
SLATE MIXED PRECISION PERFORMANCE REPORT1
Ali Charara, Jack Dongarra, Mark Gates, Jakub Kurzak, Asim YarKhan

INTRODUCTION
Software for Linear Algebra Targeting Exascale (SLATE) is being developed as part of the Exascale
Computing Project (ECP), which is a collaborative effort between two US Department of Energy (DOE)
organizations, the Office of Science and the National Nuclear Security Administration (NNSA). The
purpose of SLATE is to serve as a replacement for ScaLAPACK for the upcoming exascale DOE machines.
SLATE will accomplish this objective by leveraging recent progress in parallel programming models and
by strongly focusing on supporting hardware accelerators.

This report focuses on the set of SLATE routines for solving linear systems of equations using the technique
of mixed-precision iterative refinement. Initial performance numbers are reported using the SummitDev
system at the Oak Ridge Leadership Computing Facility (OLCF).

MOTIVATION
The goal of mixed precision algorithms is to benefit from the fact that single precision calculations are
usually 2× faster than double precision calculations. The techniques presented here were pioneered in 2006-
2007 for the Cell processor [2], which offered 14× more single precision performance than double precision
performance, and later extended to other architectures [1] [3]. These days, the ratio is almost universally
2× for CPUs, while for GPUs it depends on the targeted market. Devices meant for scientific and
engineering computing usually offer the same 2× ratio, although exceptions happen, while the devices
meant mostly for graphics applications are typically slower in double precision by on order of magnitude.

Not without significance is the adoption of half precision in GPUs from NVIDIA and ADM, mostly
targeting applications in deep learning. Due to the use of specialized cores, half precision offers an order of
magnitude higher performance than single precision. At the same time, half precision suffers not only from
much lower precision, but also severely limited range, and requires much more complex numerical
approaches [4] [5]. At this time, we are focusing on single/double refinement.

ALGORITHM
Iterative refinement is a well-known method for improving the solution of linear systems of equations of
the form 𝐴𝑥 = 𝑏. Canonical approach is the Richardson iteration 𝑥(&'() = 𝑥(&) + 𝐴+(,𝑏 − 𝐴𝑥(&)., which
is equivalent to gradient descent. In the case of Gaussian elimination, the coefficient matrix A is factorized
using LU decomposition into the product of a lower triangular matrix L and an upper triangular matrix U.

1 This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of two U.S.
Department of Energy organizations (Office of Science and the National Nuclear Security Administration) responsible
for the planning and preparation of a capable exascale ecosystem, including software, applications, hardware,
advanced system engineering and early testbed platforms, in support of the nation's exascale computing imperative.

Commonly, partial row pivoting is used to improve numerical stability resulting in the factorization PA =
LU, where P is the row permutation matrix. The system is solved by solving Ly = Pb (forward substitution)
and then solving Ux = y (backward substitution). Owing to the roundoff error, the solution carries an error
related to the condition number of the coefficient matrix A. In order to improve the computed solution an
iterative refinement process is applied, which produces a correction to the computed solution, x, at each
iteration and yields the basic iterative refinement algorithm.

In the case of mixed-precision iterative refinement the factorization PA = LU and the solution of the
triangular systems Ly = Pb and Ux = y are computed using single-precision arithmetic. The residual
calculation and the update of the solution are computed using double-precision arithmetic and the original
double-precision coefficients. The most computationally expensive operations, including the factorization
of the coefficient matrix A and the forward and backward substitution, are performed using single-precision
arithmetic and take advantage of the single-precision speed. The only operations executed in double
precision are the residual calculation and the update of the solution. It can be observed that all operations
of 𝑂(𝑛1) computational complexity are handled in single precision and all operations performed in double
precision are of at most 𝑂(𝑛2) complexity. The coefficient matrix A is converted to single precision for the
LU factorization. At the same time, the original matrix in double precision has to be retained for the residual
calculation. Therefore, the method requires 1.5× the storage of the strictly double-precision method.

IMPLEMENTATION
Two mixed precision solvers were implemented in SLATE – the gesvMixed() routine, based on LU
factorization and the posvMixed() routine, based on the Cholesky factorization. The routines take the lower
precision and the higher precision as template parameters. The factorizations are performed in the lower
precision and the iterative refinement is performed in the higher precision. The refinement stops when the
maximum number of iterations is reached (30) or when all right-hand side (RHS) columns satisfy the
condition ‖𝑟‖5 < 	√𝑛 ∗ ‖𝑥‖5 ∗ ‖𝐴‖5 ∗ 𝜀, where r is the residual, n is the problem size, x is the solution
vector, A is the matrix, and 𝜀 is the machine epsilon. The algorithm is identical to the one in LAPACK. It
has never been implemented in ScaLAPACK.

The mixed precision solvers also required implementation of three additional auxiliary routines –
elementwise matrix addition, matrix copy/conversion, and a routine for computing the max norm for all
columns of the RHS matrix individually. Corresponding GPU kernels were developed to support GPU
execution.

EXPERIMENTS

Environment
Performance numbers were collected using the SummitDev system at the OLCF, which is intended to
mimic the OLCF’s supercomputer Summit. SummitDev is based on IBM POWER8 processors and
NVIDIA P100 (Pascal) accelerators, and is one generation behind Summit, which is based on IBM
POWER9 processors and NVIDIA V100 (Volta) accelerators.

