
Scheduling independent stochastic tasks on
heterogeneous cloud platforms

Yiqin Gao∗, Louis-Claude Canon†, Yves Robert∗‡, Frédéric Vivien∗
∗Univ Lyon, EnsL, UCBL, CNRS, Inria, LIP, F-69342, LYON Cedex 07, France

†FEMTO-ST, Université de Bourgogne Franche-Comté, France
‡University of Tennessee Knoxville, USA

Abstract—This work introduces scheduling strategies to max-
imize the expected number of independent tasks that can be
executed on a cloud platform within a given budget and under a
deadline constraint. The cloud platform is composed of several
types of virtual machines (VMs), where each type has a unit
execution cost that depends upon its characteristics. The amount
of budget spent during the execution of a task on a given VM
is the product of its execution length by the unit execution cost
of that VM. The execution lengths of tasks follow a variety of
standard probability distributions (exponential, uniform, half-
normal, etc.), which is known beforehand and whose mean and
standard deviation both depend upon the VM type. Finally, there
is a global available budget and a deadline constraint, and the
goal is to successfully execute as many tasks as possible before the
deadline is reached or the budget is exhausted (whichever comes
first). On each VM, the scheduler can decide at any instant to
interrupt the execution of a (long) running task and to launch a
new one, but the budget already spent for the interrupted task is
lost. The main questions are which VMs to enroll, and whether
and when to interrupt tasks that have been executing for some
time. We assess the complexity of the problem by showing its NP-
completeness and providing a 2-approximation for the asymptotic
case where budget and deadline both tend to infinity. Then we
introduce several heuristics and compare their performance by
running an extensive set of simulations.

I. INTRODUCTION

This paper deals with the following problem: given a cloud
platform and a bag of stochastic tasks, how to maximize the
number of successful task executions, given a budget and a
deadline. The cloud platform is composed of several Virtual
Machine (VM) types, each with a different unit cost and
computing capacity. The execution time of the tasks follows
a different probability distribution on each VM type, in order
to account for their different performance. For instance, the
expectation of the distribution of task durations on a given
VM can be inversely proportional to the raw speed of that
VM, while the standard deviation can account for the interplay
between task profiles and VM parameters, such as memory
usage, communication pattern, etc. In the paper, we use an
extensive set of widely used distributions, namely exponential,
uniform, half-normal, lognormal, gamma, inverse-gamma and
Weibull distributions.

This task model assumes that some tasks may not be
executed in the end. In fact, there are three cases: (i) some
tasks are launched and reach completion, meaning that they
are successfully executed: (ii) some tasks are launched but they
are interrupted before completion, meaning that their execution

has failed; and (iii) some tasks are not launched at all. The
objective is to maximize the number of successful tasks, given
the deadline and budget constraints. This scheduling problem
naturally arises with many applications in the context of
information retrieval (see Section II for a detailed discussion).
Informally, the goal is to extract as much information as
possible, by launching analysis tasks whose execution time
strongly depends upon the nature of the data sample being
processed. A typical example is a set of image files, whose
processing times heavily depend upon the elements that are
present (or not) within each image. Not all data samples
must be processed, but the larger the number of data samples
successfully processed, the more accurate the analysis.

Furthermore, this task model is closely related to imprecise
computations [2], [13], [27], particularly in the context of
real-time computations. In imprecise computations, it is not
necessary for all tasks to be completely processed to obtain a
meaningful result. Most often, tasks in imprecise computations
are divided into a mandatory and an optional part: while the
execution of all mandatory parts is necessary, the execution of
optional parts is decided by the user. Often, the user has not the
time or the budget to execute all optional parts, and she must
select which ones to execute. Our work perfectly corresponds
to optimizing the processing of the optional parts. Among
domains where tasks may have optional parts (or where some
tasks may be entirely optional), one can cite recognition
and mining applications [32], robotic systems [23], speech
processing [16]; and [26] also cites multimedia processing,
planning, artificial intelligence, and database systems. In these
applications, the processing times of the optional parts are
heavily data-dependent, hence the need to estimate them via
a probability distribution.

With a single VM, the problem is to decide whether, and
when, to interrupt a long-lasting task, with the hope to launch
a new one that would execute faster. Of course this is a risky
decision, because: (i) the time and budget already spent to
execute the current task will be lost if it gets interrupted; and
(ii) there is no guarantee that the new task will complete faster
than the interrupted one. This problem was studied in our
previous work [9], which showed that there exists an optimal
threshold at which each running task should be interrupted.
Interrupting each yet unsuccessful task when it reaches this
optimal cutting threshold is shown to maximize the expected
success rate on the VM, i.e., the average number of tasks



successfully executed per time unit. This cutting threshold
depends upon the probability distribution of task execution
times and is computed numerically.

With several VMs of different types, the problem becomes
dramatically more complicated, because we have to decide
how many VMs to enroll, and of which type. In addition to
success rate, the unit cost of the VM plays an important role.
In fact, the key parameter is the yield, defined as the ratio of
the success rate over the unit cost: it gives the expected number
of successful tasks per budget unit. Intuitively, one would like
to sort available VMs by non-decreasing yields, and greedily
enroll them in this order. With this greedy algorithm, there re-
mains to determine how many VMs to enroll. We show how to
determine this number and call GREEDY the resulting greedy
algorithm with the optimal number of VMs. Unfortunately,
GREEDY is not optimal. In fact, we show that the problem
to decide which VM to enroll is NP-complete, but we also
show that GREEDY is guaranteed to be a 2-approximation.
These results lay the foundation for the complexity of the
problem with several VMs. On the practical side, we compare
GREEDY with a variety of other heuristics, using an extensive
set of simulations, and observe that it always achieve a close-
to-optimal performance, which makes it the heuristic of choice
for the target optimization problem.

The main contributions of this work are the following:
• We provide several theoretical results (NP-completeness,

approximation algorithm GREEDY and performance
lower bound) for the problem instance with large budget
and deadline. These results show the difficulty of the op-
timization problem under study, and lay the foundations
for its analysis;

• We compare the performance of GREEDY to that of
several heuristics for the general problem with arbitrary
deadline and budget values, and for all the probability
distributions mentioned above. Not only GREEDY is
superior to the other heuristics, but its performance is very
close to the lower bound on most instances. Altogether,
GREEDY provides a robust approach to the problem.

The rest of the paper is organized as follows. Section II
surveys related work. We detail the framework and objective in
Section III, and recall prior strategies for interrupting tasks on
a given VM in Section IV. We provide complexity results (NP-
completeness and 2-approximation algorithm) in Section V.
We compare these heuristics in Section VI, assessing their
performance for an extensive set of simulation parameters.
Finally, we provide concluding remarks and directions for
future work in Section VII.

II. RELATED WORK

This work falls under the scope of cloud computing since it
targets the execution of sets of independent tasks on a cloud
platform under deadline and budget constraints. However,
because we do not assume to know in advance the exact
execution time of tasks (we are in a non-clairvoyant setting
and know only its distribution), this work is also closely related
to the scheduling of bags of tasks. We survey both topics in

Sections II-A and II-B. Finally, in Section II-C, we survey task
models that are closely related to our model.

