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ABSTRACT
openDIEL is a work�ow engine that aims to give researchers
and users of HPC an e�cient way to coordinate, organize,
and interconnect many disparate modules of computation in
order to e�ectively utilize and allocate HPC resources [13].
A GUI has been developed to aid in creating work�ows, and
allows for the speci�cation of data science jobs, including
speci�cation neural network architectures, data processing,
and hyperparameter tuning. Existing machine learning tools
can be readily used in the openDIEL, allowing for easy ex-
perimentation with various models and approaches.
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1 INTRODUCTION
When conducting complicated simulations, it is often re-
quired to utilize a large variety of applications to answer
a research question. Utilizing disparate modules of compu-
tation, requires the careful coordination of dependencies,
communication, and synchronization between them, and
there is not always a clear path on how to do these kinds
of tasks. One approach to this is to utilize a script to run
all of the necessary modules. However, this falls short, as
this loses much detail with regard to complex interaction
between modules, such as inter-moduler communication
and non-linear dependencies, limiting the ability to take full
advantage of HPC systems to run modules in parallel.
This problem is solved by work�ow engines, allowing

researchers to de�ne complex dependencies between mod-
ules, and schedule communication between them. openDIEL
speci�cally focuses on unifying modules into a single ex-
ecutable that uses MPI for communication. Additionally,
methods are provided for specifying dependencies between
modules, with the framework resolving dependencies and
running modules in parallel.

openDIEL is designed not only to support the creation of
generic work�ows, but facilities are also provided to create
data science work�ows, supporting simple data cleaning,
creation of neural network architectures, and subsequently
searching for optimal parameters with a grid engine.

The major work that has been done to extend the original
openDIEL framework is to provide a GUI with the goal of
increasing usability. The standard manner in which work-
�ows are con�gured is to edit con�guration �les that de�ne
the way the engine will work. The major drawback to this
approach is that it is not always clear how to set up a �le or
even what options are available. The GUI overcomes this by
providing a clear list of what can be speci�ed, which reduces
the load on the end user to think of everything ahead of time,
but instead recognize what needs to be done.



2 RELATEDWORK
Existing work�ow engines such as Galaxy give researchers
the means to utilize tools on cloud computing resources.
Galaxy is designed to operate with and couple together
domain-speci�c tools, without requiring the end user to
do large amounts of work to integrate tools together [1].
Apache Airavata is another work�ow engine that is designed
to manage complex computational jobs and work�ows. It
is designed to work on a variety of di�erent computing re-
sources, including local clusters and the cloud [8].
openDIEL shares many of the same goals core goals as

these frameworks, but di�ers in several ways. The �rst is that
the openDIEL framework uses MPI as a core component for
communication between modules and for managing running
work�ows. The other way in which openDIEL di�ers is that
it is designed speci�cally for tightly coupled HPC systems.
Another one of the goals of the openDIEL GUI is to pro-

vide a general framework for performing hyperparameter
search and model selection tasks. A number of tools already
exist to assist in doing this. Tools such as HyperBand, Optu-
nity, and BayesOpt provide methods to perform optimization
with a variety of di�erent algorithms, but do have support
for training in a distributed manner out-of-the-box [3, 6, 9].
Many existing systems also lack support for implementing
algorithms beyond what is provided in the tool kit. The Tune
Framework is a system that supports custom algorithm im-
plementation, and is designed to be used in a distributed
manner [7].

openDIEL Framework Design Overview
At a high level, the openDIEL system consists of a C library
that contains all of the function needed to manage modules.
Typically, a main driver �le is created which contains all of
the needed function calls to set up the main MPI commu-
nicator that the IEL library uses, set up necessary modules
for tuple space communication, and calling the user de�ned
modules.

Themainway that users interact with the system is through
a con�guration �le. There are two major components of the
openDIEL system: the executive library, and the communi-
cation library.

Configuration File. Information about how modules are com-
municate and rely on one another is contained in a con�gu-
ration �le. The con�guration �le de�nes what resources the
modules requires, such as the number of cores, and number
of GPUs required by the module. After de�ning the modules
themselves, a section of the �le subsequently de�nes the
manner in which groups of modules depend on one another,
how many iterations need to run, amongst other character-
istics.

Figure 1: Overview of architecture of openDIEL, top to bot-
tom: (A) The GUI launcher creates a con�guration �le for
the work�ow, and the executive will read this �le to set up
work�ows. (B) After initial con�guration, the executive will
start all of the modules. (C) The modules have access to the
communication library, and directly communicate or utilize
tuple space communication.

