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Abstract—Graphics Processing Units (GPUs) are widely used in accelerating dense linear solvers. The matrix factorizations, which
dominate the runtime for these solvers, are often designed using a hybrid scheme, where GPUs perform trailing matrix updates, while
the CPUs perform the panel factorizations. Consequently, hybrid solutions require high-end CPUs and optimized CPU software in order
to deliver high performance. Furthermore, they lack the energy efficiency inherent for GPUs due to the use of less energy-efficient
CPUs, as well as CPU-GPU communications.
This paper presents analysis and design techniques that overcome the shortcomings of the hybrid algorithms, and allow the design of
high-performance and energy-efficient dense LU and Cholesky factorizations that use GPUs only. The full GPU solution eliminates the
need for a high-end CPU and optimized CPU software, which leads to a better energy efficiency. We discuss different design choices,
and introduce optimized GPU kernels for panel factorizations. The developed solutions achieve 90+% of the performance of optimized
hybrid solutions, while improving the energy efficiency by 50%. They outperform the vendor library by 30-50% in single precision, and
15-50% in double precision. We also show that hybrid designs trail the proposed solutions in performance when optimized CPU
software is not available.

Index Terms—Dense Linear Solvers, GPU Computing, Energy Efficiency.
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1 INTRODUCTION

D ENSE matrix factorization is the dominant step in solv-
ing large linear systems of equations. Many factoriza-

tion algorithms, such as Cholesky, LU, and QR factoriza-
tions, have standard implementations in widely-distributed
packages, such as the open source LAPACK library [1], the
Math Kernel Library (MKL) [2] (provided by Intel), and
the ESSL library [3] (provided by IBM). Since these factor-
izations are rich in compute intensive tasks, they can take
advantage of massively parallel architectures. Establishing
the use of GPUs in the HPC market was due to GPUs’
ability to outperform multicore CPUs in such tasks. GPUs
represent a throughput-oriented architecture. They possess
relatively slow processing cores (compared to CPUs), but
they compensate that by having orders of magnitude more
cores (typically thousands instead of few dozens). In ad-
dition, they prove to provide better energy efficiency (i.e.
the number of floating point operations (FLOPs) per unit
power) for compute intensive tasks. These reasons led to
mature GPU software for dense linear algebra. Examples
include cuBLAS [4] and cuSOLVER [5] (vendor-supplied
libraries), ViennaCL [6], and MAGMA [7]. art for GPU-
accelerated dense linear solvers.

However, GPUs are not the favorite architecture for
latency-sensitive or inherently sequential tasks. An exam-
ple for such tasks is the panel factorization in one-sided
decompositions. This is why libraries such as MAGMA,
offload the panel factorization steps to the CPU, while the
GPU performs the trailing matrix updates [8]. The CPU

activity and the CPU-GPU communication is hidden using a
lookahead technique, where the next panel is sent/factorized
on the CPU while the current update is running on the GPU.
Although this strategy achieves very high performance on
GPU-accelerated systems, we point out some weaknesses:

1) Hybrid designs require an ”optimal configuration”,
meaning a large enough problem, high-end multi-
core CPU, and a highly optimized CPU software
for the panel factorization. A relatively slow CPU
(compared to the GPU) or a slow CPU software
makes it impossible, or requires very large matrix
sizes, to reach asymptotic peak performance due to
performance penalties associated with partial over-
lap of the panel factorization.

2) Hybrid designs use all cores of the CPU to factorize
the panel as fast as possible. Applications that have
a mix of different workloads will experience a low
task concurrency.

3) A hybrid CPU-GPU factorization is, by design, sub-
optimal from the perspective of energy efficiency.
The CPU and the GPU are working together on
the same problem, with the CPU being fully en-
gaged in a task with limited parallelism (the panel
factorization). In addition, moving data across the
interconnect is energy-consuming.

