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ABSTRACT

MagmaDNN [17] is a deep learning framework driven using the
highly optimized MAGMA dense linear algebra package. The library
offers comparable performance to other popular frameworks, such
as TensorFlow, PyTorch, and Theano. C++ is used to implement the
framework providing fast memory operations, direct cuda access,
and compile time errors. Common neural network layers such as
Fully Connected, Convolutional, Pooling, Flatten, and Dropout are
included. Hyperparameter tuning is performed with a parallel grid
search engine.

MagmaDNN uses several techniques to accelerate network train-
ing. For instance, convolutions are performed using the Winograd
algorithm and FFTs. Other techniques include MagmaDNNss cus-
tom memory manager, which is used to reduce expensive memory
transfers, and accelerated training by distributing batches across
GPU nodes.

This paper provides an overview of the MagmaDNN framework
and how it leverages the MAGMA library to attain speed increases.
This paper also addresses how deep networks are accelerated by
training in parallel and further challenges with parallelization.
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1 INTRODUCTION

Machine Learning is becoming an increasingly vital aspect of to-
day’s technology, yet traditional techniques prove insufficient for
complex problems [9]. Thus, Deep Learning (DL) is introduced,
which is a methodology for learning data with multiple levels of
abstraction [15]. DL is driven by Deep Neural Networks (DNN),
which are Artificial Neural Networks (ANN) comprised of multiple
layers and often convolutions and recurrence. DNNs are used to
model complex data in numerous fields such as autonomous driving
[5], handwriting recognition [16], image classification [14], speech-
to-text algorithms [11], and playing computationally difficult games
[18].

Non-trivial DL tasks often require large weight matrices and
therefore an abundance of training samples. This leads to long
computation time and large memory footprints. Popular data-sets,
such as ImageNet, contain more than 14 million training images
and over 20 thousand classes[2]. Such models can take several
days to weeks to train. Long computation times combined with the
abundance of data in the modern era increases the need for fast,
scalable DL implementations.

Modern advances in GPU technology have greatly accelerated
DNN implementations and allowed them to scale with sufficient
proportion [8]. Despite the success in scaling DNNs the technology
is not easily accessible to researchers outside of DL and is only
slowly making its way into popular frameworks such as Tensorflow.

2 MAGMADNN FRAMEWORK

The MagmaDNN framework consists of four major components:
MemoryManager (2.1), Tensor (2.2), Layer (2.3), and Model (2.4).
Each of these wrap around the prior and provides increasing levels
of abstraction for the framework’s user. Three of these, all but
the MemoryManager, are used in the typical Workflow (2.5) of a
MagmaDNN program.

2.1 MemoryManager

When accelerating computation on a GPU, handling memory can
become a disconnect between researcher and results. MagmaDNN
removes this obstacle with its MemoryManager, which is responsi-
ble for abstracting memory operations into a single class. It defines
and can control four different memory types: HOST, DEVICE, MAN-
AGED, and CUDA_MANAGED. The difference between the latter
two being that CUDA_MANAGED uses CUDA’s unified memory,
while MANAGED is MagmaDNN’s own implementation of host-
device synchronized memory.
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Figure 1: MemoryManager Copying Support

Memory bugs in GPU intensive code typically arise from confu-
sion as to where data is stored and how to access it across devices.
The manager keeps track of its memory’s device location, which it
uses to handle inter-device data communication.

Creating MemoryManagers is simple and only requires four
pieces of information: data type, size, memory type, and device id.

MemoryManager<type> m (size, memory_type, device);

Type can be float, double or magmaHalf dictating whether
to use either single, double, or half precision, respectively. Size
provides the number of entries that the MemoryManager will
store, and will require that size * sizeof(type) bytes be al-
located. Memory type can be either HOST, DEVICE, MANAGED, or
CUDA_MANAGED, which will determine how the data is stored
and how it is used during training. The device id specifies which
device to use for storage. For instance, a memory type of DEVICE
and device id of 0 will store the data on GPU 0.