A. Cloud computing

There exists a huge literature on cloud computing, and
several surveys review this collection of work [4], [37], [38].
Singh and Chana published a recent survey devoted solely to
cloud resource provisioning [37], that is, the decision of which
resources should be enrolled to perform the computations.
Resource provisioning is often a separate phase from resource
scheduling. Resource scheduling decides which computations
should be processed by each of the enrolled resources and in
which order they should be performed.

Resource provisioning and scheduling are key steps to the
efficient execution of workflows on cloud platforms. The
multi-objective scheduling problem that consists in meeting
deadlines and either respecting a budget or minimizing the
cost (or energy) has been extensively studied for deterministic
workflows [1], [3], [6], [7], [14], [20], [29], [30], [41], but
has received much less attention in a stochastic context.
Indeed, most of the studies assume a clairvoyant setting: the
resource provisioning and task scheduling mechanisms know
in advance, and accurately, the execution time of all tasks.
A handful of additional studies also consider that tasks may
fail [28], [36]. Among these articles, Poola et al. [36] differ
as they assume that tasks have uncertain execution times.
However, they assume they know these execution times with a
rather good accuracy (the standard deviation of the uncertainty
is 10% of the expected execution time). They are thus dealing
with uncertainties rather than a true non-clairvoyant setting.
The work in [8] targets stochastic tasks but is limited to taking
static decisions (no task interruption).

Some works are limited to a particular type of application
like MapReduce [24], [39]. For instance, Tian and Chen [39]
consider MapReduce programs and can either minimize the
financial cost while matching a deadline or minimize the
execution time while enforcing a given budget.

Our task model applies to compute-bound tasks because
we do not account for communication times and instead
assume that they are negligible in front of computation times.
However, we refine the classical deterministic model by adding
stochasticity to task execution times.

B. Bags of tasks

A bag of tasks is an application comprising a set of
independent tasks sharing some common characteristics: ei-
ther all tasks have the same execution time or they are
instances coming from a same distribution. Several works
devoted to bag-of-tasks processing explicitly target cloud
computing [22], [35]. Some of them consider the classical
clairvoyant model [22] (while [12] targets a non-clairvoyant
setting). A group of authors including Oprescu and Kielmann
have published several studies focusing on budget-constrained
makespan minimization in a non clairvoyant settings [33]–
[35]. They do not assume they know the distribution of
execution times but try to learn it on the fly [33], [34].



This work differs from ours as these authors do not consider
deadlines. For instance, in [35], the objective is to try to
complete all tasks, possibly using replication on faster VMs,
and, in case the proposed solution fails to achieve this goal, to
complete as many tasks as possible. The implied assumption
is that all tasks can be completed within the budget. We
implicitly assume the opposite: there are too many tasks to
complete all of them by the deadline, and therefore we attempt
to complete as many as possible; we avoid replication, which
would be a waste of resources.

Vecchiola et al. [40] consider a single application com-
prising independent tasks with deadlines but without any
budget constraints. In their model, tasks are supposed to have
different execution times but they only consider the average
execution time of tasks rather than its probability distribution
(this is left for future work). Moreover, they do not report
on the amount of deadline violations; their contribution is
therefore hard to assess. Mao et al. [31] consider both deadline
and budget constrained provisioning and assume they know
the tasks execution times up to some small variation (the
largest standard deviation of a task execution time is at most
20% of its expected execution time). Hence, this work is
more related to scheduling under uncertainties than to non-
clairvoyant scheduling.

C. Task model

Our task model assumes that some tasks may not be
executed. This model is very closely related to imprecise
computations [2], [13], [27]. Furthermore, this task model also
corresponds to the overload case of [5] where jobs can be
skipped or aborted. Another, related model, is that of anytime
tasks [25] where a task can be interrupted at any time, with the
assumption that the longer the running, the higher the quality
of its output. Such a model requires a function relating the time
spent to a notion of reward. Finally, we note that the general
problem related to interrupting tasks falls into the scope of
optimal stopping, the theory that consists in selecting a date
to take an action, in order to optimize a reward [17].

Altogether, the present study appears to be unique because it
uses a semi non-clairvoyant framework and assumes an overall
deadline in addition to a budget constraint. Our previous
work [9] had the same setting but was limited to identical
VMs, while the key problem studied in the paper is the
selection of an efficient set of VMs among those available
in the target cloud platform.

III. PROBLEM DEFINITION

This section details the framework and the scheduling
objective. See Table I for a summary of main notations.

A. Platform and tasks

We aim at scheduling a set of independent stochastic tasks
all available at time zero on a cloud platform. The cloud
platform is composed of a set of different VMs, each with their
own characteristics. In the abstract formulation of the problem,
there is a set P = {VM1,VM2, . . . ,VMM} of M VMs. Each

Table I
SUMMARY OF MAIN NOTATIONS.

Platform
P platform
M number of VMs
VMi the i-th VM
ci unit cost of VMi

`i cutting threshold for task interruption on VMi

Si success rate of VMi, computed using `i
Yi yield of VMi, where Yi = Si

ci
Y tot total platform yield
k number of VM categories
mj number of VMs of type j (hence M =

∑k
j=1mj )

Tasks
Di probability distribution of execution times on VMi

µi, σi mean, standard deviation of Di

Constraints
b budget
d deadline
K ratio b/d

VM has a unit cost: ci is the amount of budget spent per unit of
time for executing a task on VMi. The execution time of a task
on VMi obeys a probability distribution Di, which is known
beforehand and chosen as a probability distribution whose
mean and standard deviation both depend on the characteristics
of VMi. The rationale for such a framework is the following.
First, we assume that task execution times are data-dependent,
as is the case in many applications (see Section II), and there-
fore exhibit stochastic behaviors which can be nicely modeled
by a probability distribution. Second, task execution times
cannot be easily encapsulated as a mere function of the number
of cores of their host VM, because many parameters such as
memory usage and communication patterns must be taken into
account. Therefore, it would not make sense to consider a
unique probability distribution and simply scale it by a unique
parameter, say the number of cores of each VM, to induce
actual execution times on that VM. Instead, we use a different
probability distribution for each VM, with values of mean
and standard deviation accounting for heterogeneity sources.
It makes sense to assume that the mean µi of Di, which is the
expectation of execution times on VMi, is somewhat related
to the number of cores nbcoresi of VMi. In the experimental
section (Section VI), we explore scenarios where mean values
µi are inversely proportional to core counts nbcoresi, but
we vary standard deviations σi to account for a wide range
of heterogeneity degrees. We report results for a variety of
standard probability distributions (exponential, uniform, half-
normal, lognormal, gamma, inverse-gamma and Weibull).

Finally, in many experimental cloud platforms, there is only
a reduced set of different VM types, with several available
identical VMs per type. We let k be the number of types
and mj be the number of available VMs for type j, where∑k
j=1mj =M .

B. Constraints and optimization objective

The user has a limited budget b and an execution deadline
d. The optimization problem is to select a subset of VMs



and to maximize the expected number of tasks that can be
successfully completed on these VMs before the deadline is
reached or the totality of the budget is spent. More precisely,
the optimization problem OPT(P, b, d) is the following:
• Decide which VMs to launch: it can be any subset of P;
• Each VM in P executes tasks continuously, as soon as it

is started and until the deadline or the budget is exceeded,
whichever comes first;

• At any time and on each VM, decide whether to interrupt
the task that is currently executing and launch a new one:
each task can be deleted by the scheduler at any time
before completion;

• The execution of each task is non-preemptive. In a
non-preemptive execution, interrupted tasks cannot be
relaunched, and the time/budget spent computing until
interruption is completely lost.

