
Future Generation Computer Systems 91 (2019) 450–464

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Local rollback for resilient MPI applications with application-level
checkpointing and message logging
Nuria Losada a,∗, George Bosilca b, Aurélien Bouteiller b, Patricia González a, María
J. Martín a

a Computer Architecture Group, Universidade da Coruña, Spain
b Innovative Computing Laboratory, The University of Tennessee, Knoxville, USA

h i g h l i g h t s

• A local rollback solution for MPI resilient programs preventing survivors rollback.
• Integration of ULFM, application-level checkpointing, and message logging.
• Split message logging between library-level and application-level.
• Application-level collective operations logging improves portability and log size.

a r t i c l e i n f o

Article history:
Received 18 February 2018
Received in revised form 10 July 2018
Accepted 17 September 2018
Available online xxxx

Keywords:
MPI
Resilience
Message logging
Application-level checkpointing
Local rollback

a b s t r a c t

The resilience approach generally used in high-performance computing (HPC) relies on coordinated
checkpoint/restart, a global rollback of all the processes that are running the application. However, in
many instances, the failure has a more localized scope and its impact is usually restricted to a subset
of the resources being used. Thus, a global rollback would result in unnecessary overhead and energy
consumption, since all processes, including those unaffected by the failure, discard their state and roll
back to the last checkpoint to repeat computations that were already done. The User Level Failure
Mitigation (ULFM) interface – the last proposal for the inclusion of resilience features in the Message
Passing Interface (MPI) standard – enables the deployment of more flexible recovery strategies, including
localized recovery. This work proposes a local rollback approach that can be generally applied to Single
Program,Multiple Data (SPMD) applications by combiningULFM, the ComPiler for Portable Checkpointing
(CPPC) tool, and the OpenMPI VProtocol system-level message logging component. Only failed processes
are recovered from the last checkpoint, while consistency before further progress in the execution is
achieved through a two-level message logging process. To further optimize this approach point-to-point
communications are logged by the OpenMPI VProtocol component, while collective communications are
optimally logged at the application level—thereby decoupling the logging protocol from the particular
collective implementation. This spatially coordinated protocol applied by CPPC reduces the log size, the
log memory requirements and overall the resilience impact on the applications.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Today, high-performance computing (HPC) plays an integral
role in the advancement of many science and engineering disci-
plines. However, recent studies show that, as HPC systems con-
tinue to grow in numbers and in heterogeneity, the Mean Time To
Failure (MTTF) for a given application shrinks, resulting in a high
failure rate overall. Di Martino et al. [1] studied the US National

∗ Corresponding author.
E-mail addresses: nuria.losada@udc.es (N. Losada), bosilca@icl.utk.edu

(G. Bosilca), bouteill@icl.utk.edu (A. Bouteiller), patricia.gonzalez@udc.es
(P. González), mariam@udc.es (M.J. Martín).

Center for Supercomputing Applications’ (NCSA’s) ‘‘Blue Waters’’
supercomputer for 261 days and found that 1.53% of applications
running on the machine failed because of system-related issues.
The electricity cost of not using any protective mechanisms in
the failed applications was estimated at almost $500,000 during
the period of time studied. Future exascale systems will employ
several million compute cores, many more than Blue Waters, and
will accordingly be hit by errors and faults more frequently due
to their scale and complexity. Therefore, long-running applications
will need to rely on fault tolerance techniques not only to ensure
the timely completion of their execution in these systems but also
to minimize the running costs.

https://doi.org/10.1016/j.future.2018.09.041
0167-739X/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.future.2018.09.041
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2018.09.041&domain=pdf
mailto:nuria.losada@udc.es
mailto:bosilca@icl.utk.edu
mailto:bouteill@icl.utk.edu
mailto:patricia.gonzalez@udc.es
mailto:mariam@udc.es
https://doi.org/10.1016/j.future.2018.09.041

N. Losada et al. / Future Generation Computer Systems 91 (2019) 450–464 451

TheMessage Passing Interface (MPI) standard remains themost
popular parallel programming model in HPC systems. All versions
of the MPI standard, including the current version, 3.1, lack any
fault tolerance support. By default, the entire MPI application is
aborted upon a single process failure. Besides, even when set to
return errors, the state of MPI will be undefined upon failure, and,
thus, there are no guarantees that anMPI program can successfully
continue its execution. For this reason, traditional fault-tolerant
solutions forMPI applications rely on stop-and-restart checkpoint-
ing, where, upon a fault, and disregarding their statuses, all MPI
processes are aborted and then restarted from the last checkpoint.
The simplicity of this approach makes it palatable to application
developers for as long as the resulting overheads, in terms of
execution time and additional hardware costs, remain contained to
the allotted application budget. However, this approach presents
several serious disadvantages. First, in these solutions the entire
application is aborted in the event of a failure, and a new MPI
job needs to be relaunched. In some systems this implies the re-
queueing of a new job to the scheduling system, which introduces
an overhead—the size of which depends on the availability of
platform resources. Second, in the general case, the re-queueing
will result in the assignment of a different set of resources, forcing
the movement of all checkpoint data across the cluster in order to
restart the computation, which usually causes significant network
contention and high overheads. Third, all processes – including the
ones not affected by the failure – roll back to the last recovery
line and repeat a computation already done, which introduces un-
necessary overheads and energy consumption. However, in many
instances a complete restart is unnecessary, since most of the
computation nodes used by a parallel job will still be alive. Finally,
MPI was never meant to exists only for parallel applications that
target exascale platforms, but to provide a generic and portable
programming paradigm that supports all types of applications
including those that target smaller platforms built with different
sets of requirements, where resource volatility might be a usual
occurrence. Thus, more efficient solutions to allow parallel appli-
cations to cope with faults need to be explored.

The User Level Failure Mitigation (ULFM) interface [2], under
discussion in the MPI Forum, proposes to extend the MPI standard
with resilience capabilities to make MPI more suitable for fault-
prone environments (e.g., future exascale systems). Resilient MPI
programs are able to detect and react to failures without stopping
their execution, thus avoiding re-spawning the entire applica-
tion. ULFM includes new semantics for process failure detection,
communicator revocation, and reconfiguration, but it does not
include any specializedmechanism to recover the application state
at failed processes. This leaves the flexibility to the application
developers to implement the most optimal methodology, taking
in account the properties of the target application.

The ComPiler for Portable Checkpointing (CPPC) [3] is an
application-level open-source checkpointing tool for MPI applica-
tions. CPPC appears to the user as a compiler tool and a runtime
library. The compiler automatically instruments the application
code adding calls to the library for fault tolerance support. It
locates checkpoint calls at the appropriate points of the application
code, and marks the relevant variables for their inclusion in the
checkpoint files by using a ‘‘liveness’’ analysis. CPPC applies a
spatially coordinated checkpointing protocol [4] which enables
processes to checkpoint independently, avoiding inter-process
communications or runtime synchronization.

In this work, we propose a fault tolerance solution that com-
bines ULFM, the CPPC checkpointing tool, and a two-level message
logging protocol to transparently add resilient support to generic
SPMD MPI applications. Our approach relies on a local rollback
protocol where only the failed processes are recovered from the
last checkpoint, while consistency and further progress of the

computation is enabled using ULFM, and a split message logging
protocol that operates partly at the library level and partly at the
application level. Amajor differencewith existingmessage logging
protocols is that the collective communications are logged at the
application level, which reduces the impact of collective commu-
nication on the size of logged data, while at the same time enabling
the use of architecture-aware collective communications on the
recovered application, speeding up the recovery process. Addition-
ally, the spatially coordinated protocol used for checkpointing in
CPPC further contributes to this memory footprint reduction, as
checkpoints provide locations in which the log can be cleared.

This paper is structured as follows. Section 2 covers the related
work. Section 3 introduces CPPC. Section 4 gives a global overview
of the local rollback protocol, while Section 5 explains the mes-
sage logging strategy. Section 6 presents the management of the
communications interrupted by the failure, and Section 7 describes
the tracking protocol developed to ensure the consistency of the
replay process. The experimental results are presented in Section
8. Finally, Section 9 concludes this paper.

2. Related work

Though there is work in the literature that explores how to
provide a fault-tolerant MPI [5–7], the ULFM interface [2] is the
latest, and possibly themost conclusive, effort to include resilience
capabilities in the MPI standard. ULFM is a low-level API that
provides resilience constructs to support a variety of fault tolerance
models and allows/requires the user to design the recovery strat-
egy. In the literature, as well as in practice, there are a few different
proposals for implementing resilient applications using ULFM [8–
16], many of them specific to one or a set of applications [8,9,11–
14]

In a previous work [17,18], we extended the CPPC [3]
application-level checkpointing tool to use the new functionalities
provided by ULFM to transparently obtain resilient MPI appli-
cations from generic MPI single program, multiple data (SPMD)
programs. In this solution, all application processes roll back to
the last valid recovery line; thus, all processes re-execute the
computation from the checkpoint until the point where the failure
occurred. In contrast, we propose here a fault tolerance solution
that combines ULFM, CPPC, and a message logging protocol to
avoid the rolling back of survivor processes.

Relaxing the synchronization constraint in coordinated check-
point/restart requires replaying messages between restarted and
non-restarted processes, which can be achieved by adding a mes-
sage logging protocol. Message logging protocols have two fun-
damental parts: (1) the logging of all non-deterministic events
and (2) the logging of the content of the messages. Event logging
must be done reliably, and different techniques (pessimistic, op-
timistic, and causal), providing different levels of synchronicity
and reliability, have been studied [19]. Different protocols for the
payload logging, which is the logging of the contents of the mes-
sages, have also been proposed. Receiver-based approaches [20]
perform the local copy of themessage contents in the receiver side.
The main advantage here is that the log can be locally available
upon recovery; however, messages need to be committed to stable
storage or to a remote repository to make them available after the
process fails. On the other hand, in sender-based strategies [21–
25], the logging is performed on the sender process. This is the
most-used approach, as it provides better performance [26] than
other approaches. In a sender-based approach, the local copy can
be made in parallel with the network transfer, and processes can
keep the log in their memory; if the process fails, the log is lost,
but it will be regenerated during the recovery. As a drawback,
during the recovery, failed process need to request the replay of
messages by the survivor processes. Hybrid solutions have also

452 N. Losada et al. / Future Generation Computer Systems 91 (2019) 450–464

been studied [27] to obtain better performance than receiver-
based approaches during failure-free executions and to reduce the
restart overhead of send-based approaches.