Copying is wrapped into the copy_from function, which handles
all cases of MemoryManager copying (see figure 2.1).

m.copy_from(const MemoryManager<T>& m);

In addition to simplifying memory operations MagmaDNN aims
to optimize them. Typically, host-device copying introduces a bot-
tleneck, especially in the case of device — host memory operations.
For this reason, MagmaDNN includes its own MANAGED type
memory, which only synchronizes when necessary in order to min-
imize copying. Memory can also be prefetched asynchronously
avoiding the need to wait for data to copy during network training.

2.2 Tensor

Fundamental to deep learning techniques is the tensor. Wrapped
around a MemoryManager, the Tensor class provides additional
representational functionality and math operations. The data struc-
ture interprets its linear memory as a multi-dimensional array.
Tensors can be indexed python style, with negative indices, and
support reshaping and squeezing. By using the MemoryManager,
Tensors abstract the method in which their data is stored. The typ-
ical workflow (see Section 2.5) often involves computations on a
single tensor on both the host and device. For this reason, Tensors
use MagmaDNN’s MANAGED type memory by default.

Like the MemoryManager, tensors are straightforward to create
and only require a shape.

Tensor<type> t ({axisl,axis2,...});

Here {axis1,axis2...} is a vector of integers that define the size
of each tensor axis. Optionally, a memory type and device id can
be specified, however, they are defaulted to be MANAGED and 0.

Using this structure, MagmaDNN implements tensor multipli-
cation and addition with MAGMA to accelerate the operations.
MAGMA utilizes both the multi-core CPU and GPU device to accel-
erate these operations [20]. Other element-wise operations such as
the Hadamard product and activation functions are implemented
using optimized CUDA kernels.

In recent years, convolutional and recurrent networks have be-
come the focal point of deep learning. Convolutional layers are
crucial in models training on image or other spatial data. Mag-
maDNN uses the Winograd algorithm to compute convolutions,
but also has the support to use the CuDNN [7] framework.

2.3 Layer

DNNs are comprised of layers each defined by a weight and bias
tensor and some activation function. Each Layer class is capable of
forward and backward propagation, updating the weights based on
the values of neighboring layers. MagmaDNN implements several
different layer types: Input, Fully Connected, Activation, Conv2D,
Pooling2D, Dropout, and Output. Training routines make use of the
abstract Layer class allowing the use of custom layer implementa-
tions.

Each layer provides various parameters. For instance, the activa-
tion layer accepts several activation functions: sigmoid, relu, and
tanh. Each of these is supported on the host and device.

2.4 Model

Typical DNN users are not always knowledgeable of or willing
to create implementations of training routines. Implementations
of back-propagation and various optimizers are non-essential to
applied models and can present a development bottleneck to re-
searchers. For this reason, MagmaDNN employs the Model class.

The Model class abstracts the network and its training func-
tionality. It creates a simple interface for creating DNN layers and
running a training routine. Given a testing set and a list of layers,
a Model can train a DNN with the given layers and testing data
and predict any future samples using the DNN. For researchers
utilizing DNNs in various applications, the Model class allows for a
faster development time without concern for the implementation
of network optimization.
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Creating models only requires two structures: a Param struct,
which stores model hyperparameters, and a vector of network
layers.

Model m (params, layers);
m.fit(x_train, y_train, verbose, &out);

Training the networks is then a simple function call to fit, which
uses the model parameters and x_train/y_train tensors to run a
training routine.

2.5 Workflow

Load Data

v

Preprocessing

Y

Export Model ‘ Predict

Figure 2: MagmaDNN Workflow

Like many other frameworks, MagmaDNN is built around the
workflow Load/Pre-Process Data — Create Model — Train — Predict
— Train — --- (see figure 2). Functionality is offered for data
I/O and manipulation, however, the core is in the Model training
step. Due to separating individual tasks into standalone classes, for
example the Tensor class, different workflows are viable. However,
MagmaDNN is optimized towards that presented in figure 2.
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Figure 3: Time Comparisons

3.1 MNIST Test

The Modified National Institute of Standards and Technology
(MNIST) data set is a collection of approximately 60 thousand im-
ages of handwritten digits along with their proper labels [1]. Each
image is reduced to 28x28 pixels and anti-aliased to grayscale. Fol-
lowing its first use by Lecun et. al. [16], the data set has become
a standard test for neural networks and other machine learning
techniques.