IV. CUTTING THRESHOLD

In this section, we discuss scheduling strategies that decide
to interrupt a task when its execution time reaches a given
threshold. Consider a given VM and a continuous distribution
D for execution times on that VM, with expected value µ and
standard deviation σ. We start with some classical strategies:
• MEANVARIANCE(x) is the family of heuristics that inter-

rupt a task as soon as its execution time reaches µi+xσi,
where x is some constant (positive or negative).

• QUANTILE(x) is the family of heuristics that interrupt a
task when its execution time reaches the x-quantile of the
distribution Di with 0 ≤ x ≤ 1.

• Finally, NEVERINTERRUPT is the baseline heuristic that
never interrupts tasks; more precisely, to avoid outliers,
NEVERINTERRUPT interrupts a task when its execution
reaches 100 times the mean value of the distribution.

Our previous work [9] introduced the OPTRATIO heuristic
which works as follows: Let F (x) be the cumulative distribu-
tion function and f(x) its probability density function of D.
OPTRATIO interrupts all (unsuccessful) tasks at time

`max = argmax
l

S(l) where S(l) = F (l)∫ l
0
xf(x)dx+ l(1− F (l))

·

(1)
The idea behind OPTRATIO is that it maximizes (asymptot-
ically) the ratio S(l) of the probability of success (namely
F (l)) to the expected execution time spent for a single task,
when each task is interrupted at time l (i.e.,

∫ l
0
xf(x)dx

for the cases when the task terminates sooner than l and∫∞
l
lf(x)dx = l(1 − F (l)) otherwise). OPTRATIO has been

shown to perform very well for a wide range of budget and
deadline values [9].

For most distributions, we cannot compute `max analytically,
but we provide a program [10] to compute it numerically. For
example take a lognormal(α, β) distribution: when µ = 1 and
σ = 3 we find `max ≈ 0.1. We prove the following character-
ization of `max for exponential and uniform distributions (see
the extended version [19] for the proof):

Proposition 1. For the distribution exp(λ), S(l) = λ = 1
µ for

all values of l, and `max can be chosen arbitrarily (interrupt
tasks at any time). For the distribution uniform(a, b), `max = b
and S(`max) = 2

a+b =
1
µ (never interrupt tasks).

V. COMPLEXITY RESULTS

In this section, we present complexity results with several
VMs, assuming large budget and deadline values. We start
by formulating the asymptotic optimization problem in Sec-
tion V-A. We assess its complexity in Section V-B. Then we
introduce a greedy polynomial heuristic in Section V-C, and
show that it is a 2-approximation.

A. Problem instance with b = Kd

Consider a given VM VMi ∈ P . Given the distribution
Di of task execution times on VMi, we choose a cutting
threshold `cut

i at which to interrupt tasks, using any of methods
in Section IV (for instance we take `cut

i = `max
i , the value

computed for OPTRATIO). We then derive the (asymptotic)
success rate Si (average number of successful tasks per time
unit) and the yield Yi = Si

ci
(average number of successful

tasks per cost unit), where ci is the unit cost of VMi. The
asymptotic behavior of VMi is characterized by these two
parameters. With several VMs, if there is no deadline, the
best solution is to use a single VM, namely the one with
highest yield Yi. Introducing a deadline makes parallelism
unavoidable, and raises the question of selecting which VMs
to enroll. In the following, we assume that budget and deadline
are proportional: b = Kd for some constant K ≥ 1, and aim
at deriving asymptotic results when b tends to infinity under
that constraint. Intuitively, K represents the total cost per time
unit available until deadline d, hence the potential parallelism
that can be achieved.

Now assume that we enroll a subset Q = {VMi, i ∈ Q}
of VMs from P . Here, Q simply represents the subset of
{1, 2, . . . ,M} that records the indices of enrolled VMs. These
VMs will work continuously until the budget is exhausted or
the deadline has been reached, whichever comes first. If the
VMs in Q work for a duration t, the total budget spent is
t×
∑
i∈Q ci hence

t = min

(
d,

b∑
i∈Q ci

)
=

b

max(K,
∑
i∈Q ci)

·

Asymptotically, each VMi, with i ∈ Q, is successfully
executing Si task per time unit, hence the total yield of subset
Q is

Y tot =

∑
i∈Q Si

max(K,
∑
i∈Q ci)

· (2)

We are ready to define the asymptotic optimization problem
(when b tends to infinity) with several VMs:

Definition 1 (OPTHETERO). Given the set P of available VMs
and the constraint b = Kd, determine the subset Q of P so
that the value of Y tot in Equation (2) is maximized.



B. NP-completeness

In this section, we show that the decision problem associ-
ated to the asymptotic problem OPTHETERO is NP-complete.
For simplicity, we use the same name for the decision and
optimization problems.

Theorem 1. OPTHETERO is NP-complete.

Proof. The decision problem is the following: given the set
P of available VMs and the constraint b = Kd, and given
a bound on the total yield Z , can we find a subset Q of P
with total yield Y tot ≥ Z? The problem obviously belongs
to the class NP, a certificate being the subset of enrolled
VMs, whose yield can be computed in linear time. For the
completeness, we make a reduction from SUBSETSUM, a well-
known NP-complete problem [21]. Consider an instance I1
of SUBSETSUM: given n positive integers a1, a2, . . . , an
and a target T , can we find a subset J of {1, 2, . . . , n}
such that

∑
i∈J ai = T ? We build the following instance

I2 of OPTHETERO: a platform P with M = n + 1 VMs,
budget/deadline constraint b = Kd where K = T + 1. VM
characteristics are the following:
• VMi, for 1 ≤ i ≤ n, has success rate Si = Kai and unit

cost ci = ai
• VMn+1 has success rate Sn+1 = 2K and unit cost
cn+1 = 1.

Finally, the bound on total yield is Z = K + 1. The size of
I2 is clearly polynomial (and even linear) in the size of I1.
We now show that I1 has a solution if and only if I2 has a
solution. Assume first that I1 has a solution, i.e., a subset J
with

∑
i∈J ai = T . If we enroll all VMs whose index is in J

plus VMn+1, we obtain the total yield

Y tot =

∑
i∈J Kai + 2K

max(K,
∑
i∈J ai + 1)

=
KT + 2K

max(K,T + 1)
= K + 1.

Hence, a solution to I2.
Assume now that I2 has a solution, i.e., an index subset

Q with total yield Y tot ≥ Z = K + 1. If the last VM is not
enrolled, i.e., if n+1 /∈ Q, then Y tot =

∑
i∈QKai

max(K,
∑
i∈Q ai)

≤ K,
a contradiction. Hence, necessarily n + 1 ∈ Q. Let J = Q \
{n+1}, we are going to show that J is a solution of I1. We
know that

Y tot =

∑
i∈J Kai + 2K

max(K,
∑
i∈J ai + 1)

≥ K + 1.

Let U =
∑
i∈J ai. If U ≥ K then Y tot = KU+2K

U+1 = K +
K
U+1 < K + 1, a contradiction. If U ≤ K − 2 then Y tot =
KU+2K

K = U + 2 < K + 1, a contradiction. Hence, U =
K − 1 = T , and J is a solution to I1. This concludes the
proof.