Although message logging provides a more flexible restart, the
memory requirements tomaintain the log represent a limiting fac-
tor. Strategies to reduce the memory consumption of the payload
logging have been studied and are available in the literature. For
instance, hierarchical checkpointing reduces the memory cost of
logging by combining it with coordinated checkpointing [22–24].
Coordination is applied within a group of processes, while only
messages between different groups are logged. When a process
fails, all processeswithin its grouphave to roll back. This idea is also
combined in [24] with ‘‘send-determinism’’ [28], to also reduce the
number of logged events by assuming that processes send the same
sequence of messages in any correct execution. In [29], dedicated
resources (logger nodes) cooperate with the compute nodes by
storing part of their message logs in the memory. Other strategies
offer special consideration when logging collective communica-
tions – in order to decrease the memory footprint – by reducing
the number of internal point-to-point messages of the logged
collective [25] or by logging their result on a remote logger [30].

Our approach implements a local rollback protocol where only
the failed processes are recovered from the last checkpoint, while
consistency and further progress of the computation are enabled
using ULFM and the message logging capabilities. A two-level
message logging protocol is implemented: (1) at the MPI-level the
VProtocol [21] message logging component is used for sender-
based message logging and pessimist event logging of point-to-
point communications, while (2) collective communications are
optimally logged at the application level by CPPC. This strategy
dissociates the collective communications from their underlying
point-to-point expression, allowing the use of architecture-aware
collective communications and reducing the memory footprint
for their message logging. Additionally, the spatially coordinated
protocol used for checkpointing by CPPC further contributes to
this reduction, as checkpoints provide locations in which the log
can be cleared. The proposal solves the issues that arise when a
hard failure terminates one or several processes in the application
by dealing with the communications that were interrupted by
the failure and ensuring a consistent ordered replay so that the
application can successfully resume the execution.

3. CPPC overview

The CPPC compiler automatically instruments the application
code to produce an equivalent, fault-tolerant version where sup-
plementary calls to the CPPC library add protection and recovery
points. The instrumentation code includes registration and check-
point calls. The registration calls explicitly mark the relevant vari-
ables for their inclusion in the checkpoint files—the compiler uses
a ‘‘liveness’’ analysis to identify the variables to be registered. Each
process generates a checkpoint every N calls to the checkpoint
function, where N is the user-defined checkpointing frequency.

To enable users to specify an adequate checkpointing frequency,
the compiler uses a heuristic evaluation of computational cost
to place the checkpoint calls in the most expensive loops of the
application. Checkpoint consistency is guaranteed by locating the
checkpoint calls in the first ‘‘safe point’’ in these loops. The CPPC
compiler performs a static analysis of inter-process communi-
cations and identifies safe points as code locations where it is
guaranteed that there are no in-transit or inconsistent messages.
Safe points allow CPPC to apply a ‘‘spatial coordination proto-
col’’ [4]. Here, processes checkpoint independently without the
need of inter-process communications or runtime synchroniza-
tion. Instead, processes are implicitly coordinated: they checkpoint
at the same selected safe locations (checkpoint calls) and at the

same relative moments according to the checkpointing frequency.
Fig. 1 shows an example for a checkpointing frequency ofN = 2. All
processes checkpoint at the second, fourth, and sixth checkpoint
calls, which are invoked by each process at different instants in
time. The recovery line is formed by the checkpoint files generated
by all of the processes at the same safe location and at the same
relative moment; thus, no communications can cross the recovery
line, and no communications need to be replayed during the
recovery when using a global rollback with CPPC.

In the original CPPC approach, upon detection of a failure,
the application is relaunched, and the restart process takes place.
First, the application processes perform a negotiation to iden-
tify the most recent valid recovery line, which is formed by the
newest checkpoint file simultaneously available to all processes.
The restart phase has two parts: (1) reading the checkpoint data
into memory and (2) reconstructing the application state. The
reconstruction of the application state is achieved through the
ordered execution of certain blocks of the application’s code. These
blocks of code move the recovered data to its proper memory
location, re-create the non-portable state (e.g., the creation of
communicators), and position the application control flow at the
point where the checkpoint files were generated so that the exe-
cution can resume. For this purpose, the compiler inserts control
flow code (labels and conditional jumps) to ensure an ordered re-
execution.

4. Local rollback protocol outline

Inmost instances the recovery approachwhere all processes are
restarted from the most recent valid recovery line is highly ineffi-
cient. To address this drawback, we expand upon CPPC to enable
local rollback recovery. The goal of the local rollback protocol is to
reach, in the event of a failure, a consistent global state fromwhich
the application can resume the execution by rolling back only the
failed processes. Fig. 2 shows a global overview of the operation.
In the left part of the figure, the application is executed normally
until a failure occurs. The point of the execution where the failure
takes place, from the survivors’ perspective, is called the ‘‘failure
line’’. The right part of the figure shows the recovery using the local
rollback protocol, which is split into two phases: (1) the ‘‘process
recovery’’ phase detects the failure and re-spawns failed processes,
and (2) the ‘‘consistency recovery’’ phase leads the application to a
consistent state from which the execution can resume.

During the processes recovery, CPPC exploits the ULFM func-
tionalities to avoid terminating the application in the event of
a failure. The default MPI error handler is replaced with a cus-
tom one, which is invoked upon process failure. Within the er-
ror handler, survivors revoke all their communicators to ensure
global knowledge of the failure, agree about the failed processes,
and then re-spawn them. Together, all processes reconstruct the
global communicator of the application (conceptually similar to
MPI_COMM_WORLD), and then rebuild all revoked communica-
tors. The fact that all communicators are revoked to ensure failure
detection implies that all communicators need to be reconstructed,
by substituting all failed processes with their new replacement
processes. CPPC tracks all communicators used by the application
at compile time, and the CPPC compiler replaces the communi-
cators in the application with a custom CPPC communicator that
contains a pointer to the underlying MPI communicator actually
used by MPI. With this approach, all communicators used by the
application are known to CPPC, and they can be revoked and
transparently substituted with their repaired replacement.

In the consistency recovery phase, the state of a failed process
is recovered using the checkpoint file from the last valid recov-
ery line. Then, to reach a consistent global state, failed processes
need to progress between that recovery line and the failure line.

N. Losada et al. / Future Generation Computer Systems 91 (2019) 450–464 453

Fig. 1. Spatial coordination protocol.

Fig. 2. Local rollback.

In order to reach the same state as before the failure (a known
consistent state), this progress needs to occur exactly as in the
original execution. A particular piece of execution is a sequence of
process states and events. An event corresponds with a computa-
tional or communication step of a process that, given a preceding
state, leads the process to a new state. As the system is basically
asynchronous, there is no direct time relationship between events
occurring on different processes; however, events are partially or-
dered by the Lamport ‘‘happened before’’ relationship [31]. Events
can be deterministic or non-deterministic, depending on whether
or not, from a given state, the same outcome state would always
be obtained. Deterministic events follow the code flow (e.g., mes-
sage emission or computations), while non-deterministic events,
such as message receptions, depend on the time constraints of
message deliveries. Processes are considered ‘‘piecewise deter-
ministic:’’ only sparse non-deterministic events occur, separating
large parts of deterministic computation. To progress the failed
processes from the recovery line to the failure line and reach the
same state, all events in that part of the execution need to be
replayed in the exact same order as the initial execution. Deter-
ministic events will be naturally replayed as the process executes
the application code. However, the same outcomemust be ensured
for non-deterministic events, and thus they must be logged in the
original execution. In addition, failed processes replay anymessage
reception that impacted their state in the original execution, and

thus the content of the messages needs to be available without
restarting the sender process. For these purposes, the proposal
applies amessage logging protocol, detailed in Section 5, that keeps
a copy of messages payload and logs the non-deterministic events.

As illustrated in Fig. 2, some communications need to be re-
played during the consistency recovery phase: those to be received
by a failed process to enable its progress (messages m2 and m4 in
the figure) and those that were interrupted by the failure (message
m5). Other communications need to be skipped during the recov-
ery: those that were successfully received by a survivor process
(messages m1 and m3 in the figure). The success of the recovery is
predicated on correctly identifying the communications belonging
to each subset. Section 7 explains how this identification is per-
formed and how the replay process takes place.

In addition, the reconstruction of communicators has an im-
portant implication for replaying communication messages inter-
rupted by failures: all communications initiated but not completed
before the failure are lost. We assume this includes the commu-
nication call in which the failure is detected, because – as stated
in the ULFM specification – there are no guarantees regarding
the outcome of that call. The management of communications
interrupted by failure(s) is explained in Section 6.

454 N. Losada et al. / Future Generation Computer Systems 91 (2019) 450–464

5. Message logging

This section describes the message logging protocol that com-
bines system-level logging and application-level logging. Point-to-
point communications are logged using the Open MPI VProtocol
component. Collective communications are logged by CPPC, at the
API level, at the application level. The spatial coordination protocol
used by CPPC contributes to a reduction of the log size by enabling
processes to identify when a log will never be used for future
replays.

5.1. Logging point-to-point communications

Point-to-point communications are logged using a pessimistic,
sender-based message logging, which saves each outgoing mes-
sage in the senders’ volatile memory. Sender-based logging en-
ables copying the messages, in parallel, while the network trans-
fers the data. Pessimistic event logging ensures that all previous
non-deterministic events of a process are logged before a process is
allowed to impact the rest of the system. InMPI, non-deterministic
events to be logged correspond to any-source receptions and non-
deterministic deliveries (i.e., iProbe, WaitSome, WaitAny, Test,
TestAll, TestSome, and TestAny functions). Because MPI com-
munication channels are first in, first out (FIFO), replayingmessage
emissions in order – and guaranteeing the same outcome for any-
source receptions and non-deterministic deliveries – will lead to a
consistent global execution state.

The method proposed here uses the VProtocol [21] message
logging component, which provides sender-based message log-
ging and pessimist event logging. The sender-based logging is
integrated into the data-type engine of Open MPI and copies the
data in a mmap-ed memory segment as it is packed [32] and, thus,
moves thememory copies out of the critical path of the application.
While log of the content of the messages is kept in the memory
of the sender processes, for event logging, the outcome of non-
deterministic events is stored on a stable remote server.

After a failure, communications must be replayed using the
appropriate communicator. Because our approach is a hybrid be-
tween application-level and library-level recovery, failures cannot
be masked completely at the application level, as is customary in
pure, system-level message logging. Instead, the communication
capability is restored at the application level. The ULFM communi-
cator reconstruction implies newMPI communicators, and – in our
work – the VProtocol has been extended to use translation tables
between the old and new communicators, which are identified by
their internal communicator ID (CID). The CID is included in the
log, and – during the recovery – hash tables are built with the
correspondence between old and new CIDs. This approach ensures
the replay through the correct communicator and a consistent log
in the event of additional failures.

