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INTRODUCTION 
Software for Linear Algebra Targeting Exascale (SLATE) is being developed as part of the Exascale 
Computing Project (ECP), which is a collaborative effort between two US Department of Energy (DOE) 
organizations, the Office of Science and the National Nuclear Security Administration (NNSA). The 
purpose of SLATE is to serve as a replacement for ScaLAPACK for the upcoming exascale DOE machines. 
SLATE will accomplish this objective by leveraging recent progress in parallel programming models and 
by strongly focusing on supporting hardware accelerators. 

This report focuses on the set of SLATE routines for solving linear systems of equations using the technique 
of mixed-precision iterative refinement. Initial performance numbers are reported using the SummitDev 
system at the Oak Ridge Leadership Computing Facility (OLCF). 

MOTIVATION 
The goal of mixed precision algorithms is to benefit from the fact that single precision calculations are 
usually 2× faster than double precision calculations. The techniques presented here were pioneered in 2006-
2007 for the Cell processor [2], which offered 14× more single precision performance than double precision 
performance, and later extended to other architectures [1] [3]. These days, the ratio is almost universally 
2× for CPUs, while for GPUs it depends on the targeted market. Devices meant for scientific and 
engineering computing usually offer the same 2× ratio, although exceptions happen, while the devices 
meant mostly for graphics applications are typically slower in double precision by on order of magnitude. 

Not without significance is the adoption of half precision in GPUs from NVIDIA and ADM, mostly 
targeting applications in deep learning. Due to the use of specialized cores, half precision offers an order of 
magnitude higher performance than single precision. At the same time, half precision suffers not only from 
much lower precision, but also severely limited range, and requires much more complex numerical 
approaches [4] [5]. At this time, we are focusing on single/double refinement. 

ALGORITHM 
Iterative refinement is a well-known method for improving the solution of linear systems of equations of 
the form 𝐴𝑥 = 𝑏. Canonical approach is the Richardson iteration 𝑥(&'() = 𝑥(&) + 𝐴+(,𝑏 − 𝐴𝑥(&)., which 
is equivalent to gradient descent. In the case of Gaussian elimination, the coefficient matrix A is factorized 
using LU decomposition into the product of a lower triangular matrix L and an upper triangular matrix U. 
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Commonly, partial row pivoting is used to improve numerical stability resulting in the factorization PA = 
LU, where P is the row permutation matrix. The system is solved by solving Ly = Pb (forward substitution) 
and then solving Ux = y (backward substitution). Owing to the roundoff error, the solution carries an error 
related to the condition number of the coefficient matrix A. In order to improve the computed solution an 
iterative refinement process is applied, which produces a correction to the computed solution, x, at each 
iteration and yields the basic iterative refinement algorithm. 

In the case of mixed-precision iterative refinement the factorization PA = LU and the solution of the 
triangular systems Ly = Pb and Ux = y are computed using single-precision arithmetic. The residual 
calculation and the update of the solution are computed using double-precision arithmetic and the original 
double-precision coefficients. The most computationally expensive operations, including the factorization 
of the coefficient matrix A and the forward and backward substitution, are performed using single-precision 
arithmetic and take advantage of the single-precision speed. The only operations executed in double 
precision are the residual calculation and the update of the solution. It can be observed that all operations 
of 𝑂(𝑛1) computational complexity are handled in single precision and all operations performed in double 
precision are of at most 𝑂(𝑛2) complexity. The coefficient matrix A is converted to single precision for the 
LU factorization. At the same time, the original matrix in double precision has to be retained for the residual 
calculation. Therefore, the method requires 1.5× the storage of the strictly double-precision method. 

IMPLEMENTATION 
Two mixed precision solvers were implemented in SLATE – the gesvMixed() routine, based on LU 
factorization and the posvMixed() routine, based on the Cholesky factorization. The routines take the lower 
precision and the higher precision as template parameters. The factorizations are performed in the lower 
precision and the iterative refinement is performed in the higher precision. The refinement stops when the 
maximum number of iterations is reached (30) or when all right-hand side (RHS) columns satisfy the 
condition ‖𝑟‖5 < 	√𝑛 ∗ ‖𝑥‖5 ∗ ‖𝐴‖5 ∗ 𝜀, where r is the residual, n is the problem size, x is the solution 
vector, A is the matrix, and 𝜀 is the machine epsilon. The algorithm is identical to the one in LAPACK. It 
has never been implemented in ScaLAPACK. 

The mixed precision solvers also required implementation of three additional auxiliary routines – 
elementwise matrix addition, matrix copy/conversion, and a routine for computing the max norm for all 
columns of the RHS matrix individually. Corresponding GPU kernels were developed to support GPU 
execution. 

EXPERIMENTS 

Environment 
Performance numbers were collected using the SummitDev system at the OLCF, which is intended to 
mimic the OLCF’s supercomputer Summit. SummitDev is based on IBM POWER8 processors and 
NVIDIA P100 (Pascal) accelerators, and is one generation behind Summit, which is based on IBM 
POWER9 processors and NVIDIA V100 (Volta) accelerators. 



The SummitDev system contains three racks, each with eighteen IBM POWER8 S822LC nodes, for a total 
of fifty-four nodes. Each node contains two POWER8 CPUs, ten cores each, and four P100 GPUs. Each 
node has 256 GB of DDR4 memory. Each GPU has 16 GB of HBM2 memory. The GPUs are connected 
by NVLink 1.0 at 80 GB/s. The nodes are connected with a fat-tree enhanced data rate (EDR) InfiniBand. 

The software environment used for the experiments included GNU Compiler Collection (GCC) 6.4.0, 
CUDA 9.0.69, Engineering Scientific Subroutine Library (ESSL) 6.1.0-1, Spectrum MPI 10.2.0.7, Netlib 
LAPACK 3.8.0, and Netlib ScaLAPACK 2.0.2. 

Performance 
The figures blow show the performance of the posvMixed() routine. Multicore performance using 20 cores 
is shown on the left, and distributed memory performance using 16 nodes (320 cores) is shown on the right. 
In shared memory the posvMixed() routine basically reaches the theoretical limit of 2× performance boost 
(100%), while in distributed memory the benefit is only about 35%. 

 

 

The figures blow show the performance of the gesvMixed() routine. Multicore performance using 20 cores 
is shown on the left, and distributed memory performance using 16 nodes (320 cores) is shown on the right. 
In general, the LU factorization performs much worse than the Cholesky factorization, mainly due to the 
overhead of pivoting (row swaps). Because pivoting is also part of the refinement process, this also 
diminished the performance gain of mixed precision. In shared memory the boost reaches about 60%, while 
in distributed memory it reaches about 40%. 

Unfortunately, the GPU implementations of mixed-precision solvers are not currently outperforming the 
GPU implementations of fixed-precision solvers. This is most likely caused by excessive communication 
between the CPU memory and the GPU memories and will require further performance engineering efforts. 
Eventually, we expect close to the full 2× speedup across all mixed-precision solvers, single-node and 
multi-node, CPU and GPU. 
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SUMMARY 
We delivered mixed precision linear solvers based on the Cholesky and LU factorizations, with support for 
distributed memory, multithreading, and multi-GPUs. We achieved significant performance improvements 
for multicore runs in shared memory and in distributed memory. At the same time, outperforming fixed-
precision solvers proved difficult in distributed memory with multi-GPU acceleration, which is most likely 
due to suboptimal CPU to GPU communication. Further performance engineering efforts will be needed. 
Eventually full performance benefit is expected (close to 2× speedup). 
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