C. Greedy heuristic

The OPTHETERO problem is similar to a knapsack problem,
and a natural heuristic is to enroll VMs with highest yield first.
Table II shows a little example with a platform P consisting
of M = 5 VMs. We use K = 5 in the example.

Table II
EXAMPLE OF PLATFORM P (M = 5).

VM Success rate Unit cost Yield
VM1 S1 = 10 c1 = 1 Y1 = 10
VM2 S2 = 6.2 c2 = 3 Y2 ≈ 2.1
VM3 S3 = 8 c3 = 4 Y3 = 2
VM4 S4 = 6 c4 = 4 Y4 = 1.5
VM5 S5 = 4 c4 = 4 Y5 = 1

In Table II, VMs are ordered by non-decreasing yield, so
the greedy heuristic selects VM1 first, then VM2, etc. The
performance achieved is the following:
• Using only VM1: Y tot = 10

max(5,1) = 2;
• Using VM1 and VM2: Y tot = 10+6.2

max(5,1+3) = 3.24;
• Using VM1, VM2 and VM3: Y tot = 10+6.2+8

max(5,1+3+4) =
3.025;

• Using VM1, VM2, VM3 and VM4: Y tot =
10+6.2+8+6

max(5,1+3+4+4) ≈ 2.5167;
• Using all five VMs: Y tot = 10+6.2+8+6+4

max(5,1+3+4+4+4) = 2.1375.
In the example, the best choice is to use only VM1 and VM2,
for a total yield Y tot = 3.24. In the following, we characterize
how many VMs should be chosen. Finally, note that in the
example, the optimal solution is to use only VM1 and VM3,
for a total yield Y tot = 10+8

max(5,1+4) = 3.6.

Proposition 2. Consider a platform P with M VMs ordered
by non-increasing yields and with the constraint b = Kd. The
total yield Y tot achieved by the greedy heuristic is maximum
when enrolling either the first i∗− 1 VMs or the first i∗ VMs,
whichever has the higher total yield, where i∗ is the smallest
index such that

∑i∗

i=1 ci > K.

In other words, the greedy heuristic should enroll VMs until
their cumulated cost exceeds K, and then the best solution is
either using all theses VMs or using all of them except the
last one. In the example of Table II, we have i∗ = 3 and
the best solution is with the first two VMs. We let GREEDY
denote the greedy heuristic which enrolls the optimal number
of VMs. Note that when two different VMs have the same
yield, we rank them and use the one with lowest unit cost
first, which is better for scenarios where the budget is limited.

Proof. For 1 ≤ i ≤M , we consider the first i VMs and define
• the cumulated success rate S tot

i =
∑i
j=1 Sj ;

• the cumulated cost C tot
i =

∑i
j=1 cj ;

• the cumulated success/cost ratio Ri = S tot
i

Ctot
i

.
Now the total yield achieved with the first i VMs is Y tot

i =

min
(
Ri, S

tot
i

K

)
. Note that i∗ is the smallest index i such that

Ctot
i ≥ K. First we observe that the Ri are non-increasing.

This is because VMs are ordered by ratio Sici . We easily check
that

S1
c1
≥ S2
c2

⇒ S1
c1
≥ S1 + S2

c1 + c2
≥ S2
c2

and the result follows by induction.



For i ≥ i∗, we have Y tot
i = Ri ≤ Ri∗ = Y tot

i∗ . For i ≤ i∗−1,
we have Y tot

i =
S tot
i

K ≤ S tot
i∗−1

K = Y tot
i∗−1. This concludes the

proof.

In order to show that the performance of GREEDY is within
a factor two of the optimal, we define the FRACOPTHETERO
fractional version of the OPTHETERO problem. The only
difference between FRACOPTHETERO and OPTHETERO is
that each VM enrolled at the beginning can now be stopped at
any time before the deadline or the exhaustion of the budget.
For FRACOPTHETERO, the total yield is

Y tot,frac =

∑
j∈P Sjtj
b

(3)

where tj is the running time of VMj . Formally:

Definition 2 (FRACOPTHETERO). Given the set P of avail-
able VMs and the constraint b = Kd, determine tj , which
is the running time of the j-th VM in P , so that the value
of Y tot,frac in Equation (3) is maximized (tj is null if we do
not use the j-th VM). Each VMi in P obeys the OPTRATIO
strategy and interrupts all tasks at time `max

i , with expected
success rate Si.

For this problem, the following variant of the greedy algo-
rithm is optimal:

Proposition 3. Consider a platform P with M VMs ordered
by non-increasing yields and with the constraint b = Kd.
An optimal solution for FRACOPTHETERO is obtained by
enrolling the first i∗− 1 VMs until the deadline and enrolling
the i∗-th VM to exhaust the rest of the budget, where i∗ is the
smallest index such that

∑i∗

i=1 ci > K.

Proof. For the proof, we assume that i∗ does exist, otherwise
all VMs are enrolled until the deadline, which is optimal. Let
topt
i denote the running time of VMi in the optimal solution,

and ti be its running time in the greedy algorithm. If an
optimal solution is not making the greedy choice, there exists
an index i such that topt

i > ti. Because the greedy algorithm
uses the first i∗ − 1 VMs until the deadline, we have i ≥ i∗.
Also, because the budget is exhausted by the greedy algorithm
(from the existence of i∗), there must exist an index j such
that topt

j < tj . Since the greedy algorithm does not use VMs
of index k ≥ i∗ + 1, we have j ≤ i∗, hence j < i. With the
ordering method in the greedy algorithm, we can conclude that
Yi ≤ Yj . Then in the optimal solution, we re-distribute the
amount of budget β = min {(tj − tmax

j )cj , (t
max
i − ti)ci} from

VMi to VMj . The first term of β guarantees that, after the
re-distribution, VMj spends not more budget than its does in
the greedy algorithm. After the re-distribution, the yield of the
optimal solution is increased by a nonnegative value β(Yj−Yi)

b .
If Yi < Yj , this contradicts the optimality. Otherwise, each
VMk, where j ≤ k ≤ i has same yield (because of the
ordering method of the greedy algorithm); then the optimal
solution and the greedy algorithm have same global yield. This
concludes the proof.

Let Ymax be the highest yield for OPTHETERO, and Yopt-frac

be the highest yield for FRACOPTHETERO problem. From
Proposition 3, we know that Yopt-frac is achieved by the greedy
algorithm, which is given by

Yopt-frac =
S tot
i∗−1
K

+

(
1−
C tot
i∗−1
K

)
Si∗
ci∗
· (4)

Proposition 4. GREEDY is a 2-approximation algorithm for
OPTHETERO.

Proof. We need to prove that: Y tot
greedy ≥ 1

2Y
opt. We have

Y tot
greedy = max(Y tot

i∗−1,Y tot
i∗ ) = max

(S tot
i∗−1
K

,
S tot
i∗

C tot
i∗

)
.

Similarly to the proof of Proposition 2, we can easily prove
by induction that S

tot
i∗
Ctot
i∗
≥ Si∗ci∗ ·. As 0 ≤ 1− C

tot
i∗−1

K ≤ 1, we have
S tot
i∗
Ctot
i∗
≥
(
1− C

tot
i∗−1

K

)
Si∗
ci∗
·. We derive:

Y tot
greedy ≥ max

(S tot
i∗−1
K

,

(
1−
C tot
i∗−1
K

)
Si∗
ci∗

)
≥ 1

2

[S tot
i∗−1
K

+

(
1−
C tot
i∗−1
K

)
Si∗
ci∗

]
=

1

2
Yopt-frac ≥ 1

2
Yopt.

VI. EXPERIMENTS

This section assesses the performance of several strategies
to interrupt executing tasks and to choose the number and
types of VMs to enroll for a given budget and deadline. The
algorithms are implemented in R and the related code, data
and analysis are publicly available in [18].