5.2. Logging collective communications

The original VProtocol component, due to its location in the
Open MPI software stack, sees only point-to-point communica-
tions. Instead of noticing a collective communication as such, it
sees them unfolding as a set of point-to-point communications
according to the collective algorithm implementation. It therefore
logs collective operations by logging all of the corresponding point-
to-point communications. This has two detrimental effects: (1)
prevents operating with hardware-based or architecture-aware
collective communications, and (2) results in an increased log
volume that is not semantically necessary by storing identical
messages at all intermediary processes along the overlay com-
munication network used by the collective algorithm. To over-
come these limitations, the method proposed here logs collective

Fig. 3. Binomial-tree staging of AllReduce collective operation.

communications at the application level, thereby enabling the
use of different collective communication implementations and
potentially reducing the total log size, as the buffers sent in the
intermediate steps of the collective are not logged. Conversely,
when logging at the application level, the memory copies of the
logged data are in the critical path of the application.

The benefits of this technique are tied to the implementation of
the collective operations, and they will appear when intermediary
copies are performed. For instance, Fig. 3 presents a common
binomial-tree staging of the AllReduce collective operation. A first
wave of point-to-point communications is performed to reduce
the result, and a second one broadcasts this result to all processes.
Therefore, the internal point-to-point implementation of this col-
lective operationperforms2×(NProcs−1) sendoperations,which
implies logging 2 × (NProcs − 1) × BuffSize bytes of data. On
the other hand, the application-level logging of the AllReduce
collective operation logs the contribution of each process involved
in the collective call, i.e., NProcs × BuffSize bytes of data.
Therefore, both the number of entries that are appended to the log
and the total logged data are divided by a 2×(NProcs−1)

NProcs factor when
logging at the application level.

An MPI wrapper implemented on top of CPPC performs the
application-level logging. Instead of using the traditional MPI pro-
filing API (PMPI), we decided to implement our own wrappers
around MPI functions, leaving the PMPI layer available for other
usages, and therefore allowing CPPC-transformed applications to
benefit from any PMPI-enabled tools. The CPPC wrappers around
MPI function calls perform the logging of the pertinent data and
then calls the actual MPI routine. Each process logs the minimum
data necessary to be able to re-execute the collective after a failure
in a mmap-ed memory segment.

During the recovery, collective operations will be re-executed
by all processes in the communicator, including survivors of the
previous faults and replacement processes. Although survivor pro-
cesses do not roll back, they will re-execute the collective com-
munications during the recovery procedure, taking their inputs
directly from their log. To ensure consistency, point-to-point and
collective callsmust be replayed in the sameorder as in the original
execution. Thus, when logging a collective, VProtocol is notified,
and it introduces a mark within its log. During the recovery, when
a survivor process encounters a collective mark, the VProtocol
component transfers control to CPPC to insert the collective re-
execution call.

5.3. Implications for the log size

Traditional message logging, used in combination with unco-
ordinated checkpointing, treats all messages in the application as

N. Losada et al. / Future Generation Computer Systems 91 (2019) 450–464 455

possible in-transit or orphan messages, which can be requested at
any time by a failed process. In contrast, in the method proposed
here – thanks to the spatially coordinated checkpoints provided
by CPPC – the recovery lines cannot be crossed by any communi-
cation. Thus, only the messages from the last recovery line need
to be available. Recovery lines, therefore, correspond with safe
locations in which obsolete logs can be cleared, which means we
can avoid keeping the entire log of the application or including it
in the checkpoint files. However, with CPPC, processes checkpoint
independently; the only way to ensure that a recovery line is
completed would be to introduce a global acknowledgment be-
tween processes, which would add a synchronization point (and
corresponding overhead) during the checkpoint phase. Instead, the
logs from the l latest recovery lines are kept in the memory of
the processes, l being a user-defined parameter. After a failure,
the appropriate log will be chosen depending on which line is
the selected recovery line. In the improbable case where an even
older recovery line needs to be used, the log is not available.
However, in this case, a global rollback is always possible. This
approach reduces the overhead and the memory usage introduced
by themessage logging. Furthermore, inmost application patterns,
safe points are separated by semantically synchronizing collective
communications that prevent a rollback going further than the last
recovery line.

Note that communicator creation calls correspond with a par-
ticular type of collective operation. In many cases, derived com-
municators are created at the beginning of the application code,
and they are used during the whole execution. Thus, these log
entries are not cleared when checkpointing, as they will always
be necessary for the failure recovery procedure to recreate the
necessary communicators.

6. Reposting communications interrupted by a failure

Revoking and reconstructing communicators implies that all
ongoing communications at the time of the failure are purged at all
survivor processes. The incomplete communications correspond to
the communication call inwhich the failurewas detected and to all
non-blocking communication calls that were not completed when
the failure hit. A communication crossing the failure line (including
between survivor processes) would then be lost and need to be
reposted to ensure that the execution resumes successfully. Note
that this implies not only replaying emissions (as in traditional
system-level message logging) but also reposting, at the applica-
tion level, those receptions and collective communications that
were interrupted by the failure.

There are no guarantees regarding the outcome of the data
transfer related to an MPI call in which a failure is detected
(i.e., output buffers may contain garbage data). Therefore, to en-
sure consistency, the MPI calls mentioned above have to be re-
executed. As commented earlier, all MPI calls in the application are
performed through the MPI wrapper implemented on top of CPPC.
Thus, within the MPI funâĂĺction wrappers, the code returned
by the MPI call is checked for errors, and corrective actions are
initiated when necessary. When an error is returned, the call
is re-executed with its original arguments. Note, however, that
some of those arguments are updated, such as the reconstructed
communicators or – in the case of non-blocking communications
– the requests that were reposted during the recovery replay.
For non-blocking communication calls, as stated in the MPI stan-
dard, a non-blocking send start call (e.g., MPI_Isend) initiates the
send operation but does not finish it. A separate completion call
(e.g.,MPI_Wait) is needed to finish the communication (i.e., to ver-
ify that the data has been copied out of the send buffer). Similarly,
a non-blocking receive start call (e.g., MPI_Irecv) initiates the
receive operation, but a separate completion call (e.g., MPI_Wait)

Fig. 4. States of non-blocking communications.

is needed to finish the operation and to verify that the data has
been received into the reception buffer.

We consider the following states for a non-blocking commu-
nication request, illustrated in Fig. 4. When the completion call
is invoked over a request, the request is considered delivered to
the application. However, at any point between the initiation of
the request to its delivery to the application, the request might be
completed internally by CPPC; that is, the data has been received
into the reception buffer even though the application has not yet
acknowledged it.

When a failure strikes, there could be a number of pending non-
blocking send and receive communicationswhose completion calls
have not been invoked yet. Their requests, even when internally
completed (i.e. the correct result is available in the output buffers),
will not be delivered to the application after the recovery. The
reason is that these requests will be associated with an old com-
municator, and a later invocation of a completion call will generate
an error. On the other hand, those that did not complete internally
will be lost upon failure, and they will need to be re-posted before
the execution continues.

CPPC maintains a temporary log for non-blocking communica-
tion calls for both emissions and receptions, which is discarded
upon delivery of a request. Note that a correctly designed MPI
application will not modify the send buffers, nor will it use the
receive buffers until a completion routine (e.g., MPI_Wait) has
been invoked over the associated requests. Thus, this temporary
log avoids doing memory copies of the send buffers and instead
keeps a reference to them. For each non-blocking call, CPPC creates
a log entry that permits the re-execution of the call to again initiate
the send/receive operation and a reference to the associated re-
quest it generated. Due to the temporary characteristics of this log,
a pool of log entries is used to avoid the overhead from allocating
and freeing these items.

The consistency of the temporary non-blocking log is main-
tained as follows. First, when a request is internally completed by
CPPC the associated log entry is removed. However, the request
becomes a non-delivered request until the application layer is
informed, and CPPCmaintains a reference to it. Eventually, when a
completion routine (e.g., MPI_Wait) is invoked and the request is
delivered, the CPPC reference is finally removed. The management
described here applies for all types of non-blocking requests and
is purely local, we will detail in Section 7 the distributed manage-
ment including the ordering of communication reposts.

After a failure, the first step consists of freeing the resources
associated with the incomplete and non-delivered requests. The
incomplete request will be reposted within the survivors’ replay,
as explained in Section 7. Note that when reposting a non-blocking
communication call, its associated request in the application needs
to be updated. This is solved using the same approach as is used
with the communicators: a custom CPPC request is used by the ap-
plication, which actually contains a pointer to the real MPI request,
thereby enabling theMPI request to be updated transparently after
it has been reposted.

456 N. Losada et al. / Future Generation Computer Systems 91 (2019) 450–464

7. Tracking messages and emission replay

InMPI, observing a communication completion at one peer does
not imply that it has also completed at other peers. For example, an
MPI_Send can complete as soon as the send buffer can be reused
at the local process. Meanwhile, the message may be buffered,
and the corresponding receive may still be pending. During the
replay, survivors have to resend the message log to the restarting
processes (as in traditional message logging), but they also have
to send the message log to other survivor processes for which re-
ceptions have been interrupted by the failure (i.e., those receptions
that have been reposted by the protocol described in Section 6).
Said another way, the success of the replay relies on the receivers’
capability to inform the senders which communications have been
received and on the ability of the senders to distinguish which
communications need to be replayed. Since this list of completed or
incomplete communication depends on post order at the receiver,
and not post order at the sender, the messages that need to be
replayed are not necessarily contiguous in the sender-based log.
Thus, it is critical that a given communication can be unequivocally
identified by both peers involved.

Our strategy for identifying messages relies on sequence num-
bers. Every time a message is sent over a particular communicator
to a particular receiver, a per-channel counter is increased, and
its value is piggybacked in the message as the sender sequence ID
(SSID). This SSID is then used to implement a tracking protocol for
point-to-point communications to identify the messages that are
expected by other peers and need to be replayed and to identify
those that were completed and need to be skipped.

7.1. Tracking protocol

During the execution, processes track the SSIDs for each send
and receive operation they have completed over each commu-
nication channel. For the emissions on a given channel, SSIDs
grow sequentially. Thus, the sender only needs to keep the most
recent SSID for that communication channel. However, receiving
a message with a particular SSID does not ensure that all previous
messages in that channel have been received, because a receiver
can enforce a different reception order (e.g., by using different
tags). Thus, processes maintain the highest SSID (hssid) they have
received and a list of pending SSIDs ranges. Each range is repre-
sented with a pair [assid, bssid], meaning that messages with SSIDs
in that range are pending. When, in a channel, a non-consecutive
SSID is received:

• If it is larger than the highest SSID received, a new range
[hssid + 1, currentssid − 1] is added to the pending reception
list.