Communication Library. The communication library is es-
sentially a wrapper around various openMPI function calls,
and is responsible for managing both tuple space and direct
communication between modules. This is done by creating
a main MPI_COMM_WORLD communicator in which all of
the modules run, and then subdividing this main commu-
nicator at the level of single modules. If there are multiple
concurrent copies of the same module running at the same
time, then the module sub-communicator is further subdi-
vided between the copies [13].

Two di�erent methods of communication are provided by
an API: tuple space communication, and direct module-to-
module communication. With tuple space communication, a
tuple server module is utilized that allows modules to concur-
rently send data to and receive data from a shared associative
array. Modules can use this form of communication with pro-
vided library functions IEL_tput and IEL_tget to send and
receive data from the tuple space respectively. Each module
that puts data into the tuple space can issue a non-blocking
IEL_tput function call, and provide a tag for the data placed in
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the tuple space. The receiving module can utilize a blocking
IEL_tget function call to retrieve the data with the speci�ed
tag.

The IEL_tput function is a wrapper around the MPI_Send
function, and the tuple server runs as an MPI process in
the MPI_COMM_WORLD communicator. The tuple server
receives the data from a module, and then places it into a
red-black tree keyed on the tag, and values is a queue into
which the data is placed. The IEL_tget function utilizes the
MPI_Send function to notify the tuple server that it wants
to retrieve a tag, and whether or not it wants to remove the
data from the tuple server after retrieving it. MPI_Recv is
then called, and the data is retrieved.

Simpli�ed versions of IEL_tput and IEL_tget are also pro-
vided: IEL_tput_simpli�ed and IEL_tget_simpli�ed. The al-
low users to specify the name of the calling module and
tag for the data as a string, and does not require the user
to specify the rank upon which the tuple server is running.
This function is just a wrapper around the normal IEL_tput
function call, but the string provided is hashed and used as
the tag in the call.

Figure 2: Layout of the distributed tuple servermodel, clock-
wise from the bottom right: (A) The client data is broken
up and distributed across an array of tuple servers, and (B)
the metadata for the distributed data is stored in a metadata
server. (C)When data is to be retrieved, themetadata for the
requested data is retrieved, and (D) the data is retrieved from
the distributed array of tuple servers based on the metadata.
The received data is then reconstructed and returned to the
requesting client.

The tuple space can also be distributed across a number
of di�erent modules, essentially providing a way to store
and retrieve data in a distributed manner. The functions
IEL_dist_tget and IEL_dist_tput utilize this multiple tuple

server model. The IEL_dist_tget function will take a pointer
to data and a string to tag the data, and distribute it amongst
an array of tuple servers. Information about the distribution
of the data is stored on a meta-data server. The IEL_dist_tget
function will retrieve the data by querying the meta data
server, which returns the locations of the servers holding
the data, the data servers are queried, and the stored data is
reconstructed.

Executive Library. The executive library is the other major
part of the library responsible for starting job and managing
dependencies. When a job starts, the executive will read in a
work�ow con�guration �le, and then based on this �le, the
executive will create a dependency graph of the speci�ed
work�ow, and then start modules based on the graph. Typi-
cally, a module is included in openDIEL by linking a library
against a driver �le, and function pointers are provided to
the executive so that they can be called with the appropriate
arguments [13]. Executables can also be run by calling fork()
and exec() in an MPI process, but limits the ability of the
module to utilize the inter-modular communication provided
by openDIEL.

Typical Usage. Typically, all of the needed functions are
called in a main driver �le. This driver �le will call MPI_init,
and then it will call openDIEL member function IELAddMod-
ule, which will take a pointer to the function in the linked
library for the module. This will be used later to start the
module in the work�ow. For modules that are executables, a
model that calls fork() and exec() on the proper arguments
is started for each serial module. After this setup, the main
IELExecutive() member function is called. This function will
split up the MPI_COMM_WORLD communicator into the
appropriate subcommunicators, resolve dependencies from
the con�guration �le, and then start modules.

Graphical User Interface
The GUI provides methods to easily specify modules, the
resources required to run them, and the libraries needed to
link against in order to run them. For work�ow speci�cation,
methods to visually display the resulting work�ow as a de-
pendency graph are provided to aid in the ease of creating a
work�ow. The other enhancement is automatically creating
a driver �le to run parallel codes. A number of precon�gured
modules can also be provided, allowing for a reduced amount
of set up on the part of the end user of the system.