MNIST was used to compare MagmaDNN to other popular frame-
works such as Tensorflow, PyTorch, and Theano (see figure 3). All
models were formed using sequential fully connected layers, each
with 528 hidden units, a learning rate of n = 0.05, a weight decay
of @ = 0.001, and activation function sigmoid. All libraries were
tested with 100 samples per batch for 5 epochs on an Intel Xeon
X5650 (2.67GHzx12) processor accompanied by an Nvidia 1050Ti
GPU. The graphics card was equipped with 4 GB of memory and
768 cores. Each test was ran using the GPU, in addition to a CPU
only Theano test, which is included to give an additional frame of
reference to how GPUs accelerate DNN training.

MagmaDNN was the fastest in each test, finishing five epochs
on the four layer test in 2.00477 seconds. On the four layer test
MagmaDNN was =~ 6.8 times faster than TensorFlow and ~ 17.8
times faster than the Theano CPU only run.

3.2 Scaling

As shown in figure 3 MagmaDNN not only trained the fastest, but
scaled at an optimal rate compared to other popular frameworks
(see table 1 and figure 3). PyTorch scaled better than MagmaDNN,
but performed poorly on the small MNIST model due to excessive
HOST < DEVICE copy operations.
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Framework | A time / A layer
MagmaDNN 0.6197
TensorFlow 1.7524
Theano (GPU) 1.5271
Theano (CPU) 12.5071
PyTorch -0.08

Table 1: Change in Training Time with Number of Layers

4 PARALLELISM

As with many of computationally intensive tasks DNN training can
be accelerated by distributed computing. Despite this fact there are
several challenges to training networks in parallel.

4.1 Previous Work

Most modern DNN frameworks provide support for the use of GPU
acceleration. GPUs drastically improve the training time of larger
networks by allowing for faster computation of matrix operations.
This large difference is evinced by the run-times in figure 3 and
run-time increase rates in table 1.

Despite the accelerating capacity of GPUs they are often bottle-
necked by memory transferring. To combat the bottle-neck, mem-
ory transfers are reduced by using minibatches. As suggested by
the name, minibatches work by training on sets or "batches" of
samples at a time rather than a single sample. However, another
hyperparameter, the batch size, has been added to the model design
process increasing the overall complexity of the problem.
Typically, increasing the batch size increases computational effi-
ciency, while decreasing the accuracy of the model. Larger batch
sizes also impede the convergence of stochastic gradient descent
(SGD), when optimizing the network. In practice various tricks such
as warm-up [10], gradually increasing batch size [19], or layer-wise
adaptive rate scaling (LARS) [21] are required to guarantee con-
vergence. However, in general they do not eliminate the batch size
limit, but only raise it [4]. Using combinations of these techniques
You et. al. were able to train the AlexNet model in 11 minutes on
the ImageNet-1k data set [22].

GPUs and minibatches are currently present in most DNN work-
flows and provide significant speedups over their absence. However,
they only apply to training in a single node. Parallelization tech-
niques can be added on top of them to extend training to multiple
nodes and improve the training time, while maintaining validation
accuracy.

The most common of these techniques is Data-Parallelism (see
figure 4). In data parallelism weights are sent from a master node to
N worker nodes. Let w/ be the weights of the j-th worker node. Each
node computes the gradient Vw’/ and sends it back to the master
node. Once the master node has received the gradients from each
worker it calculates w «— w — n/N Zj[\i 1 Vw/, the average weight,
and broadcasts w back to each worker. Blocking data parallelism is
the typical method used in scaling deep learning and it has shown
promising results [12][6].