• Otherwise, it is a pending SSID, and it must be removed from
the pending list. Note that the removal can imply splitting a
pending range in two.

Each checkpoint file includes the latest sent and the highest-
received SSIDs. Note that, when using CPPC,messages cannot cross
the recovery line, and therefore there are no pending ranges when
checkpointing.

SSIDs tracking is only used for point-to-point communication
replay. In Open MPI, the header of the message already contains
a sequence number for MPI point-to-point ordering. To avoid the
extra cost of duplicate tracking and piggybacking, we reuse that
existing sequence number in the SSID tracking algorithm. To pre-
vent the collective communications – implemented using point-
to-point communications – from impacting the SSID tracking, they
are run through a different communicator. Additionally, when
communicators are reconstructed with ULFM, Open MPI SSIDs are
reset. The tracking protocol deals with this issue by calculating

the SSID offsets. During the recovery, the value of the SSID before
the failure is restored, and the SSID tracking continues using the
saved value as a baseline and then adding the current value of the
OpenMPI sequence number. This absolute indexing of SSIDs allows
for tolerating future failures after the first recovery and, notably,
failures hitting the same recovery line multiple times.

7.2. Ordered replay

Once the failed processes are recovered using the checkpoint
files, all processes exchange the tracking information. For each
pair of processes that have exchanged messages in the past, and
for each particular communication channel they have used, the
receiver notifies the sender of the highest SSID it has received and
of all pending ranges. Using this remote information, if the sender
is:

• A failed process: it knows which emissions can be skipped
because they were successfully received during the previous
execution, and which ones must be reemitted.

• A survivor process: it can determine whichmessages from its
log must be replayed because other peers require them.

Then, failed processes continue their execution, skipping the com-
munications already received by survivors, and emitting those that
the peers expect to receive. Additionally, the information from the
event logger is used by the failed processes to ensure that non-
deterministic events are replayed exactly as they were in the orig-
inal execution (e.g., an any-source and/or any-tag reception will
be regenerated as a named reception, with a well specified source
and tag to prevent any potential communication mismatch and
deliver a deterministic re-execution in which the data is received
in exactly the sameorder as in the original execution). All collective
communications are normally executed; the collective protocol,
detailed in Section 5.2, guarantees both correctness and native
collective performance.

Meanwhile, survivors start the replay of logged communi-
cations, and invoke VProtocol’s replay—replaying the necessary
point-to-point communications from the log. When a survivor
encounters a collective log mark in its log, it transfers control to
CPPC to re-execute the appropriate collective. Towards the end
of the log, the survivor can encounter gaps that originated from
non-blocking emissions that were interrupted by a failure, which
– again – results in control transfers to CPPC to re-execute the
pending emissions. As mentioned in Section 6, there can also be
pending receptions interrupted by a failure that need to be re-
posted. However, due to the sender-based logging protocol, there
are nomarks for non-blocking receptions interrupted by the failure
in VProtocol’s log (the only logged information for receptions
relates to the ordering on non-deterministic events to the remote
event logging server, when applicable). Pending receptions that
were interrupted (i.e. produced an error code) are tracked by the
CPPC component and are re-posted and orderedwith respect to the
collective communications and pending non-blocking emissions,
thereby ensuring consistency. Once a survivor finishes processing
its log, it continues the execution normally.

8. Experimental evaluation

The experimental evaluation was performed at the Galicia Su-
percomputing Center using the ‘‘FinisTerrae-II’’ supercomputer.
Each of FinisTerrae-II’s nodes is composed of two Intel Haswell E5-
2680 v3 CPUs running at 2.50 GHz, with 12 cores per processor
(24 cores per node), and 128 GB of RAM. The nodes are connected
using an InfiniBand FDR 56 Gbps interconnect using a Fat-tree
topology. The experiments spawned 24MPI process per node (one

N. Losada et al. / Future Generation Computer Systems 91 (2019) 450–464 457

Table 1
Original run times of the testbed applications in minutes.

48P 96P 192P 384P 768P

Himeno 18.48 9.22 4.76 2.45 1.56
Mocfe 20.49 8.26 4.75 2.41 1.48
SPhot 16.38 8.25 3.78 2.25 1.48
Tealeaf 17.50 9.31 4.28 2.35 1.79

per core). Checkpoint files are dumped on a remote parallel file sys-
tem using Lustre over InfiniBand with a theoretical I/O bandwidth
of 20 GB/s. For our testing, we used CPPC version 0.8.1, working
with HDF5 version 1.8.11 and GCC version 4.4.7. The Open MPI
version used corresponds with ULFM 1.1 and was modified for the
integration of VProtocol and CPPC. The Portable Hardware Locality
(hwloc) [33] package was used for binding the processes to the
cores. Applications were compiled with optimization level O3. We
report the average times of 20 executions.

We used an application testbed comprised of four domain sci-
ence MPI applications with different checkpoint file sizes and
communication patterns. We ran SPhot [34], a physics package
that is part of Lawrence Livermore National Laboratory’s Advanced
Simulation and Computing (ASC) Sequoia Benchmarks assortment,
at NRUNS=48 000. We ran the Himeno benchmark [35], a Poisson
equation solver, fixing NN to 12,000 with a grid size of 1024 × 512
× 512. We also used MOCFE-Bone [36], which simulates the main
procedure in a 3-D method of characteristics (MOC) code, using
4 energy groups, 8 angles, a mesh of 573 doing strong scaling in
space, and a trajectory spacing of 0.01 cm2. TeaLeaf [37] is a mini-
app, originally part of theMantevo project, that solves a linear heat
conduction equation on a spatially decomposed regular grid using
a five-point stencil with implicit solvers. We ran it with x_cells
and y_cells set to 4,096 at 100 time steps. The original execution
times of the applications, in minutes, are reported in Table 1.
Experiments were executed doing strong scaling (i.e., maintaining
the global problem size constant as the application scales out).

As reported in the next section, the settings for the experi-
ments (i.e., checkpointing and failure frequencies) establish ho-
mogeneous parameters across the different tests, simplifying a
thorough study of the performance of the local rollback protocol.
In realistic scenarios, applications run times would be in the order
of days, thus, multiple failures would hit the execution. Therefore,
checkpoints would need to be taken to ensure the execution com-
pletion. In this scenario, the local rollback would provide more
efficient recoveries each time a failure strikes, thus, improving
the overall execution time under those conditions. Even though
a logging overhead is introduced during the execution, the fact
that the log can be cleared upon checkpointing provides an im-
portant advantage over traditional message logging techniques.
More precisely, being able to clean the log on checkpoints is a
critical property of our solution as it allows it to behave nicely
on communication-bound applications that otherwise would have
exceed the memory limitations of the running environment.

8.1. Performance evaluation of the local rollback protocol

In order to measure the benefits of the proposed solution in
recovery scenarios, the experiments compare the local rollback
with an equivalent global rollback strategy. In both cases, the
checkpointing frequency (N) is fixed so that two checkpoint files
are generated during the execution of the applications—the first
one at 40% of the execution progress and the second one at 80%. The
N value for each application is shown in Table 2. In all experiments,
a failure is introduced by killing the last rank in the application
when 75% of the computation is completed. Once the failure is
detected, communicators are revoked, survivors agree about the

failed process, and a replacement process is spawned. In the global
rollback, all processes roll back to the checkpoint generated at 40%
of the execution. In the local rollback, the replacement processes
continue from the last checkpoint; while, the survivors use their
logs to provide the restarting process with messages that enable
the progress of the failed process until it reaches a consistent state.
In the global rollback, no extra overhead besides CPPC instrumen-
tation and checkpointing is introduced. On the other hand, the local
rollback proposal introduces extra operations tomaintain the logs.
In these experiments, only the logs from the last recovery line are
kept in memory (l = 1). Below, Section 8.1.1 describes the extra
fault-free overhead, and Section 8.1.2 studies the benefits (upon
recovery) of the local rollback proposal.

8.1.1. Logging overhead
The overhead introduced by the local rollback is influenced by

the communication pattern of the applications and how the logs
evolve during the execution. Table 2 characterizes the applications
in terms of their log volume, and also in terms of the MPI routines
that are called in the main loop of the application (where the
checkpoint call is located). The table also shows the number of pro-
cesses running the experiment, the total number of iterations run
by the application, and the checkpointing frequency (N) indicating
the number of iterations between two consecutive checkpoints.
Regarding event logging, only SPhot generates non-deterministic
events—precisely (num_procs − 1) × 5 per iteration. Finally, the
aggregated average log behavior per iteration is reported, that
is, the average among all iterations, where the aggregated value
for each iteration is computed as the addition of the log from all
processes (i.e. the total log generated by the application in one
iteration). The number of entries and the size of the log generated
by the proposal are reported for both point-to-point and collective
calls. For the latter, the table also shows the reduction, in percent-
age, that the application-level collective logging provides over the
internal point-to-point logging.

In the target applications, one can see a very significant re-
duction in the collective communications log volume thanks to
application-level logging of collective operations. This effect is
significant, even though the log size of the testbed applications
is dominated by point-to-point operations, other scenarios may
present a larger contribution from collective communications. The
results fromaprofiling studyperformedbyRabenseifner [38] show
that nearly everyMPI production job uses collective operations and
that they consume almost 60% of the MPI time, with AllReduce
the most called collective operation. In traditional HPC MPI ap-
plications, AllReduce operations frequently work with relatively
small message sizes, however, emerging disciplines, such as deep
learning, usually rely onmedium and largemessages sizes [39]. To
illustrate the performance effect of this technique with different
message sizes, we refine the analysis with the behavior of relevant
collective communications in the IntelMPI Benchmarks [40] (IMB).
Fig. 5 compares the two logging methods on 48 processes (24
per node), showing – for different message sizes – the overhead
induced over a non-fault-tolerant deployment (100% means that
the logging method imparts no overhead). The volume of log data
and the number of log entries are reported for the collective oper-
ations Allgather, AllReduce, and Bcast. For these collective
operations, application logging shows notable reductions in the
size and number of entries in the log, which in turn translates to a
notable reduction in collective communication latency. Note that
sudden changes in the logged data and the number of entries in
the log correspond with OpenMPI choosing a different implemen-
tation of collective communications depending on message size.
In the general case, the reduction in the logging overhead when
logging collective communications at the application level depends
on the operation’s semantic requirements and on the communica-
tion pattern in the point-to-point implementation of the collective

458 N. Losada et al. / Future Generation Computer Systems 91 (2019) 450–464

Table 2
Benchmarks characterization by MPI calls and log behavior.