While manual con�guration can still be accomplished, the
graphical user interface aims to reduce the amount of work
required to set up a work�ow, and improve the overall use
ability of the openDIEL framework. Most operations the GUI
are normally accomplished with editing con�guration �les,
writing code in a driver �le, linking libraries, and writing
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modules. The GUI itself is divided into several di�erent tabs:

Figure 3: The module speci�cation tab, clockwise from top
left: (A) This section is where new modules are created, and
where createdmodules are edited. (B)A list of the savedmod-
ules. (C) A listing of the precon�gured modules which can
be loaded, along with the option to load modules previously
created by the user

Module Specification. The module speci�cation tab allows
users to specify information about each individual module.
Resource requirements such as the number of processes
needed (size), the number of copies of the module to run,
and the number of GPUs needed can be speci�ed, among
others. Additionally, a number of precon�gured modules
can be loaded. These precon�gured modules consist of all
the basic information needed to include it in the openDIEL
system, such as library locations, function calls, and basic
resource requirements.

Workflow. After con�guring modules in the work�ow tab,
these modules can then be added to work�ows. Modules
are organized into groups, and dependencies are de�ned be-
tween groups of modules. Within groups, a list of modules is
speci�ed that is run linearly. If no other groups are speci�ed
as dependencies, the groups will run as resources become
available, making parallelism the default. Work�ows can also
be loaded from �les, which allows users to use work�ows
that have already been created, and save work�ows for later
use.

Save and Launch. The Save and Launch tabs are used for
saving the current state and launching the job respectively.
The save tab will create a con�guration �le that can be either
used by the GUI later on to load in the same work�ow, or it
can be used by the openDIEL back end to run a work�ow
job. The launch tab allows a user to launch the job as it was
previously speci�ed, and directs the output to a speci�ed

Figure 4: The work�ow speci�cation tab, left to right: (A)
Listing of themodules de�ned in the previous section of the
GUI, and a list of the already created work�ow groups. This
is used to addmodules to work�ow groups, and to add an ex-
isting work�ow group as a dependency to the current group.
(B) Entry �elds for the group currently being de�ned.

Figure 5: The Save Tab, left to right: (A) The contents of the
work�ow con�guration �le that was created and saved. This
is what the driver will read when it starts in order to con�g-
ure modules. (B) A dependency graph of the groups to aid
in visualizing the dependencies between con�gured work-
�ow groups. The vertices represent work�ow groups, and
directed edges terminate at the group the originating vertex
depends upon.

directory. Example work�ows are also provided for the pur-
poses of tutorials, which will load a pre-existing work�ow
containing the requisite information to run.

Machine Learning. The Machine Learning tab implements
a number of functions. Users can specify a CSV data �le,
and get a basic idea of the contents of the �le, such as the
number of rows, columns, and the names of the columns
in the �le. The option to perform common pre-processing
tasks on columns in the data set is provided, such as data
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Figure 6: Machine Learning Tab, left to right: (A) Data tab,
CSV �les can be loaded, and a summary of the columns is
provided. Shown are a number of transformations that can
be applied to the columns of the CSV �le that was read in.
(B) Network architecture can be de�ned here, along with the
parameters for each layer. (C) Hyperparameters grid search
range parameters can be de�ned here.

centering, normalizing, missing value imputation, and encod-
ing. The interface also provides a method to specify a DNN
architecture for classi�cation tasks, with support for fully
connected, �attening and activation layers. After specify the
model, hyperparameter search can be performed. This is
done by providing a starting, and ending value for the hyper-
parameter, and a step size. The grid search is then performed
on the Cartesian product of all of the parameters.

Grid Engine
One of the goals of the framework is to not only provide
facilities for hyperparameter optimization and search, but
allow for users to readily use existing libraries to perform
these tasks. One such implementation is a grid search en-
gine that uses the openDIEL tuple space communication to
distribute parameters to worker processes in an exhaustive
search of a speci�ed parameter space, collect the results, and
report the best parameters found.
The module consists of a master process that chooses

hyperparameters, and a set of processes that receive the
hyperparameters. The master process �rst selects a set of
parameters, distributes them to the workers via the tuple
space, and waits for the group to �nish. The group of worker
processes receive the parameters, train, and report their re-
sults to the trainer via tuple space communication. These
results are then gathered by the master process, and then
the next group of processes is started on the next batch of
parameters.
openDIEL uses magmaDNN to de�ne neural networks.

magmaDNN is a deep neural network library that makes use

Figure 7: Distributing Parameters to Workers With Tuple
Space

of highly optimized Magma BLAS to achieve speeds beyond
other frameworks [10]. The grid engine module works by
creating a con�guration �le that contains a speci�cation
of a parameter space, and a network architecture. When
the openDIEL framework starts, this �le is read in, and the
exhaustive search over the speci�ed hyperparameter space
begins. Workers use the identical network architecture, with
varied parameters for each run.

