 256 128
6272 256 256
6272 256 256 8

o N kW~

Require matrix-matrix products of various sizes,
including batched GEMMSs

» Use autotuning to handle complexity of tuning



Accelerating CNNs in MagmaDNN with FFT

» Convolutions D, . * G, . of images D, . and filers G, . can be accelerated through FFT,
as shown by the following equality, consequence of the convolution theorem:

D,. * G, = FFT' [ FFT(D, ) .* FFT(G,,) ],

where .* is the Hadamard (component-wise) product, following the *.*’ Matlab notation

» Developed mixed-precision (FP16-FP32) FFT using the GPU’s Tensor Cores (TC) acceleration
» Dynamic splitting to increase the FP16 accuracy, while using high-performance TC

Xep3a(:) = 81 X1ppeg(c) + 55 X2epyg(:)
[X1 X2] = FFT([ X1 X2] in FP16+ (e.g., go to radix 4, where the FFT matrix is exact in FP16)

FFT (X)=s, X1 +s, X2



Accelerating CNNs with FFT

» Accuracy of the mixed-precision
(FP16-FP32) FFT

Reference:

X. Cheng, A. Sorna , Ed D’Azevedo, K. Wong, S. Tomov, "Accelerating
2D FFT: Exploit GPU Tensor Cores through Mixed-Precision,” The
International Conference for High Performance Computing, Networking,
Storage, and Analysis (SC'18), ACM Student Research Poster, Dallas,
TX, November 11-16, 2018.

https://icl.utk.edu/projectsfiles/magmalpubs/77-mixed-precision-FF T.pdf
https://www.jics.utk.edu/recsem-reu/recsem18

0.00025

0.0002

—Dynamic Splitting

00001 ~——CUFFT16 (Error

scaled by 107-3)

Error

0.0001

0.00005

16 64 256 1024 4096

Input matrix size (M * N)

16384 65536

Accelerating 2D FFT: Exploit GPU Tensor Cores through Mixed-Precision

Xiaohe Cheng, Anumeena Sorna, Eduardo D’Azevedo (Advisor), Kwai Wong (Advisor), Stanimire Tomov (Advisor)
Hong Kong University of Science and Technology, National Institute of Technology, Oak Ridge National Laboratory, University of Tennessee

Overview

Q 2D FFT in HPC applications
= Frequency domain analysis
= Quantum cluster simulations
Q Large volume and high parallelism
= Exploit modern parallel architectures
= Graphics Processing Units (GPUs)
= Nvidia CUDA
Q cuFFT library: current state of the art, but can
NOT benefit from the FP16 arithmetic on
recent hardware due to accuracy limitations
* cuFFT does not

Additional Observatlons

Q For fixed number of S0 forst numberof
input elements, the
accuracy is affected by
the shape of matrix. 5 oo
Particular matrix =
dimensions lead to -
higher accuracy, which

can be exploited by o
FFT applications.

Our Proposed Approach
Q Implementing 2D FFT
Y=F-X-FT
e . ©

mm

—* 1D FFT: Apply Cooley—Tukey algorithm, choose N1 = 4 (radix-4)
to balance execution speed and accuracy.

Reshape &

Trampou N2-Point DFTs

N1-Point DFTs

i El

_II—
Ta Num-u-rnrrsm
TMlnmvmummn ‘size In the combine step, ranspose® and Transpose* and take N2
Nm‘immmm.n rocursivocin © | [E i b

SRR G

e
1D FFT over 1D FFT over ﬁ l ﬂ
each row ach column
Q To utilize oolumn major 1D I % e
FFT routine
Y=(F-F-0N

- © m  Oranspose

In implomentaton we
mody i GF kamotto
vold aking ranspose.

< Mixed precision DFT: dynamic splitting

Conclusions & Future Work

achieve the same D FFTlover = Linearity of FFT allows  [FSSSIv.
GEMM 320% lavellof accalaration T ag the separate computation llxm( >+ M.,( ) 105 | 1o Q Our dynamic splitting method computes 2D fast
FFTFP16  17.02% *The fnal ransooso is e of FFT(Xy) and FET(Xo) | gy @~ infinity nom of inp transform efficiently by utilizing the hardware
s e as cuBLAS GEMM SRR’ " each coumn in half precision 1600 | 16t | 5 oy nomm of rosaue [T T Yy by 9

advancement in half-precision floating-point arit
Q The implementation effectively emulates single
precision calculation, and produces highly accul
results from a variety of inputs
Q The speed of current cuBLAS-based implement
inferior to cuFFT library, but optimizations are a
= Tiled matrix transpose via GPU shared me
= Pre-computation of twiddle factors
= Combination of real and imaginary operati

QO Results: Tensor Core accelerated FFT &
improved accuracy
= Straightforward CUDA implementation
costs ~2.5x time of cuFFT32
= Error within 104, 1000x better than
CuFFT16

Experimental Results

Q The method preserves high accuracy,
even with growing matrix sizes

0.00025

Q The cost of dynamic splitting and combine
is not significant

00002 «Dynamic Splitting

QO Mixed-precision methods benefit both
computation and memory
Q Tensor cores on new GPU architecture
= Matrix-multiply-and-accumulate units
with throughput up to 125 TFLOPS
= Multiply Inputs: FP16 (half type) only
[ € [€ €[ €| € [M[mmIM[M[mmIM[Mm
Q FFT properties: linearity, numerical
stability, intensive matrix multiplications