A. VMs selection heuristics

As we have different types and numbers of VMs, we aim
at finding the optimal subset to be enrolled. This is especially
true when we do not have enough budget to let the VM with
highest yield run until the deadline. In order to achieve this
goal, we compare several methods for choosing VMs. They
differ in their criteria to order the VMs and then greedily select
the VMs in that order. Each method comes in two versions:
the limited (ltd) version enrolls the first i∗ − 1 VMs, where
i∗ is the smallest index such that

∑i∗

i=1 ci > K; the refined
version selects the best total yield when either using i∗ − 1
VMs, as in the limited version, or using i∗ VMs. This choice
has objective to show the improvement of the last step on
results. Here are the three orderings:
• EXPECTltd and EXPECT (computation-speed based meth-

ods): VMs are sorted by increasing expected value of
computation time.

• COSTltd and COST (cost-per-time-unit based methods):
VMs are sorted by increasing unit cost.

• GREEDYltd and GREEDY (yield methods): VMs are sorted
by decreasing yield. GREEDY is indeed the greedy algo-
rithm of Section V-C.



In addition, we assess the absolute performance of each
method by comparing with FRACTIONAL, which is the yield
achieved by the solution to the fractional problem FRACOPT-
HETERO (see Proposition 3). Indeed, the value of Fractional is
an upper bound to the performance, which is not always tight;
we use it as a reference.

B. Parameters

In the following experiments, all platforms are composed
of 10 VMs from each of six VM types, for a total of M = 60
VMs. In other words, k = 6 and mj = 10 for 1 ≤ j ≤ 10.

Each VM type is characterized by a unit cost and a
distribution that determines the execution time of each task.
Type j VMs have average speed sj = 2j−1 (i.e., sj ∈
{1, 2, 4, 8, 16, 32}). These values correspond to normalized
speeds in realistic platforms such as Amazon EC21 or Google
Cloud2 and are correlated to the number of cores in the VMs.
The unit cost of a VM is proportional to its average speed:
cj = sj .

Other scenarios, with different values of mj , and with unit
costs increasing faster than average speeds, are available in
the extended version [19].

The second VM characteristic is the distribution of the
execution times, which follow standard probability distribu-
tions. The heterogeneity of a scheduling problem instance
has several meanings (for instance, both tasks and machines
heterogeneity are studied in [11]). In our case, we consider
the heterogeneity of the expectation and the heterogeneity of
the variability. For all tested distributions, the expectation of
execution times is fixed as the inverse of the VM speed, which
determines the first type of heterogeneity. For the second
type, we control the variation of the Coefficient of Variation
(CV), which is defined as the ratio of standard deviation
over expectation. Similar CVs for all VMs lead to a low
variability heterogeneity: execution times varies similarly on
all VMs. On the contrary, different CVs mean that execution
times are closer to their expectations on some VMs than on
some others. For instance, two distributions with expectations
1 and 2 and the same CV 1 have expectation heterogeneity
but no variability heterogeneity. This is the opposite with
distributions both with expectation 1 and with CVs 1 and 2.
This second type of heterogeneity is controlled by parameter
xCV. Of course for exponential and half-normal distributions,
which have a single parameter, the standard deviation is given
when choosing the mean, so this discussion only applies to
the two-parameter distributions (lognormal, uniform, gamma,
inverse-gamma and Weibull). Altogether, the expected value
µj and standard deviation σj on VMj are set as follows:
µj =

1
sj

, σj = µjU where the parameter U is drawn randomly
and uniformly in the interval [3 − xCV, 3 + xCV]. We use
0 ≤ xCV ≤ 3 in the experiments.

Finally, we fix the budget at b = β
∑k
j=1mjcj = β×6303,

where β ∈ {0.01, 0.05, 0.1, 1, 2, 5, 8, 10}. For each budget

1https://aws.amazon.com/ec2/pricing/on-demand/?nc1=h ls
2https://cloud.google.com/compute/pricing
3630 represents the budget required to enroll all 60 VMs for one time unit.

value, we vary the deadline as d = β630
i
5 (hence K =

6301−
i
5 ) for 0 ≤ i ≤ 5. This leads to 6 deadline values

following a geometric progression between two extreme cases
d = b and d = β. The first case is when the deadline is
sufficiently large to exhaust the entire budget by selecting
any single VM. The second case is when the deadline is
so tight that all VMs must be used to exhaust the budget.
Altogether, we have 8 budget and 6 deadline values, hence 48
configurations. For each configuration, each strategy is run 10
times on 100 randomly drawn platform instances (the mean of
the distribution is fixed, and we draw the value of the standard
deviation as discussed above, except for exponential and half-
normal distributions).

The numbers of successes are reported in boxplots, each
of which consists of a bold line for the median, a box for
the quartiles, whiskers that extend at most to 1.5 times the
interquartile range from the box and additional points for
outliers. Due to lack of space, we cannot present all results,
which are available in the extended version [19]. Instead, we
start with a summary table covering all distributions, and then
focus on lognormal distributions.

Table III
PERFORMANCE RATIO OF ALL ORDERINGS OVER FRACTIONAL.

Ordering Mean Median Q10% Q90%
GREEDY 0.9977 0.9994 0.9668 1.0272

GREEDYltd 0.6047 0.8385 0 0.9998
COST 0.6943 0.9507 0.0522 1.0208

COSTltd 0.5587 0.7634 0 1.0016
EXPECT 0.7766 0.9717 0.1556 1.0124

EXPECTltd 0.3642 0 0 0.9973

C. Result synthesis for all distributions
In Table III, OPTRATIO is chosen as cutting threshold

heuristic on each VM. We use b = 630 (hence β = 1)
and xCV = 3. For each distribution, we have 6 values of
d. For exponential and half-normal, the standard deviation is
given when we select the mean, so we run only one plat-
form configuration. For the other five probability distributions
(lognomal, uniform, gamma, inverse-gamma and Weibull), we
draw 100 platform configurations, as mentioned above. Each
configuration is run 10 times, which leads to a total of 30,120
experiments. Now, for each heuristic, we proceed as follows:
for each experiment, we record the ratio of the number of
successful tasks achieved by the VMs selection heuristic over
the number of successful tasks achieved by FRACTIONAL;
this leads to the statistical values reported in Table III: mean,
median, 10% Quantile and 90% Quantile. Table III is fairly
representative of the many more experiments available in [19].

Table III shows that GREEDY performs very well overall.
Its ratio is close to 1, not only for the mean value, but even for
the 10% quantile. In other words, GREEDY has a performance
close to that of FRACTIONAL; it also consistently outperforms
all the other VMs selection heuristics.