Usability Improvements
A large part of the usability of the openDIEL system is ham-
pered by the fact that editing and creating con�guration �les,
creating modules, linking the appropriate libraries to satisfy
dependencies, and compiling everything together is often a
time consuming and error prone task. One of the goals of
the interface is to shift the work�ow creation process from
a recall task into a task where one only has to recognize
options when they are seen.
To highlight the di�erences between the new interface

and the traditional way, an example of setting up a work�ow
is provided here to compare and contrast between the two.
Suppose a user wants to create and run a work�ow. For

simplicity, the user wants to run two modules: Module 1
uses MPI and produces a set of �les as output, and another
module, Module 2 that waits for it to �nish and then collects
the results from the �les that were produced. For Module 1,
the user would need to create a static library containing the
function that they want to run. For the Module 2, we can
assume that it is simply a shell script that gets run after the
job is completed.
After both of the modules have been created, a main dri-

ver �le needs to be created to start the openDIEL system,
add function pointers for managed modules, include header
�les, and appropriately start automatic modules. This often
involves using numerous openDIEL member functions, and
requires at least a base knowledge of the system in order to
correctly create a driver �le. After that, the user will then
need to compile and link the driver with the static libraries
that represent modules, and then it will be in a runnable state.
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This process di�ers somewhat when using the GUI, where
the user will provide path to the module library and it’s cor-
responding header �les, and then the name of the function
is also provided. The GUI then automatically generates the
driver �le, and compiles it with the provided modules.
With driver �le done, the user will then need to create

the work�ow itself, and de�ne dependencies between mod-
ules. With the original method, this would require the user
to create a new con�guration �le, and add the appropriate
options. In the work�ow �le, the user would need to add
the appropriate keywords for the number of processes each
module requires, along with the function name, amongst
other attributes. This requires the user to have knowledge
of what these keywords are, and adds additional overhead
in terms of what the user needs to know. The GUI eases
this burden by automatically generating work�ow �les with
the appropriate formatting and keywords based on the user
provides in the GUI. At this point, with the driver �le cre-
ated, and the work�ow con�gured, the work�ow can then
be started.

3 CONCLUSION AND FUTUREWORK
The openDIEL GUI enhances usability of the openDIEL sys-
tem and allows for the creation of complex, useful work�ows
in an expedient and e�cient manner. The task of writing
drivers, creating con�guration �les, and knowing the system
in general is greatly simpli�ed. Testing the overall usability
of the framework as a whole is a major area for future study.
A user study would need to be conducted to determine how
easily a user could accomplish common work�ow tasks, and
how much work it takes to learn the system as a whole.
Increasing the ability of the openDIEL framework to do

full pipeline optimization of machine learning systems is
envisioned. Currently, the hyperparameter search is con-
strained to simple grid search through a speci�ed search
space, leading to an exponential increase in search time as
more parameters are added, limiting the feasibility of doing
this kind of analysis. Support of more “smartly” choosing
parameters is envisioned, by allowing the master process
to perform a speci�ed optimization procedure between re-
ceiving parameters from workers and distributing new ones.
Common approaches such as Bayesian Optimization [12]
and learning curve prediction [5] will be supported [2]. Par-
allel to improving the hyperparameter grid search, support
for searching for an entire model is envisioned. Similar to
providing the framework with a generic search space for
selecting the best hyperparameters, the framework could
provide the capability a search for a model.

Currently, magmaDNN is the only way to create machine
learning models. In the future, support will be added to use
frameworks such as TensorFlow [4], Sklearn [11], and other
other machine learning frameworks.

The openDIEL framework provides a powerful set of tools
to create work�ows with a GUI, and run many di�erent mod-
ules on HPC resources. A set of communication primitives
is provided to e�ciently and easily connect together parallel
MPI codes. Machine learning model creation and hyperpa-
rameter search is done easily without the need for heavy
coding to be done.
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