MPI calls in main loop #Procs #Iters N Aggregated average log behavior per iteration

Point-to-Point Collective Communications

Entries Size Entries (%↓) Size (%↓)

Himeno

MPI_Irecv,
MPI_Isend,
MPI_Wait,
MPI_AllReduce

48 12k 5k 208 28.5 MB 48(↓75.00%) 1.5 kB(↓81.82%)
96 12k 5k 448 34.8 MB 96(↓78.57%) 3.0 kB(↓84.42%)

192 12k 5k 944 51.5 MB 192(↓81.25%) 6.0 kB(↓86.36%)
384 12k 5k 2.0k 68.7 MB 384(↓83.33%) 12.0 kB(↓87.88%)
768 12k 5k 4.1k 82.2 MB 768(↓85.00%) 24.0 kB(↓89.09%)

Mocfe

MPI_Irecv,
MPI_Isend,
MPI_Waitall,
MPI_Allreduce,
MPI_Reduce

48 10 4 69.9k 1.7 GB 2.0k(↓75.00%) 140.4 kB(↓78.53%)
96 10 4 150.5k 2.3 GB 3.9k(↓78.57%) 280.9 kB(↓81.59%)

192 10 4 317.2k 3.0 GB 7.9k(↓81.25%) 561.8 kB(↓83.89%)
384 10 4 666.6K 3.9 GB 15.7k(↓83.33%) 1.1 MB(↓85.68%)
768 10 4 1376.3k 5.0 GB 31.5k(↓85.00%) 2.2 MB(↓87.12%)

SPhot
MPI_Irecv,
MPI_Send,
MPI_Waitall,
MPI_Barrier

48 1k 400 235 29.3 kB 192(↓83.33%) 1.5 kB(↓96.67%)
96 500 200 475 59.2 kB 384(↓85.71%) 3.0 kB(↓97.14%)

192 250 100 955 118.8 kB 768(↓87.50%) 6.0 kB(↓97.50%)
384 125 50 1.9k 238.0 kB 1.5k(↓88.89%) 12.0 kB(↓97.78%)
768 62 25 3.8k 476.5 kB 3.1k(↓90.00%) 24.0 kB(↓98.00%)

Tealeaf

MPI_Irecv,
MPI_Isend,
MPI_Waitall,
MPI_AllReduce

48 100 40 184.6k 1.7 GB 107.9k(↓75.00%) 3.7 MB(↓81.25%)
96 100 40 387.4k 2.5 GB 216.0k(↓78.57%) 7.4 MB(↓83.93%)

192 100 40 800.7k 3.7 GB 431.3k(↓81.25%) 14.8 MB(↓85.94%)
384 100 40 1638.6k 5.4 GB 863.3k(↓83.33%) 29.6 MB(↓87.50%)
768 100 40 3331.1k 7.8 GB 1726.6k(↓85.00%) 59.3 MB(↓88.75%)

Fig. 5. Logging of collective communications: application level vs. internal point-to-point logging.

communication. In the collective operations not presented here,
application logging yields minor advantages over point-to-point
logging in terms of log volume. This, in turn, translates to smaller
performance differences between the two approaches. Note that,
in any case, point-to-point logging is not compatible with the
use of hardware-accelerated collective communication, which is
expected to impart a significant overhead from which application
logging is immune, independent of the log volume.

For the applications, Fig. 6 shows the memory consumption
overhead introduced by the log. To provide a better overview
of the impact of this memory consumption, the maximum total
size of the log has been normalized with respect to the available
memory (number of nodes × 128 GB per node). Using CPPC and
its spatial coordination protocol allows the log to be cleared upon
checkpointing; thus, the maximum log size corresponds to the
product of the number of iterations between checkpoints (N) and

N. Losada et al. / Future Generation Computer Systems 91 (2019) 450–464 459

Fig. 6. Log parameters when checkpointing: maximum log’s sizes expressed as the percentage of the total memory available and number of entries during the execution.

the addition of both point-to-point and collective communications
log sizes per iteration (values shown in Table 2). Equivalently, the
maximum number of entries in the log corresponds to the product
of N and the total number of entries in the log. Fig. 6 also presents
this maximum. Both the number of entries in the log and the log
size are represented in log scale. In all applications tested here,
we see that the number of log entries increases as more processes
run the applications, while the percentage of the total memory
occupied by the log decreases. The Himeno application has the
largest log size, ranging from 52% of the available memory when
using 48 processes to 9% of the available memory when using 768
processes. Tealeaf has the second largest log, with a maximum log
size ranging from 26.2% to 7.7% of the available memory when
scaling up the application. In these applications, the bulk of the
communication employs point-to-point calls, and the collective
operations do not account for a significant portion of the logged
data.

In fault-free executions, the local rollback protocol also intro-
duces overhead in the form of communication latency and check-
point volume. Fig. 7 compares the overhead of global rollback and
local rollback resilience in the absence of failures. It reports the
absolute overhead in seconds, with respect to the original runtime
(shown in Table 1), and reports the aggregated checkpoint file size
(i.e., the total checkpoint volume from all processes). First, the
amount of log management data that needs to be added to the
checkpoint data is negligible. Therefore, checkpoint file sizes do
not present a relevant difference (i.e., advantage or disadvantage)
between the local and global rollback solutions. Second, the over-
head introduced by the local rollback is close to the overhead intro-
duced by the global rollback solution. Most of the logging latency
overhead is hidden, and its contribution to the total overhead of
the local rollback approach is small compared to the contribution
of the checkpoint cost. The overhead grows with the size of the
checkpoint file. The SPhot and Tealeaf applications present the
smallest checkpoint file sizes, with SPhot having checkpoint file
sizes of 46–742 MB and TeaLeaf having checkpoint file sizes of
261–302 MB, with the upper ranges representing an increased
number of processes. Given the very small overhead imparted by
checkpointing on Tealeaf, for some experiments the overhead for
the global rollback for Tealeaf is slightly negative (less than 0.5%
of the original runtime), presumably because of the optimizations
applied by the compiler when the code is instrumented with CPPC
routines. The overhead of the logging latency, whileminimal in the
overall runtime of the application, comes to dominate the cost of
checkpointing in the failure-free overhead breakdown.

8.1.2. Recovery benefits
The local rollback solution reduces the time required for re-

covering the applications when a failure occurs. The application

is considered to have fully recovered when all processes (failed
and survivors) have reached the execution step atwhich the failure
originally interrupted the computation. In both the global and local
recovery approaches, for a failed process, this point is attained
when it has finished re-executing the lost work. A survivor process
is considered fully recovered once it has either re-executed all
lost work in the global recovery scheme, or when it has served all
necessary parts of the log to the failed (restarting) processes, and
to other survivors that require it.

Fig. 8 presents the reduction percentage of the local rollback
recovery time over the global rollback recovery for both the sur-
vivor and failed processes. The improvement in the recovery times
is very similar for all processes: these applications perform collec-
tive operations in the main loop, and all survivor processes that
originally participated in the collective communications are also
involved in their replay during recovery.

Fig. 9 shows the times (in seconds) of the different operations
performed during the recovery. The ULFM recovery times include
the failure detection, the re-spawning of the replacement pro-
cesses and the entire reconstruction of the MPI environment, in-
cluding communicators’ revocation, shrinking and reconfiguration.
The CPPC reading times measure the time spent during the nego-
tiation of all processes about the recovery line to be used, and the
reading of the selected checkpoint files by the failed ones. The CPPC
positioning times include the time to recover the application’s
state of the rolled back processes, including the reconstruction
of the application data (moving it to the proper memory loca-
tion, i.e., the application variables), and the re-execution of non-
portable recovery blocks (such as the creation of communicators).
The CPPC positioning finishes when the failed processes reach the
checkpoint call in which the checkpoint file was originally gen-
erated. Finally, we included the failed processes’ re-computation
time which corresponds with the time spent from the checkpoint
call in which the recovery files where generated until the failed
processes have reached the execution step at which the failure
originally interrupted the computation. The results in Fig. 9 are
summarized in Fig. 10, which represents the percentage of the re-
duction in the recovery times that is due to each recovery operation
in the failed processes.

Both approaches, local and global, perform the same ULFM
operations during the recovery, thus, no relevant differences arise.
In the general case, the CPPC reading and positioning operations
benefit from the local rollback strategy, as the number of processes
reading checkpoint files and moving data in memory decreases.
As can be observed in both figures, the re-computation of failed
processes is the recovery operation with the largest weight in the
reduction of the failed processes’ recovery times. This happens be-
cause the failed processes performamore efficient execution of the
computation: no communications waits are introduced, received

460 N. Losada et al. / Future Generation Computer Systems 91 (2019) 450–464

Fig. 7. Checkpoint file sizes and absolute overhead in the absence of failures with respect to the non fault-tolerant version.

Fig. 8. Reduction of the recovery times of survivor and failed processes with the local rollback (the higher, the better).

Fig. 9. Times (in seconds) of the different operations performed during the recovery.

N. Losada et al. / Future Generation Computer Systems 91 (2019) 450–464 461

messages are rapidly available, and unnecessary message emis-
sions from past states of the computation are skipped (although
failed processes log them). Note that, in the testbed applications,
the collective operations synchronize the failed and survivor pro-
cesses recovery, thus, the time spent by the survivors in the replay
of communications is almost the same as the failed processes’ re-
computation times. In applications that do not present collective
communications in the main loop, and where the applications
are less tightly coupled, i.e the communications patterns between
survivor and failed processes are less synchronizing, a larger im-
provement is expected.

The reduction in recovery time has a direct impact on the
improvement of the overall execution time when a failure occurs.
Fig. 11 shows the reduction in run time and energy consump-
tion achieved when using local rollback instead of global rollback
when faced with a failure. The extra runtime and the energy
consumption are calculated as the difference between the original
runtime/energy use and the runtime/energy use when a failure
occurs. Energy consumption data is obtained using the sacct
Slurm command. As an example, in the 48 processes execution, the
overhead added (upon failure) to MOCFE’s run time is reduced by
53.09%when using the local rollback instead of the global rollback,
and the extra energy consumed by failure management is reduced
by 74%.

The SPhot application shows the lowest performance benefit.
In this application, all point-to-point communications consist of
sends from non-root processes to the root process. Thus, during
the recovery, survivor processes do not replay any point-to-point
communications to the failed rank, although they do participate in
the re-execution of the collective communications. For this reason,
the performance benefit for SPhot during the recovery is mainly
due to the execution of the failed process computation without
synchronization with other ranks. The receives are served from the
message log, andmost of its emissions have already been delivered
at the root process and are avoided. Even though these messages
are not sent, they are still being logged to enable the recovery from
future failures. In the other applications,where the communication
pattern is more favorable, the local recovery permits a significant
reduction in the extra time when compared to the global restart
strategy.