For each heuristic, the non-limited version is always much
better than the limited one. Because limited versions readily

https://aws.amazon.com/ec2/pricing/on-demand/?nc1=h_ls
https://cloud.google.com/compute/pricing


discard each VM for which there is not enough budget to run
until the deadline, they are at risk of wasting a big fraction of
the budget and then produce a bad, even null result. Indeed,
there is a large difference between the mean and median
values for the limited versions, showing that there are many
results close to 0. Results for the 90% quantile are good for
all heuristics, and even larger than 1, while FRACTIONAL
represents an asymptotic upper bound. Here is the explanation:
a sixth of experiments are for d = 1. In this case, all the
heuristics enroll all the 60 VMs to execute tasks. As the
execution time of a task is randomly drawn, some heuristics
can have a better result than FRACTIONAL.

D. Lognormal distribution
In this section, we focus on lognormal distributions and

further study the impact of several parameters. A lognormal
distribution is a natural candidate to model task execution
times, because it has been advocated to model file sizes [15],
and task costs could naturally obey this distribution too.
Moreover, the lognormal distribution is positive, it has a tail
that extends to infinity and the logarithm of the data values
are normally distributed.

For a lognormal(α, β) distribution, the density function is

f(x) = e
− (log(x)−α)2

2β2

xβ
√
2π

for x ∈ [0,∞), the mean is µ = eα+
β2

2

and the standard deviation is σ = eα+
β2

2

√
eβ2 − 1. To ensure

a given expected value µ and standard deviation σ, we set
α = log(µ)− log(σ2/µ2 + 1)/2 and β =

√
log(σ2/µ2 + 1).

1) Cutting threshold heuristics: First, we compare the
performance of the different cutting threshold heuristics in Fig-
ure 1. We report results for b = 630 and the 6 corresponding
deadline values. We can find that, for lognormal distribution,
OPTRATIO, QUANTILE (0.1) and QUANTILE (0.2) have usu-
ally better results than others. This is because the threshold
calculated by OPTRATIO is usually between 10−1 and 10−3

in our case and the threshold provided by QUANTILE (0.1) and
QUANTILE (0.2) is closer to this value than other heuristics.
The results confirm the observations made with homogeneous
machines [9]: OPTRATIO achieves the best success rate, and is
significantly better than the baseline NEVERINTERRUPT. This
leads to choose OPTRATIO as the cutting threshold heuristic
in all the following experiments.

2) Varying budget and deadline values: Figure 2 reports
results for the 48 (b, d) pairs. We make several observations.

First, when K is fixed, multiplying b and d by a value
β > 1 only changes the absolute value of the result (there
is a proportional relationship between β and the number of
successful tasks), but the global outcome remains the same:
the same machines are chosen, and the ratio of the results of
each heuristic over FRACTIONAL is not modified. This shows
that, for a lognormal distribution with µ and σ chosen as in our
experiment, β = 1 is enough to simulate a problem instance
with large b and d values. In the following experiment, we
keep b = 630 and vary xCV

4.

4We need larger values of b to reach steady-state for exponential and half-
normal distributions, see [19].

Second, in Figure 2, we see the impact of the deadline
constraint by varying both d and K with a constant b (in each
column of the figure). With the extreme case when K is large
(i.e., K =

∑
i ci), all methods select all VMs, which exhausts

the budget when reaching the deadline. The alignment of all
boxplot values in the figure for d = β confirms this effect.
Moreover, all methods choose VMs in a predefined order until
the sum of ci of selected VMs reaches K, which means we
must choose more VMs with large values of K. As VMs are
ordered by their yield in the FRACTIONAL method, the larger
the K, the smaller the average yield of chosen VMs. However,
with larger deadlines, the VM choice becomes critical and only
GREEDY has a gain similar to FRACTIONAL. In other words,
the difference between these two latter methods and the other
ones increases as the parallelism K decreases. As the deadline
is less constrained, GREEDY can select only the VMs with best
yield. With K ≤ 13.2, the gain is less remarkable because
the best VMs are all already enrolled. Only small deadlines
impose the selection of inefficient VMs to exhaust the budget
before the deadline. Thus, having larger deadlines provides
little benefit.

Third, in all instances, GREEDY, COST and EXPECT are
respectively better than or similar to GREEDYltd, COSTltd and
EXPECTltd. These last three methods even have some zero
values. As explained in Section VI-C, this is because these
methods enroll VMs (in different orders) until the last VM that
does not exceed the budget when executed up to the deadline
d. Thus, the first VM is abandoned if the budget to execute
this VM exceeds b. In this scenario, no VM is chosen by the
method, and the number of successful tasks is zero.

Fourth, we observe that GREEDY remains the most efficient
resource selection heuristic even for small values of the budget
(when β < 1). This is good news, because we had proven the
asymptotic efficiency of GREEDY but needed to check that it
maintained its superiority for the whole range of budget and
deadline values (even though the number of successes is no
longer proportional to the budget for smaller values).

3) Impact of variability heterogeneity: Figure 3 demon-
strates the dependence between the level of variability het-
erogeneity controlled by xCV and the performance disparity
between the resource selection heuristics. When xCV = 0, all
VMs have the same yield as they have the same ratio CV,
thus all heuristics are similar. As xCV increases, the difference
between FRACTIONAL and all other methods except GREEDY
expands up to a factor three for the median performance.
Note that the maximum number of successful tasks increases
with xCV, especially for FRACTIONAL and GREEDY heuristics,
because the methods manage to select VMs with the best yield.
In particular, it is possible to perform twice as much tasks with
xCV = 2.5 than with xCV = 0 because some VMs in a platform
configuration can have a higher yield.

4) Summary: All the above results confirm that GREEDY
reaches better performance than the other resource selection
heuristics, up to a factor three on average. As previously men-
tioned, many additional results are available in the extended
version [19].



EXPECTltd EXPECT COSTltd COST GREEDYltd GREEDY Fractional

K
=

630,d
=

1
K
≈

174,d
≈

3.63
K
≈

47
.8
,d
≈

13
.2

K
≈

13
.2
,d
≈

47
.8

K
≈

3
.63
,d
≈

174
K

=
1,d

=
630

0
10

00
20

00
30

00
40

00
50

00 0
10

00
20

00
30

00
40

00
50

00 0
10

00
20

00
30

00
40

00
50

00 0
10

00
20

00
30

00
40

00
50

00 0
10

00
20

00
30

00
40

00
50

00 0
10

00
20

00
30

00
40

00
50

00 0
10

00
20

00
30

00
40

00
50

00

NI
MV(0.1)

MV(0)
MV(-0.1)

Q(0.8)
Q(0.6)
Q(0.4)
Q(0.2)
Q(0.1)

Q(0.05)
OR

NI
MV(0.1)

MV(0)
MV(-0.1)

Q(0.8)
Q(0.6)
Q(0.4)
Q(0.2)
Q(0.1)

Q(0.05)
OR

NI
MV(0.1)

MV(0)
MV(-0.1)

Q(0.8)
Q(0.6)
Q(0.4)
Q(0.2)
Q(0.1)

Q(0.05)
OR

NI
MV(0.1)

MV(0)
MV(-0.1)

Q(0.8)
Q(0.6)
Q(0.4)
Q(0.2)
Q(0.1)

Q(0.05)
OR

NI
MV(0.1)

MV(0)
MV(-0.1)

Q(0.8)
Q(0.6)
Q(0.4)
Q(0.2)
Q(0.1)

Q(0.05)
OR

NI
MV(0.1)

MV(0)
MV(-0.1)

Q(0.8)
Q(0.6)
Q(0.4)
Q(0.2)
Q(0.1)

Q(0.05)
OR

Successful tasks

C
ut

tin
g

th
re

sh
ol

d
he

ur
is

tic
s

Figure 1. Number of successfully executed tasks for different resource selection and cutting threshold heuristics, with mj = 10, M = 60, cj = sj , b = 630.
Execution times follow a lognormal distribution with xCV = 3.