Figure 4: Data Parallelism
Despite its success data parallelism has drawbacks. Each node is
required to be given a necessary amount of work such that it is not
mostly idle. Additionally, a blocking call has been introduced to the
parameter server creating "lulls" where processors sit idle. To deal
with these issues some systems train using Model-Parallelism. In
model parallelism network parameters are split evenly across avail-
able devices. Due to device memory constraints model parallelism
does not scale well. For instance, when training using large images
model parallelism forces the use of small batch sizes in order to fit
the data in device memory.
Another approach is Layer-Parallelism. In a similar scheme to CPU
pipelining, layer parallelism computes layers in parallel as data
becomes available. Training is accelerated here by minimizing CPU
idle time. Layer parallelism is used in practice due to its performance
benefits [13][3]. However, it suffers from irregular transfer rates
between processors [4].
Typically Hybrid-Parallelism is the most optimal way to train a net-
work in parallel [4]. Hybrid parallelism combines various aspects
of data, model, and layer parallelism in order to train. Determin-
ing how to mix methods into hybrid parallelism introduces more
parameters and is model dependent. Thus, hybrid parallelism does
not extend well to general training tasks.

4.2 MagmaDNN Parallelism

Accelerating fine-grained parallelism is currently not within the
scope of MagmaDNN, so other frameworks are used to accelerate
these areas. One instance being the use of MAGMA to implement
linear algebra routines. By using MAGMA, tensor operations are
computed with state-of-the-art parellelization techniques. Specifi-
cally, the highly parallel SIMD architecture on CUDA devices are
utilized to accelerate matrix computations.

Course-grained parallelism is accomplished in multiple ways in
the MagmaDNN framework. Models can make use of several GPUs
on a single node to train larger, memory-consuming networks.
Additionally, multiple GPUs can be employed to train with Data-
Parallelism (as described in section 4.1).

Data parallelism is implemented using a combination of CUDA’s
asynchronous capabilities and CUDA aware MPL The use of MPI
gives MagmaDNN the capability to train across several nodes in
a network. Training does not suffer greatly from the lack of fault-
tolerance in popular MPI implementations due to the large amount
of samples typically trained on.
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4.3 Hyperparameter Tuning

Data parallelism succeeds in not only optimizing weights, but also
model hyperparameters. MagmaDNN uses a Random and/or Ex-
haustive Grid Search technique to optimize hyperparameters. Those
currently being optimized are learning rate, weight decay rate, batch
size, and number of training epochs. However, the routine is modu-
lar and able to add new dimensions to the search space.

In grid search, as with data parallelism, a parameter server sends a
parameter set to each node, where the model is trained according
to its received parameters. The parameter server, or master, in turn
receives the training time, accuracy, and loss associate with each
parameter set. Using some objective function, typically a combi-
nation of training duration and accuracy, the optimization routine
gives the optimal training parameters.

Grid search can be run to exhaustively search a range of parameters
(with a given step size), however, this is often too large to be feasible.
For these reasons grid search can be ran using random sampling
until some accuracy threshold is met.

5 DISCUSSION AND FUTURE OF
MAGMADNN

Parallel hardware continues to increase in capability as the field
of DL continues to grow. Even as exaflop computing approaches
on the horizon DNNs fail to utilize the entirety of this immense
computing power. Due to the complexity of modern DL tasks it is
becoming increasingly essential to fully exploit parallelism in DNN
training.

Given MagmaDNN’s fast training and C++ interface it can serve as
a valuable tool in the DL atmosphere. Being a young framework it
lacks many features that current mature frameworks possess. The
project aims to provide a modular framework for researchers to
rapidly implement DNNs and train them quickly. Beyond a sim-
ple interface, MagmaDNN will provide techniques for distributed
training, half-precision, and hyperparameter optimization.
Currently MagmaDNN is structured as a standard C++ project
with a Make build system. The code has been tested on Ubuntu
16 and greater and Mac OS, but is likely to run on any *nix style
operating system with proper CUDA driver support. MagmaDNN
aims to provide more tests and examples on distributed systems
going forward.

6 AVAILABILITY

MagmaDNN is currently developed and supported by the Innova-
tive Computing Laboratory (ICL) and Joint Institute for Computer
Science (JICS) at the University of Tennessee, Knoxville and Oak
Ridge National Laboratory. Source code, documentation, tutorials,
and licensing can all be found on the project’s homepage!.
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