8.2. Weak scaling experiments

In addition to the previous experiments, this section reports
the results when doing weak scaling on the Himeno application,
i.e, maintaining the problem size by process constant as the ap-
plication scales out. These experiments compare the local rollback
and global rollback under the same conditions as in the previous
experiments (checkpointing frequency, failure introduction, etc.).
Table 3 reports the configuration parameters and the original run
times of the application, in minutes.

Table 4 (equivalent to Table 2 in the strong scaling experiments)
characterizes these tests in terms of their log volume, reporting the
MPI routines that are called in the main loop of the application
(where the checkpoint call is located), the number of processes
running the experiment, the total number of iterations run by
the application, and the checkpointing frequency (N) indicating
the number of iterations between two consecutive checkpoints.
Table 4 also presents the aggregated average log behavior per
iteration for the point-to-point and collective calls in terms of
number of entries and size of the log. In comparison with the
strong scaling experiments, there are no changes in the number
of collective communications performed during the execution. On
the other hand, even though the same number of point-to-point
communications are performed in one iteration, the data trans-
mitted presents a more abrupt increase when scaling out. Fig. 12a

shows, in log scale, thememory consumption overhead introduced
by the log (equivalent to Fig. 6 in the strong scaling experiments).
As can be observed, in these experiments the increase in the data
transmitted by the point-to-point communications results in a
more steady maximum percentage of the total memory that is
occupied by the log (between 31%–42% of the available memory)
when scaling out.

Fig. 12b reports the absolute overheads introduce by the local
and global rollback in the absence of failures, and aggregated
checkpoint file size (equivalent to Fig. 7). The overhead introduced
by both proposals is low, and the aggregated checkpoint file size
increases when scaling out, as the contribution from each process
remains constant.

Fig. 12c reports the reduction in the failed and survivors pro-
cesses’ recovery times, while Fig. 12d shows the reduction in run
time and energy consumption achieved when using local rollback
instead of global rollback when faced with a failure (equivalent to
Figs. 8 and 11). On average, the reduction on the total run time is
42.9%, while the reduction in the energy consumption corresponds
with a 49.7% on average. As in Himeno strong scaling experiments,
most of the improvement is due to a more efficient execution of
the failed processes.

9. Concluding remarks

Thiswork proposes a novel local rollback solution for SPMDMPI
applications that combines severalmethods to provide efficient re-
silience support to applications. ULFM fault mitigation constructs,
together with a compiler-driven application-level checkpointing
tool, CPPC, and supported by the message logging capabilities of
the Open MPI library-level VProtocol pessimist message logging,
are combined to significantly reduce the resilience overhead of
checkpoint and recovery. The ULFM resilience features are used to
detect failures of one or several processes, maintain communica-
tion capabilities among survivor processes, re-spawn replacement
processes for the failed processes, and reconstruct the communi-
cators. Failed processes are recovered from the last checkpoint,
while global consistency and further progress of the computation is
enabled by means of message logging capabilities. Fine tracking of
message sequences and partial message completion after failures
permit the deployment ofmessage logging over ULFM, and an orig-
inal two-level logging protocol permits alternating the recovery
level from library-level message logging to application-directed,
semantic-aware replay. Collective communications are logged at
the application level, thereby reducing the log size and enabling the
use with architecture-aware collective communications even after
faults. The resultant local rollback protocol avoids the unnecessary
re-execution overheads and energy consumption introduced by a
global rollback, as survivor processes do not roll back to repeat
computation already done; yet, the spatially coordinated protocol
used by CPPC helps reduce the volume of stall logs carried from
past checkpoints. This combination of protocols proves singularly
symbiotic in alleviating the shortcomings of each individual strat-
egy.

The experimental evaluationwas carried out using four realMPI
applications with different checkpoint file sizes and communica-
tion patterns. The performance of the local rollback protocol has
been compared with an equivalent global rollback solution. While
in a failure-free execution, the required operations to maintain the
logs imply a small increase in the overhead compared to the global
rollback solution, in the presence of failures, the recovery times
of both failed and survivor processes are noticeably improved.
This improvement translates to a considerable reduction in the
additional execution time and energy consumption introduced by
a failure when using local rollback instead of global rollback.

To further reduce the cost of tolerating failures, future work
will study optimizations to perform a more efficient replay of the

462 N. Losada et al. / Future Generation Computer Systems 91 (2019) 450–464

Fig. 10. Percentage that each recovery operation represents over the reduction in the failed processes’ recovery times.

Fig. 11. Reduction in the extra run time and energy consumption when introducing a failure and using local rollback instead of global rollback (higher is better).

Table 3
Original run times (in minutes) and configuration parameters of the weak scaling experiments.
Himeno — Weak Scaling

Configuration parameters Run time (min)

48 processes Gridsize: 512 × 512 × 512, NN =12 000 9.16
96 processes Gridsize: 1024 × 512 × 512, NN = 12 000 9.14
192 processes Gridsize: 1024 × 1024 × 512, NN =12 000 9.72
384 processes Gridsize: 1024 × 1024 × 1024, NN = 12 000 10.11
768 processes Gridsize: 2048 × 1024 × 1024, NN = 12 000 10.24

Table 4
Benchmarks characterization by MPI calls and log behavior.

MPI calls in main loop #Procs #Iters N Aggregated average log behavior per iteration

Point-to-Point Collective communications

Entries Size Entries (%↓) Size (%↓)

Himeno

MPI_Irecv,
MPI_Isend,
MPI_Wait,
MPI_AllReduce

48 12k 5k 208 16.3 MB 48(↓75.00%) 1.5 kB(↓81.82%)
96 12k 5k 448 34.8 MB 96(↓78.57%) 3.0 kB(↓84.42%)

192 12k 5k 944 90.0 MB 192(↓81.25%) 6.0 kB(↓86.36%)
384 12k 5k 2.0k 155.8 MB 384(↓83.33%) 12.0 kB(↓87.88%)
768 12k 5k 4.1k 320.1 MB 768(↓85.00%) 24.0 kB(↓89.09%)

communications needed for the progress of the failed processes.
The proposed strategy replays the collective operations identically
(i.e., all processes involved in the original execution are also in-
volved in the replay). A custom replay of collective communica-
tions (e.g., replacing the collective operation by one or a set of
point-to-point operations) has the potential to further improve
the performance of the recovery and reduce its synchronicity. To
improve upon the cost of point-to-point communications, using
MPI remote memory access operations can also enable us to ob-
tain the message log from survivor processes without their active
involvement in the recovery procedure.

Acknowledgments

This research was supported by the Ministry of Economy and
Competitiveness of Spain and FEDER funds of the EU (Projects
TIN2016-75845-P and the predoctoral grants of Nuria Losada ref.
BES-2014-068066 and ref. EEBB-I-17-12005); by EU under the
COST Program Action IC1305 Network for Sustainable Ultrascale
Computing (NESUS) and a HiPEAC Collaboration Grant and by the
Galician Government (Xunta de Galicia) under the Consolidation

N. Losada et al. / Future Generation Computer Systems 91 (2019) 450–464 463

Fig. 12. Results for the Himeno benchmark doing weak scaling (keeping the problem size by process constant).

Programof Competitive Research (ref. ED431C 2017/04).We grate-
fully thank Galicia Supercomputing Center for providing access to
the FinisTerrae-II supercomputer.

This material is also based upon work supported by the US Na-
tional Science Foundation, Office of Advanced Cyberinfrastructure,
under Grants No. #1664142 and #1339763.

Authors would like to thank Thomas Hérault for the interesting
discussions during the development of this work.

References

[1] C. Di Martino, Z. Kalbarczyk, R. Iyer, Measuring the resiliency of extreme-
scale computing environments, in: Principles of Performance and Reliability
Modeling and Evaluation, Springer, 2016, pp. 609–655.

[2] W. Bland, A. Bouteiller, T. Herault, G. Bosilca, J. Dongarra, Post-failure recovery
of mpi communication capability: design and rationale, Int. J. High Perform.
Comput. Appl. 27 (3) (2013) 244–254.

[3] G. Rodríguez, M.J. Martín, P. González, J. Tourino, R. Doallo, CPPC: a compiler-
assisted tool for portable checkpointing of message-passing applications,
Concurr. Comput.: Pract. Exper. 22 (6) (2010) 749–766.

[4] G. Rodrıguez, M.J. Martın, P. González, J. Tourino, A heuristic approach for
the automatic insertion of checkpoints inmessage-passing codes, J. Universal
Comput. Sci. 15 (14) (2009) 2894–2911.

[5] R.T. Aulwes, D.J. Daniel, N.N. Desai, R.L. Graham, L.D. Risinger, M.A. Taylor,
T.S. Woodall, M.W. Sukalski, Architecture of LA-MPI, a network-fault-tolerant
MPI, in: International Parallel and Distributed Processing Symposium, IEEE,
2004, p. 15.

[6] G. Fagg, J. Dongarra, FT-MPI: Fault tolerant MPI, supporting dynamic applica-
tions in a dynamicworld, in: ReCent Advances in Parallel VirtualMachine and
Message Passing Interface, 2000, pp. 346–353.

[7] J. Hursey, R. Graham, G. Bronevetsky, D. Buntinas, H. Pritchard, D. Solt, Run-
through stabilization: An MPI proposal for process fault tolerance, in: Recent
Advances in the Message Passing Interface, 2011, pp. 329–332.

[8] M.M. Ali, P.E. Strazdins, B. Harding, M. Hegland, Complex scientific applica-
tions made fault-tolerant with the sparse grid combination technique, Int. J.
High Perform. Comput. Appl. 30 (3) (2016) 335–359.

[9] W. Bland, K. Raffenetti, P. Balaji, Simplifying the recovery model of user-
level failure mitigation, in: Workshop on Exascale MPI at Supercomputing
Conference, IEEE, 2014, pp. 20–25.

[10] M. Gamell, D.S. Katz, K. Teranishi, M.A. Heroux, R.F. Van der Wijngaart, T.G.
Mattson, M. Parashar, Evaluating online global recovery with fenix using
application-aware in-memory checkpointing techniques, in: 45th Interna-
tional Conference on Parallel Processing Workshops (ICPPW), IEEE, 2016, pp.
346–355.