VII. CONCLUSION

In this paper, we have dealt with the problem of scheduling
stochastic tasks on a cloud platform under both deadline and
budget constraints. On each enrolled VM, we use several
cutting threshold heuristics to decide when to interrupt tasks.
The main difficulty is to select the best subset of VMs
so as to maximize the expected number of tasks that are
successfully executed. We have assessed the complexity of this
resource selection optimization problem, showing that it is NP-
hard, and also designing GREEDY, a greedy algorithm whose
performance is proved to be a 2-approximation. GREEDY sorts
the VMs by non-decreasing yield and then determines the
optimal number of VMs to enroll when considering them
in this order. On the practical side, we have conducted an
extensive set of experiments, with several standard probability
distributions for task execution times. These experiments show
that GREEDY significantly outperforms other approaches based
on simple heuristics, and reaches an absolute performance
close to the upper bound established in the paper.

This work can be continued along three main directions,
to extend the pricing model with more complex scenarios,
and to better account for execution times. The first direction
consists in considering start-up costs (which would limit the
number of enrolled VMs), or non-constant costs that depend
upon the time and day, or uoon the load of the cloud platform.
For the second direction, multimodal distributions have been
advocated to model job, file and object sizes [15]. Similarly
to the lognormal distribution, such distributions represent ideal
candidates to study the corresponding yield. Finally, in a fully
non-clairvoyant version of the problem, the distribution of
job execution times must be learned on the fly, by sampling
observed runtimes of the tasks in order to update a statistical
model.

Acknowledgements: The work of Yiqin Gao was supported
by the LABEX MILYON (ANR-10-LABX-0070) of Univer-
sité de Lyon, within the program “Investissements d’Avenir”
(ANR-11-IDEX-0007) operated by the French National Re-
search Agency (ANR).



b = 6.3 b = 31.5 b = 63 b = 630 b = 1260 b = 3150 b = 5040 b = 6300

K
=

630
K
≈

174
K
≈

47.8
K
≈

13.2
K
≈

3.63
K

=
1

0 20 40 60 0
10

0
20

0 0
10

0
20

0
30

0
40

0
50

0 0
10

00
20

00
30

00
40

00
50

00 0
25

00
50

00
75

00 0
50

00
10

00
0

15
00

0
20

00
0 0

10
00

0
20

00
0
30

00
0 0

10
00

0
20

00
0

30
00

0
40

00
0

EXPECTltd
EXPECT
COSTltd

COST
GREEDYltd

GREEDY
Fractional

EXPECTltd
EXPECT
COSTltd

COST
GREEDYltd

GREEDY
Fractional

EXPECTltd
EXPECT
COSTltd

COST
GREEDYltd

GREEDY
Fractional

EXPECTltd
EXPECT
COSTltd

COST
GREEDYltd

GREEDY
Fractional

EXPECTltd
EXPECT
COSTltd

COST
GREEDYltd

GREEDY
Fractional

EXPECTltd
EXPECT
COSTltd

COST
GREEDYltd

GREEDY
Fractional

Successful tasks

V
M

s
se

le
ct

io
n

he
ur

is
tic

s

Figure 2. Number of successfully executed tasks for resource selection heuristics with OPTRATIO, mj = 10, M = 60, cj = sj . Execution times follow a
lognormal distribution with xCV = 3.

xCV = 1.5 xCV = 2 xCV = 2.5

xCV = 0 xCV = 0.5 xCV = 1

10
00

20
00

30
00

40
00

10
00

20
00

30
00

40
00

10
00

20
00

30
00

40
00

EXPECTltd
EXPECT
COSTltd

COST
GREEDYltd

GREEDY
Fractional

EXPECTltd
EXPECT
COSTltd

COST
GREEDYltd

GREEDY
Fractional

Successful tasks

V
M

s
se

le
ct

io
n

he
ur

is
tic

s

Figure 3. Number of successfully executed tasks for resource selection heuristics with OPTRATIO, mj = 10, M = 60, cj = sj , b = 630 and d ≈ 13.2.
Execution times follow a lognormal distribution with xCV varying.



REFERENCES

[1] S. Abrishami, M. Naghibzadeh, and D. H. Epema. Deadline-constrained
workflow scheduling algorithms for infrastructure as a service clouds.
Future Generation Computer Systems, 29(1):158 – 169, 2013. Including
Special section: AIRCC-NetCoM 2009 and Special section: Clouds and
Service-Oriented Architectures.

[2] M. Amirijoo, J. Hansson, and S. H. Son. Specification and management
of qos in real-time databases supporting imprecise computations. IEEE
Trans. Computers, 55(3):304–319, 2006.

[3] V. Arabnejad, K. Bubendorfer, and B. Ng. Budget distribution strategies
for scientific workflow scheduling in commercial clouds. In 12th IEEE
International Conference on e-Science, pages 137–146, Oct 2016.

[4] M. U. Bokhari, Q. Makki, and Y. K. Tamandani. A survey on
cloud computing. In D. M. V. Aggarwal, V. Bhatnagar, editor, Big
Data Analytics, volume 654 of Advances in Intelligent Systems and
Computing. Springer, 2018.

[5] G. Buttazzo. Handling overload conditions in real-time systems. In
S. M. Babamir, editor, Real-Time Systems, Architecture, Scheduling, and
Application, chapter 7. InTech, Rijeka, 2012.

[6] E.-K. Byun, Y.-S. Kee, J.-S. Kim, and S. Maeng. Cost optimized
provisioning of elastic resources for application workflows. Future
Generation Computer Systems, 27(8):1011 – 1026, 2011.

[7] R. N. Calheiros and R. Buyya. Meeting deadlines of scientific workflows
in public clouds with tasks replication. IEEE Transactions on Parallel
and Distributed Systems, 25(7):1787–1796, July 2014.

[8] Y. Caniou, E. Caron, A. Kong Win Chang, and Y. Robert. Budget-
aware scheduling algorithms for scientific workflows with stochastic task
weights on heterogeneous iaas cloud platforms. In 27th International
Heterogeneity in Computing Workshop HCW 2013. IEEE Computer
Society Press, 2018.

[9] L.-C. Canon, A. Kong Win Chang, Y. Robert, and F. Vivien. Scheduling
independent stochastic tasks under deadline and budget constraints. In
SBAC-PAD. IEEE, 2018.

[10] L.-C. Canon, A. Kong Win Chang, F. Vivien, and Y. Robert. Code
for scheduling independent stochastic tasks under deadline and budget
constraints, June 2018. https://doi.org/10.6084/m9.figshare.6463223.v2.

[11] L.-C. Canon and L. Philippe. On the heterogeneity bias of cost matrices
for assessing scheduling algorithms. IEEE Trans. Par. Dist. Syst.,
28(6):1675–1688, 2017.

[12] H. Casanova, M. Gallet, and F. Vivien. Non-clairvoyant scheduling
of multiple bag-of-tasks applications. In Euro-Par 2010 - Parallel
Processing, 16th International Euro-Par Conference, pages 168–179,
2010.