The SummitDev system contains three racks, each with eighteen IBM POWER8 S822LC nodes, for a total
of fifty-four nodes. Each node contains two POWER8 CPUs, ten cores each, and four P100 GPUs. Each
node has 256 GB of DDR4 memory. Each GPU has 16 GB of HBM2 memory. The GPUs are connected
by NVLink 1.0 at 80 GB/s. The nodes are connected with a fat-tree enhanced data rate (EDR) InfiniBand.

The software environment used for the experiments included GNU Compiler Collection (GCC) 6.4.0,
CUDA 9.0.69, Engineering Scientific Subroutine Library (ESSL) 6.1.0-1, Spectrum MPI 10.2.0.7, Netlib
LAPACK 3.8.0, and Netlib ScaLAPACK 2.0.2.

Performance
The figures blow show the performance of the posvMixed() routine. Multicore performance using 20 cores
is shown on the left, and distributed memory performance using 16 nodes (320 cores) is shown on the right.
In shared memory the posvMixed() routine basically reaches the theoretical limit of 2× performance boost
(100%), while in distributed memory the benefit is only about 35%.

The figures blow show the performance of the gesvMixed() routine. Multicore performance using 20 cores
is shown on the left, and distributed memory performance using 16 nodes (320 cores) is shown on the right.
In general, the LU factorization performs much worse than the Cholesky factorization, mainly due to the
overhead of pivoting (row swaps). Because pivoting is also part of the refinement process, this also
diminished the performance gain of mixed precision. In shared memory the boost reaches about 60%, while
in distributed memory it reaches about 40%.

Unfortunately, the GPU implementations of mixed-precision solvers are not currently outperforming the
GPU implementations of fixed-precision solvers. This is most likely caused by excessive communication
between the CPU memory and the GPU memories and will require further performance engineering efforts.
Eventually, we expect close to the full 2× speedup across all mixed-precision solvers, single-node and
multi-node, CPU and GPU.

GF
LO

PS

0

100

200

300

400

500

600

700

800

900

SIZE

0 20000 40000 60000 80000 100000 120000

mixed precision (single/double)
double precision

linear solver based on Cholesky decomposition
2 sockets × 10 cores = 20 cores (IBM POWER8)

GF
LO

PS

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

SIZE

0 50000 100000 150000 200000 250000 300000

mixed precision (single/double)
double precision

linear solver based on Cholesky decomposition
16 nodes × 2 sockets × 10 cores = 320 cores (IBM POWER8)

SUMMARY
We delivered mixed precision linear solvers based on the Cholesky and LU factorizations, with support for
distributed memory, multithreading, and multi-GPUs. We achieved significant performance improvements
for multicore runs in shared memory and in distributed memory. At the same time, outperforming fixed-
precision solvers proved difficult in distributed memory with multi-GPU acceleration, which is most likely
due to suboptimal CPU to GPU communication. Further performance engineering efforts will be needed.
Eventually full performance benefit is expected (close to 2× speedup).

ACKNOWLEDGMENTS
This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National
Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract
No. DE-AC05-00OR22725.

BIBLIOGRAPHY

[1] J. Langou, J. Langou, P. Luszczek, J. Kurzak and A. Buttari, "Exploiting the Performance of 32 bit
Floating Point Arithmetic in Obtaining 64 bit Accuracy (Revisiting Iterative Refinement for Linear
Systems)," in SC '06: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, Tampa, FL,
2006.

[2] J. Kurzak and J. Dongarra, "Implementation of mixed precision in solving systems of linear equations
on the Cell processor," Concurrency and Computation: Practice and Experience, vol. 19, p. 1371–
1385, 2007.

GF
LO

PS

0

50

100

150

200

250

300

350

400

450

SIZE

0 20000 40000 60000 80000

mixed precision (single/double)
double precision

linear solver based on Gaussian elimination

2 sockets × 10 cores = 20 cores (IBM POWER8)

GF
LO

PS

0

1000

2000

3000

4000

5000

6000

7000

SIZE

0 40000 80000 120000 160000 200000

mixed precision (single/double)
double precision

linear solver based on Gaussian elimination

16 nodes × 2 sockets × 10 cores = 320 cores (IBM POWER8)

[3] A. Buttari, J. Dongarra, J. Langou, J. Langou, P. Luszczek and J. Kurzak, "Mixed Precision Iterative
Refinement Techniques for the Solution of Dense Linear Systems," The International Journal of High
Performance Computing Applications, vol. 21, no. 4, p. 457–466, 2007.

[4] E. Carson and N. J. Higham, "Accelerating the Solution of Linear Systems by Iterative Refinement in
Three Precisions," Methods and Algorithms for Scientific Computing, vol. 40, no. 2, p. A817–A847,
2018.

[5] A. Haidar, S. Tomov, J. Dongarra and N. J. Higham, "Harnessing GPU tensor cores for fast FP16
arithmetic to speed up mixed-precision iterative refinement solvers," in SC '18: Proceedings of the
International Conference for High Performance Computing, Networking, Storage, and Analysis,
Dallas, TX, 2018.