[11] M. Gamell, K. Teranishi, J. Mayo, H. Kolla, M. Heroux, J. Chen, M. Parashar,
Modeling and simulating multiple failure masking enabled by local recovery
for stencil-based applications at extreme scales, Trans. Parallel Distrib. Syst.
(2017).

http://refhub.elsevier.com/S0167-739X(18)30344-3/b1
http://refhub.elsevier.com/S0167-739X(18)30344-3/b1
http://refhub.elsevier.com/S0167-739X(18)30344-3/b1
http://refhub.elsevier.com/S0167-739X(18)30344-3/b1
http://refhub.elsevier.com/S0167-739X(18)30344-3/b1
http://refhub.elsevier.com/S0167-739X(18)30344-3/b2
http://refhub.elsevier.com/S0167-739X(18)30344-3/b2
http://refhub.elsevier.com/S0167-739X(18)30344-3/b2
http://refhub.elsevier.com/S0167-739X(18)30344-3/b2
http://refhub.elsevier.com/S0167-739X(18)30344-3/b2
http://refhub.elsevier.com/S0167-739X(18)30344-3/b3
http://refhub.elsevier.com/S0167-739X(18)30344-3/b3
http://refhub.elsevier.com/S0167-739X(18)30344-3/b3
http://refhub.elsevier.com/S0167-739X(18)30344-3/b3
http://refhub.elsevier.com/S0167-739X(18)30344-3/b3
http://refhub.elsevier.com/S0167-739X(18)30344-3/b4
http://refhub.elsevier.com/S0167-739X(18)30344-3/b4
http://refhub.elsevier.com/S0167-739X(18)30344-3/b4
http://refhub.elsevier.com/S0167-739X(18)30344-3/b4
http://refhub.elsevier.com/S0167-739X(18)30344-3/b4
http://refhub.elsevier.com/S0167-739X(18)30344-3/b5
http://refhub.elsevier.com/S0167-739X(18)30344-3/b5
http://refhub.elsevier.com/S0167-739X(18)30344-3/b5
http://refhub.elsevier.com/S0167-739X(18)30344-3/b5
http://refhub.elsevier.com/S0167-739X(18)30344-3/b5
http://refhub.elsevier.com/S0167-739X(18)30344-3/b5
http://refhub.elsevier.com/S0167-739X(18)30344-3/b5
http://refhub.elsevier.com/S0167-739X(18)30344-3/b8
http://refhub.elsevier.com/S0167-739X(18)30344-3/b8
http://refhub.elsevier.com/S0167-739X(18)30344-3/b8
http://refhub.elsevier.com/S0167-739X(18)30344-3/b8
http://refhub.elsevier.com/S0167-739X(18)30344-3/b8
http://refhub.elsevier.com/S0167-739X(18)30344-3/b9
http://refhub.elsevier.com/S0167-739X(18)30344-3/b9
http://refhub.elsevier.com/S0167-739X(18)30344-3/b9
http://refhub.elsevier.com/S0167-739X(18)30344-3/b9
http://refhub.elsevier.com/S0167-739X(18)30344-3/b9
http://refhub.elsevier.com/S0167-739X(18)30344-3/b10
http://refhub.elsevier.com/S0167-739X(18)30344-3/b10
http://refhub.elsevier.com/S0167-739X(18)30344-3/b10
http://refhub.elsevier.com/S0167-739X(18)30344-3/b10
http://refhub.elsevier.com/S0167-739X(18)30344-3/b10
http://refhub.elsevier.com/S0167-739X(18)30344-3/b10
http://refhub.elsevier.com/S0167-739X(18)30344-3/b10
http://refhub.elsevier.com/S0167-739X(18)30344-3/b10
http://refhub.elsevier.com/S0167-739X(18)30344-3/b10
http://refhub.elsevier.com/S0167-739X(18)30344-3/b11
http://refhub.elsevier.com/S0167-739X(18)30344-3/b11
http://refhub.elsevier.com/S0167-739X(18)30344-3/b11
http://refhub.elsevier.com/S0167-739X(18)30344-3/b11
http://refhub.elsevier.com/S0167-739X(18)30344-3/b11
http://refhub.elsevier.com/S0167-739X(18)30344-3/b11
http://refhub.elsevier.com/S0167-739X(18)30344-3/b11

464 N. Losada et al. / Future Generation Computer Systems 91 (2019) 450–464

[12] I. Laguna, D.F. Richards, T. Gamblin, M. Schulz, B.R. de Supinski, Evaluating
user-level fault tolerance forMPI applications, in: EuropeanMPI Users’ Group
Meeting, ACM, 2014, p. 57.

[13] S. Pauli, M. Kohler, P. Arbenz, A fault tolerant implementation of multi-level
Monte Carlo methods, Parallel Comput.: Accelerating Comput. Sci. Eng. 25
(2014) 471.

[14] F. Rizzi, K. Morris, K. Sargsyan, P. Mycek, C. Safta, B. Debusschere, O. LeMaitre,
O. Knio, ULFM-MPI implementation of a resilient task-based partial differ-
ential equations preconditioner, in: Workshop on Fault-Tolerance for HPC at
Extreme Scale, ACM, 2016, pp. 19–26.

[15] F. Shahzad, J. Thies, M. Kreutzer, T. Zeiser, G. Hager, G. Wellein, CRAFT: A
library for easier application-level checkpoint/restart and automatic fault
tolerance. CoRR abs/1708.02030.

[16] K. Teranishi,M.A. Heroux, Toward local failure local recovery resiliencemodel
using MPI-ULFM, in: European MPI Users’ Group Meeting, ACM, 2014, p. 51.

[17] N. Losada, I. Cores, M.J. Martín, P. González, Resilient MPI applications using
an application-level checkpointing framework and ULFM, J. Supercomput. 73
(1) (2017) 100–113.

[18] N. Losada,M.J.Martín, P. González, Assessing resilient versus stop-and-restart
fault-tolerant solutions in MPI applications, J. Supercomput. 73 (1) (2017)
316–329.

[19] L. Alvisi, K. Marzullo, Message logging: pessimistic, optimistic, and causal, in:
International Conference on Distributed Computing Systems, IEEE, 1995, pp.
229–236.

[20] H. Meyer, D. Rexachs, E. Luque, RADIC: A faulttolerant middleware with
automatic management of spare nodes, in: International Conference on Par-
allel and Distributed Processing Techniques and Applications (2012), The
Steering Committee of The World Congress in Computer Science, Computer
Engineering and Applied Computing (WorldComp), p. 1.

[21] A. Bouteiller, G. Bosilca, J. Dongarra, Redesigning the message logging model
for high performance, Concurr. Comput.: Pract. Exper. 22 (16) (2010) 2196–
2211.

[22] A. Bouteiller, T. Herault, G. Bosilca, J.J. Dongarra, Correlated set coordination in
fault tolerant message logging protocols, in: European Conference on Parallel
Processing, Springer, 2011, pp. 51–64.

[23] E. Meneses, C.L. Mendes, L.V. Kalé, Team-based message logging: preliminary
results, in: International Conference on Cluster, Cloud and Grid Computing,
IEEE, 2010, pp. 697–702.

[24] T. Ropars, T.V. Martsinkevich, A. Guermouche, A. Schiper, F. Cappello, SPBC:
Leveraging the characteristics of MPI HPC applications for scalable check-
pointing, in: International Conference for High Performance Computing, Net-
working, Storage and Analysis, ACM, 2013, p. 8.

[25] E. Meneses, L.V. Kalé, Camel: collective-aware message logging, J. Supercom-
put. 71 (7) (2015) 2516–2538.

[26] S. Rao, L. Alvisi, H.M. Vin, The cost of recovery in message logging protocols,
Trans. Knowl. Data Eng. 12 (2) (2000) 160–173.

[27] H. Meyer, R. Muresano, M. Castro-León, D. Rexachs, E. Luque, Hybrid Message
Pessimistic Logging. Improving current pessimistic message logging proto-
cols, J. Parallel Distrib. Comput. 104 (2017) 206–222.

[28] F. Cappello, A. Guermouche, M. Snir, On communication determinism in
parallel HPC applications, in: ICCCN, 2010, pp. 1–8.

[29] T.Martsinkevich, T. Ropars, F. Cappello, Addressing the last roadblock formes-
sage logging in HPC: Alleviating the memory requirement using dedicated
resources, in: European Conference on Parallel Processing, Springer, 2015, pp.
644–655.

[30] X. Liu, X. Xu, X. Ren, Y. Tang, Z. Dai, A message logging protocol based on
user level failure mitigation, in: International Conference on Algorithms and
Architectures for Parallel Processing, Springer, 2013, pp. 312–323.

[31] L. Lamport, Time, clocks, and the ordering of events in a distributed system,
Commun. ACM 21 (7) (1978) 558–565.

[32] G. Bosilca, A. Bouteiller, T. Herault, P. Lemarinier, J.J. Dongarra, Dodging the
cost of unavoidablememory copies inmessage logging protocols, in: R. Keller,
E. Gabriel, M. Resch, J. Dongarra (Eds.), Recent Advances in the Message
Passing Interface, Springer Berlin Heidelberg, Berlin, Heidelberg, 2010, pp.
189–197.

[33] F. Broquedis, J. Clet-Ortega, S. Moreaud, N. Furmento, B. Goglin, G. Mercier,
S. Thibault, R. Namyst, hwloc: A generic framework for managing hardware
affinities in HPC applications, in: International Conference on Parallel, Dis-
tributed and Network-Based Processing, IEEE, 2010, pp. 180–186.

[34] ASC Sequoia Benchmark Codes. https://asc.llnl.gov/sequoia/benchmarks/.
Last accessed: 2018.

[35] Himeno Benchmark. http://accc.riken.jp/en/supercom/himenobmt/. Last ac-
cessed: 2018.

[36] E.Wolters, M. Smith,MOCFE-Bone: the 3DMOCmini-application for exascale
research. Tech. rep., Argonne National Lab.(ANL), Argonne, IL (United States),
2013.

[37] TeaLeaf website. https://github.com/UoB-HPC/TeaLeaf. Last accessed: 2018.
[38] R. Rabenseifner, Automatic MPI counter profiling of all users: First results

on a CRAY T3E 900-512, in: Message Passing Interface Developers and Users
Conference (MPIDC99), 1999.

[39] A.A. Awan, K. Hamidouche, A. Venkatesh, D.K. Panda, Efficient large message
broadcast using nccl and cuda-awarempi for deep learning, in: 23rd European
MPI Users’ Group Meeting, ACM, 2016, pp. 15–22.

[40] Intel MPI Benchmarks. https://software.intel.com/en-us/imb-user-guide.
Last accessed: 2018.

Nuria Losada: She received the B.S. (2013) and M.S.
(2014) degrees in Computer Science from the Universi-
dade da Coruña, Spain. Currently, she is a Ph.D. student
in the Department of Computer Engineering at the Uni-
versidade da Coruña. Her research interests include fault-
tolerance, parallel computing and malleability.