Motivation — Er :?:,T{'.?ﬂg Q Input-aware auto-tuning splitting algorithm is to
E ——CuFFT16 (Error E . # Combine designed to support ill-conditioned inputs. It ma)

o0.m01 scaled by 10-3) improve execution speed and accuracy.
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Accelerating CNNs with Winograd's minimal filtering algorithm

> FFT Convolution is fast for large filters;
Typical filters are small, e.g., 3x3, where Winograds’s
algorithm has been successful; BT —
In 2D, convolution of tile D of size 4x4 with
filter F of size 3x3 is computed as

D*F=AT[[GDG' .*[B"DB]]A

1
oM O O O

O =
P
l
—
I
—

where B, G, and A are given on the right: A" = _

» Computing for a number of filters, sliding the tile over a batch of images, each with a number of
channels, can be expressed as batched gemms, e.g.,

batch m n Kk (sizes coming from VGG-16 CONVOLUTION LAYERS)
16x64 12544 64 3

16x64 12544 64 64

16x16 12544 128 64

16x16 12544 128 128



How to implement fast batched DLA?

Problem sizes influence algorithms & optimization techniques

Nvidia V100 GPU

8000
small sizes medium sizes Large sizes
7000
6000 X
A 1.4X
» 5000
g
¢ 4000 19X
Switch to non-batch
3000
2000
-0-Batch dgemm BLAS 3
1000
N7 =%Standard dgemm BLAS 3
o beetd
0 500 1000 1500 2000 2500 3000 3500
50~1000 matrices of size
Matrix sizes (fixed) in the batch
Batch size 300 Batch size 50

Batch size 1,000

4000

Kernels are designed various scenarios and

Optimizing GEMM’s: Kernel design

parameterized for autotuning framework to

find “best” performing kernels

V-

v

A

A

* Reading/writing the elements is

based on the TB size (# threads)
and so is an extra parameter.

e Alsoit could be different for A, B

and C



Hyperparameter optimization framework

» Hyperparameters are grouped in Model class
// put in layers a sequence of predefined layers

.:vector<Layer<float>*> layers { &input_layer, FC1, actv1, FC2, output_layer };
/] set some hyperparameters

Param p { learning_rate, weight_decay, batch_size, epochs };
Model model (p, &layers);

/[ train network model — arguments train data, train outcomes, verbose, accuracy, loss
model.fit(x_train, y_trian, , accuracy, loss);

» User can define a hyperparameter search space, e.g., start parameters, end, and step

Param start { 0.2, 0, n_batch, 5}
Param end { 0.2, 1, n_batch, 5}
Param step {0.01, 0.01, 1, 1}

Model model (start, &layers);

» ... and find optimal parameters via a grid_search function
Param opt = grid_search(model, x_train, y_train, start, end, step, 5, -1, 5000, );



MagmaDNN benchmarks and testing examples

Fully-connected 3-layer Neural Network example

input layer

hidden layer 1 hidden layer 2

» The MNIST benchmark is a NN for
recognizing handwritten numbers

» Input for the training are images of
handwritten numbers and the labels
indicating what are the numbers

MagmaDNN has testing/example drivers
Example implementing the MNIST benchmark
using MagmaDNN multilayer perceptron or a
convolutional neural network

CIFAR-10 benchmark using MagmaDNN
Benchmarks for Wingrad and FFT

Performance comparisons, accuracy validations,
etc. (w\ TensorFlow, Theano, and PyTorch)



MagmaDNN performance benchmarks and validations

MLP Time Comparison on MNIST » MagmaDNN outperforms other popular deep

70 4 learning libraries
—a— MagmaDNN
60 | T‘l','i‘*;’,“l' ';’“’ » Compute time scales better than other
e vl1orch ) .
Ny SN ) Theano GPU | libraries as models get larger
0 | h Theano CPU
= 40 |
= 30 | ' ga::;neter/ Setting Value
GPU Nvidia 1050 Ti
90 ¥ CPU Intel Xeon X5650 @
2.67GHz x 12
r 0OS Ubuntu 16.04 LTS
10 | . Epochs 5
e Batch Size 100
S U Sy Learning Rate 0.2
o - ¢ - ‘ Weight Decay 0.001
2 1 6 8 10 12 14 #Hidden Units —
Layers Layer




MagmaDNN benchmarks and testing examples ...

EEG-Based Control of a Computer Cursor Movement with
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Current work and Future directions

Performance portability and unified support on GPUs/CPUs

— C++ templates w/ polymorphic approach;
— Parallel programming model based on CUDA, OpenMP task scheduling, and MAGMA APls.

Hyperparameter optimization
— Critical for performance to provide optimizations that are application-specific;
— Alot of work has been done (on certain BLAS kernels and the approach) but still need a simple framework to handle the entire library;
— Current hyperparameter optimization tool must be further extended in functionalities
— Add visualization and OpenDIEL to support ease of GPU deployment over large scale heterogeneous systems

Extend functionality, kernel designs, and algorithmic variants
— BLAS, Batched BLAS, architecture and energy-aware
— New algorithms and building blocks, architecture and energy-aware
— Randomization algorithms, e.g., for low-rank approximations, and applications

Use and integration with applications of interest (with ORNL collaborators)
— Brain-computer interface systems
— Post-processing data from electron detectors for high-resolution microscopy studies (Unmixing 4-D Ptychographic Images)
— Optimal cancer treatment strategies
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