[13] J. Y. Chung, J. W. S. Liu, and K. J. Lin. Scheduling periodic jobs
that allow imprecise results. IEEE Trans. Computers, 39(9):1156–1174,
1990.

[14] H. M. Fard, R. Prodan, and T. Fahringer. A truthful dynamic workflow
scheduling mechanism for commercial multicloud environments. IEEE
Transactions on Parallel and Distributed Systems, 24(6):1203–1212,
June 2013.

[15] D. Feitelson. Workload modeling for computer systems performance
evaluation. Version 1.0.3, pages 1–607, 2014.

[16] W. Feng and J. W. S. Liu. An extended imprecise computation model
for time-constrained speech processing and generation. In Proc. IEEE
Workshop on Real-Time Applications, pages 76–80, May 1993.

[17] T. S. Ferguson. Optimal stopping and applications. UCLA Press, 2008.
[18] Y. Gao, L.-C. Canon, Y. Robert, and F. Vivien. Code

to schedule stochastic tasks on heterogeneous platforms, Feb.
2019. https://figshare.com/articles/Code to schedule stochastic tasks
on heterogeneous platforms/7777046/3.

[19] Y. Gao, L.-C. Canon, Y. Robert, and F. Vivien. Scheduling independent
stochastic tasks on heterogeneous cloud platforms. Research Report
9275, INRIA, May 2019.

[20] Y. Gao, Y. Wang, S. K. Gupta, and M. Pedram. An energy and deadline
aware resource provisioning, scheduling and optimization framework for
cloud systems. In 2013 International Conference on Hardware/Software
Codesign and System Synthesis (CODES+ISSS), Sept. 2013.

[21] M. R. Garey and D. S. Johnson. Computers and Intractability, a Guide
to the Theory of NP-Completeness. W.H. Freeman and Company, 1979.

[22] A. Grekioti and N. V. Shakhlevich. Scheduling bag-of-tasks applications
to optimize computation time and cost. In PPAM, volume 8385 of LNCS.
Springer, 2014.

[23] H. Hassan, J. Simó, and A. Crespo. Flexible real-time mobile robotic
architecture based on behavioural models. Engineering Applications of
Artificial Intelligence, 14(5):685 – 702, 2001.

[24] E. Hwang and K. H. Kim. Minimizing cost of virtual machines for
deadline-constrained mapreduce applications in the cloud. In Proceed-
ings of the 2012 ACM/IEEE 13th International Conference on Grid
Computing, GRID ’12, pages 130–138, Washington, DC, USA, 2012.
IEEE Computer Society.

[25] F. Jumel and F. Simonot-Lion. Management of anytime tasks in real
time applications. In XIV Workshop on Supervising and Diagnostics of
Machining Systems, Karpacz/Pologne, 2003.

[26] H. Kobayashi and N. Yamasaki. Rt-frontier: a real-time operating
system for practical imprecise computation. In 10th IEEE Real-Time
and Embedded Tech. Appl. Symp., pages 255–264, May 2004.

[27] J. W. S. Liu, K. J. Lin, W. K. Shih, A. C. Yu, J. Y. Chung, and W. Zhao.
Algorithms for scheduling imprecise computations. In A. M. van
Tilborg and G. M. Koob, editors, Foundations of Real-Time Computing:
Scheduling and Resource Management, pages 203–249. Springer, 1991.

[28] K. Liu, H. Jin, J. Chen, X. Liu, D. Yuan, and Y. Yang. A compromised-
time-cost scheduling algorithm in swindew-c for instance-intensive cost-
constrained workflows on a cloud computing platform. Int. J. High
Performance Computing Applications, 24(4):445–456, 2010.

[29] M. Malawski, G. Juve, E. Deelman, and J. Nabrzyski. Cost- and
deadline-constrained provisioning for scientific workflow ensembles in
iaas clouds. In High Performance Computing, Networking, Storage and
Analysis (SC), 2012 International Conference for, pages 1–11. IEEE,
Nov 2012.

[30] M. Malawski, G. Juve, E. Deelman, and J. Nabrzyski. Algorithms
for cost- and deadline-constrained provisioning for scientific workflow
ensembles in iaas clouds. Future Gen. Comp. Syst., 48:1–18, 2015.

[31] M. Mao, J. Li, and M. Humphrey. Cloud auto-scaling with deadline and
budget constraints. In 2010 11th IEEE/ACM International Conference
on Grid Computing, pages 41–48. IEEE, Oct. 2010.

[32] J. Meng, S. Chakradhar, and A. Raghunathan. Best-effort parallel
execution framework for recognition and mining applications. In IPDPS.
IEEE, 2009.

[33] A. M. Oprescu and T. Kielmann. Bag-of-tasks scheduling under budget
constraints. In 2010 IEEE Second International Conference on Cloud
Computing Technology and Science, pages 351–359, Nov. 2010.

[34] A.-M. Oprescu, T. Kielmann, and H. Leahu. Budget estimation and
control for bag-of-tasks scheduling in clouds. Parallel Processing
Letters, 21(02):219–243, 2011.

[35] A. M. Oprescu, T. Kielmann, and H. Leahu. Stochastic tail-phase
optimization for bag-of-tasks execution in clouds. In Fifth Int. Conf.s
on Utility and Cloud Computing, pages 204–208. IEEE, Nov. 2012.

[36] D. Poola, S. K. Garg, R. Buyya, Y. Yang, and K. Ramamohanarao.
Robust scheduling of scientific workflows with deadline and budget
constraints in clouds. In AINA 2014, pages 858–865, May 2014.

[37] S. Singh and I. Chana. Cloud resource provisioning: survey, status
and future research directions. Knowledge and Information Systems,
49(3):1005–1069, Dec. 2016.

[38] S. Singh and I. Chana. A survey on resource scheduling in cloud
computing: Issues and challenges. J. Grid Comp., 14(2):217–264, 2016.

[39] F. Tian and K. Chen. Towards optimal resource provisioning for running
mapreduce programs in public clouds. In 2011 IEEE 4th International
Conference on Cloud Computing, pages 155–162. IEEE, July 2011.

[40] C. Vecchiola, R. N. Calheiros, D. Karunamoorthy, and R. Buyya.
Deadline-driven provisioning of resources for scientific applications
in hybrid clouds with aneka. Future Generation Computer Systems,
28(1):58 – 65, 2012.

[41] C. Q. Wu, X. Lin, D. Yu, W. Xu, and L. Li. End-to-end delay
minimization for scientific workflows in clouds under budget constraint.
IEEE Transactions on Cloud Computing, 3(2):169–181, April 2015.

https://doi.org/10.6084/m9.figshare.6463223.v2
https://figshare.com/articles/Code_to_schedule_stochastic_tasks_on_heterogeneous_platforms/7777046/3
https://figshare.com/articles/Code_to_schedule_stochastic_tasks_on_heterogeneous_platforms/7777046/3

	Introduction
	Related work
	Cloud computing
	Bags of tasks
	Task model

	Problem definition
	Platform and tasks
	Constraints and optimization objective

	Cutting threshold
	Complexity results
	Problem instance with b = K d
	NP-completeness
	Greedy heuristic

	Experiments
	VMs selection heuristics
	Parameters
	Result synthesis for all distributions
	Lognormal distribution
	Cutting threshold heuristics
	Varying budget and deadline values
	Impact of variability heterogeneity
	Summary


	Conclusion
	References