George Bosilca, Ph.D.: George Bosilca is a Research Assis-
tant Professor at the Innovative Computing Laboratory at
University of Tennessee, Knoxville. His research interests
revolve around distributed algorithms, communication
libraries and programming paradigms and practical con-
structs for parallel applications to maximize their effi-
ciency, reliability, scalability and heterogeneity at any
scale and in any settings.

AurelienBouteiller, Ph.D.: Aurelien Bouteiller received is
Ph.D. from the University of Paris in 2006. He is currently
a Research Director at the Innovative Computing Labora-
tory, the University of Tennessee, Knoxville. He focuses
on improving performance and reliability of distributed
systems with research in communication and scheduling
formany-core, accelerated clusters, and in containing the
influence of failures on scientific computation.

Patricia González, Ph.D.: She received the B.S. (1996),
M.S. (1996) and Ph.D. (2001) degrees in physics from the
University of Santiago de Compostela. Currently, she is an
Associate Professor in the Department of Computer Engi-
neering at theUniversidade da Coruña. Hermain research
interests are in the area of High Performance Computing
(HPC), focused on parallel and distributed computing and
fault tolerance for parallel applications.

María J. Martín, Ph.D.: She received the B.S. (1993), M.S.
(1994) and Ph.D. (1999) degrees in physics from the Uni-
versity of Santiago de Compostela, Spain. Since 1997, she
has been on the faculty of the Department of Computer
Engineering at the Universidade da Coruña, where she is
currently an Associate Professor of Computer Engineer-
ing. Her major research interests include parallel algo-
rithms and applications and fault tolerance for parallel
applications.

http://refhub.elsevier.com/S0167-739X(18)30344-3/b12
http://refhub.elsevier.com/S0167-739X(18)30344-3/b12
http://refhub.elsevier.com/S0167-739X(18)30344-3/b12
http://refhub.elsevier.com/S0167-739X(18)30344-3/b12
http://refhub.elsevier.com/S0167-739X(18)30344-3/b12
http://refhub.elsevier.com/S0167-739X(18)30344-3/b13
http://refhub.elsevier.com/S0167-739X(18)30344-3/b13
http://refhub.elsevier.com/S0167-739X(18)30344-3/b13
http://refhub.elsevier.com/S0167-739X(18)30344-3/b13
http://refhub.elsevier.com/S0167-739X(18)30344-3/b13
http://refhub.elsevier.com/S0167-739X(18)30344-3/b14
http://refhub.elsevier.com/S0167-739X(18)30344-3/b14
http://refhub.elsevier.com/S0167-739X(18)30344-3/b14
http://refhub.elsevier.com/S0167-739X(18)30344-3/b14
http://refhub.elsevier.com/S0167-739X(18)30344-3/b14
http://refhub.elsevier.com/S0167-739X(18)30344-3/b14
http://refhub.elsevier.com/S0167-739X(18)30344-3/b14
http://refhub.elsevier.com/S0167-739X(18)30344-3/b16
http://refhub.elsevier.com/S0167-739X(18)30344-3/b16
http://refhub.elsevier.com/S0167-739X(18)30344-3/b16
http://refhub.elsevier.com/S0167-739X(18)30344-3/b17
http://refhub.elsevier.com/S0167-739X(18)30344-3/b17
http://refhub.elsevier.com/S0167-739X(18)30344-3/b17
http://refhub.elsevier.com/S0167-739X(18)30344-3/b17
http://refhub.elsevier.com/S0167-739X(18)30344-3/b17
http://refhub.elsevier.com/S0167-739X(18)30344-3/b18
http://refhub.elsevier.com/S0167-739X(18)30344-3/b18
http://refhub.elsevier.com/S0167-739X(18)30344-3/b18
http://refhub.elsevier.com/S0167-739X(18)30344-3/b18
http://refhub.elsevier.com/S0167-739X(18)30344-3/b18
http://refhub.elsevier.com/S0167-739X(18)30344-3/b19
http://refhub.elsevier.com/S0167-739X(18)30344-3/b19
http://refhub.elsevier.com/S0167-739X(18)30344-3/b19
http://refhub.elsevier.com/S0167-739X(18)30344-3/b19
http://refhub.elsevier.com/S0167-739X(18)30344-3/b19
http://refhub.elsevier.com/S0167-739X(18)30344-3/b21
http://refhub.elsevier.com/S0167-739X(18)30344-3/b21
http://refhub.elsevier.com/S0167-739X(18)30344-3/b21
http://refhub.elsevier.com/S0167-739X(18)30344-3/b21
http://refhub.elsevier.com/S0167-739X(18)30344-3/b21
http://refhub.elsevier.com/S0167-739X(18)30344-3/b22
http://refhub.elsevier.com/S0167-739X(18)30344-3/b22
http://refhub.elsevier.com/S0167-739X(18)30344-3/b22
http://refhub.elsevier.com/S0167-739X(18)30344-3/b22
http://refhub.elsevier.com/S0167-739X(18)30344-3/b22
http://refhub.elsevier.com/S0167-739X(18)30344-3/b23
http://refhub.elsevier.com/S0167-739X(18)30344-3/b23
http://refhub.elsevier.com/S0167-739X(18)30344-3/b23
http://refhub.elsevier.com/S0167-739X(18)30344-3/b23
http://refhub.elsevier.com/S0167-739X(18)30344-3/b23
http://refhub.elsevier.com/S0167-739X(18)30344-3/b24
http://refhub.elsevier.com/S0167-739X(18)30344-3/b24
http://refhub.elsevier.com/S0167-739X(18)30344-3/b24
http://refhub.elsevier.com/S0167-739X(18)30344-3/b24
http://refhub.elsevier.com/S0167-739X(18)30344-3/b24
http://refhub.elsevier.com/S0167-739X(18)30344-3/b24
http://refhub.elsevier.com/S0167-739X(18)30344-3/b24
http://refhub.elsevier.com/S0167-739X(18)30344-3/b25
http://refhub.elsevier.com/S0167-739X(18)30344-3/b25
http://refhub.elsevier.com/S0167-739X(18)30344-3/b25
http://refhub.elsevier.com/S0167-739X(18)30344-3/b26
http://refhub.elsevier.com/S0167-739X(18)30344-3/b26
http://refhub.elsevier.com/S0167-739X(18)30344-3/b26
http://refhub.elsevier.com/S0167-739X(18)30344-3/b27
http://refhub.elsevier.com/S0167-739X(18)30344-3/b27
http://refhub.elsevier.com/S0167-739X(18)30344-3/b27
http://refhub.elsevier.com/S0167-739X(18)30344-3/b27
http://refhub.elsevier.com/S0167-739X(18)30344-3/b27
http://refhub.elsevier.com/S0167-739X(18)30344-3/b28
http://refhub.elsevier.com/S0167-739X(18)30344-3/b28
http://refhub.elsevier.com/S0167-739X(18)30344-3/b28
http://refhub.elsevier.com/S0167-739X(18)30344-3/b29
http://refhub.elsevier.com/S0167-739X(18)30344-3/b29
http://refhub.elsevier.com/S0167-739X(18)30344-3/b29
http://refhub.elsevier.com/S0167-739X(18)30344-3/b29
http://refhub.elsevier.com/S0167-739X(18)30344-3/b29
http://refhub.elsevier.com/S0167-739X(18)30344-3/b29
http://refhub.elsevier.com/S0167-739X(18)30344-3/b29
http://refhub.elsevier.com/S0167-739X(18)30344-3/b30
http://refhub.elsevier.com/S0167-739X(18)30344-3/b30
http://refhub.elsevier.com/S0167-739X(18)30344-3/b30
http://refhub.elsevier.com/S0167-739X(18)30344-3/b30
http://refhub.elsevier.com/S0167-739X(18)30344-3/b30
http://refhub.elsevier.com/S0167-739X(18)30344-3/b31
http://refhub.elsevier.com/S0167-739X(18)30344-3/b31
http://refhub.elsevier.com/S0167-739X(18)30344-3/b31
http://refhub.elsevier.com/S0167-739X(18)30344-3/b32
http://refhub.elsevier.com/S0167-739X(18)30344-3/b32
http://refhub.elsevier.com/S0167-739X(18)30344-3/b32
http://refhub.elsevier.com/S0167-739X(18)30344-3/b32
http://refhub.elsevier.com/S0167-739X(18)30344-3/b32
http://refhub.elsevier.com/S0167-739X(18)30344-3/b32
http://refhub.elsevier.com/S0167-739X(18)30344-3/b32
http://refhub.elsevier.com/S0167-739X(18)30344-3/b32
http://refhub.elsevier.com/S0167-739X(18)30344-3/b32
http://refhub.elsevier.com/S0167-739X(18)30344-3/b33
http://refhub.elsevier.com/S0167-739X(18)30344-3/b33
http://refhub.elsevier.com/S0167-739X(18)30344-3/b33
http://refhub.elsevier.com/S0167-739X(18)30344-3/b33
http://refhub.elsevier.com/S0167-739X(18)30344-3/b33
http://refhub.elsevier.com/S0167-739X(18)30344-3/b33
http://refhub.elsevier.com/S0167-739X(18)30344-3/b33
https://asc.llnl.gov/sequoia/benchmarks/
http://accc.riken.jp/en/supercom/himenobmt/
https://github.com/UoB-HPC/TeaLeaf
http://refhub.elsevier.com/S0167-739X(18)30344-3/b38
http://refhub.elsevier.com/S0167-739X(18)30344-3/b38
http://refhub.elsevier.com/S0167-739X(18)30344-3/b38
http://refhub.elsevier.com/S0167-739X(18)30344-3/b38
http://refhub.elsevier.com/S0167-739X(18)30344-3/b38
http://refhub.elsevier.com/S0167-739X(18)30344-3/b39
http://refhub.elsevier.com/S0167-739X(18)30344-3/b39
http://refhub.elsevier.com/S0167-739X(18)30344-3/b39
http://refhub.elsevier.com/S0167-739X(18)30344-3/b39
http://refhub.elsevier.com/S0167-739X(18)30344-3/b39
https://software.intel.com/en-us/imb-user-guide

	Local rollback for resilient MPI applications with application-level checkpointing and message logging
	Introduction
	Related Work
	CPPC Overview
	Local Rollback Protocol Outline
	Message Logging
	Logging Point-to-Point Communications
	Logging Collective Communications
	Implications for the Log Size

	Reposting Communications Interrupted by a Failure
	Tracking Messages and Emission Replay
	Tracking Protocol
	Ordered Replay

	Experimental Evaluation
	Performance Evaluation of the Local Rollback Protocol
	Logging Overhead
	Recovery Benefits

	Weak scaling experiments

	Concluding Remarks
	Acknowledgments
	References