We provide an alternative solution that is fully GPU
based. Our choice is motivated by the weaknesses men-
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tioned above, as well as by the advances in the GPU
architectures over the past five years. We show that a loss
of less than 10% in performance can lead to a 50% gain
in energy efficiency against hybrid designs with ”optimal
configuration”. We also show that, in the absence of such an
optimal configuration, the full GPU solution outperforms
the hybrid solution. We address the challenges of optimiz-
ing the panel factorization on the GPU and provide novel
designs that save as much memory traffic as possible. The
developed solutions do not require a high-end multicore
CPU nor do they require optimized CPU software. In fact,
they require a single CPU thread, which leaves the rest of the
host cores available to perform other useful work. Our case
study includes Cholesky factorization, and LU factorization
with partial pivoting. Against competitive deigns provided
by cuSOLVER [5], our developed solutions achieve 5-10%
performance improvements for Cholesky factorization. As
for the LU factorization, the performance improvements are
in the range of 30-50% in single precision, and 15-50% in
double precision. The new developed solutions are lined up
for integration into the MAGMA library.

2 RELATED WORK

The study of GPU accelerated algorithms for dense linear
algebra has been active for years. In fact, there are many soft-
ware packages that are GPU-enabled in this field. Some of
these libraries mainly provide BLAS functionality [9], such
as NVIDIA’s cuBLAS [4], KBLAS [10], and ASPEN.K2 [11].
Some other packages provide a more comprehensive set of
BLAS and LAPACK [1] routines. For example, MAGMA [12]
is an open source library that provides various BLAS ker-
nels and LAPACK routines using hybrid CPU-GPU algo-
rithms [8]. ViennaCL [6] is another package that provides
few functionalities for dense matrices, such as triangular
solves and LU factorization without pivoting. NVIDIA’s
cuSOLVER [5] also provides some GPU-powered LAPACK
algorithms. Among all these packages, cuSOLVER is the
only library that provides one-sided factorization routines
that use the GPU only.

One of the early efforts to develop hybrid CPU-GPU so-
lutions for dense linear solvers was provided by Barrachina
et al. [13] and Baboulin et al. [14]. The motivation back
then was that the time to transfer the panel, perform the
factorization on the CPU, and transfer the panel back, can
be shorter than performing the factorization on the GPU.
The detailed panel factorization analysis and optimizations
by Volkov and Demmel [15] also concluded that in practice,
it is best to exploit the heterogeneity of the system by using
both the GPU and the CPU. Such finding triggered the
development of hybrid CPU-GPU solutions, not only for
one-sided factorization [8], but also for singular and Eigen-
value problems [16], [17], [18]. In addition, many of these
algorithms support multi-GPU systems [19], [20], [21]. Also,
there was a strong interest in developing hybrid algorithm
for other type of accelerated platform such as using AMD
GPU [22] or Intel Xeon Phi co-processors [23], [24], [25].

In general, accelerators were used as suppliers of high
performance compute-intensive BLAS routines. The devel-
opment of GPU-only (accelerators-only) dense linear al-
gebra algorithms was avoided in the past because: (1)

accelerators were not friendly for latency-sensitive tasks
(panel factorization), and (2) Hybrid algorithms were much
faster, since the CPU outperforms the GPU in such tasks.
However, the recent advances in accelerators architectures
as well as the need for small matrix computations [26] [27]
have opened the door for fully accelerators-based algo-
rithms. Some recent work involved developing accelerators-
only routine for Intel Xeon-Phi [28], [29]. We also have
illustrated this in earlier work on the QR and Cholesky
factorizations [30], [31] for Nvidia-GPU. Here we extend the
analysis and the design techniques, and add the previously
missing case for the LU factorization. We also show that the
dependencies required by the hybrid solutions to achieve
high performance (fast CPU and optimized software) are
not always available. Moreover, the considerations for en-
ergy efficiency (currently in favor of GPUs over CPUs) are
increasingly important in modern HPC platforms. These
are our main motivations to investigate entirely GPU-based
algorithms.

3 CONTRIBUTIONS

This section summarizes the contributions of this paper:

1) A new design strategy for one-sided factorization
that offloads the entire workload to the GPU, in-
stead of a hybrid CPU-GPU design. Such strategy
challenges the common thinking that GPUs are not
efficient in latency sensitive tasks. It also provides
a solution that is more energy efficient than hybrid
algorithms.

2) Eliminating the need for a high-end multicore CPU
in GPU-accelerated systems opens the door for
building more energy efficient HPC clusters and
supercomputers by using lightweight CPU cores.

3) We present a detailed study of dense Cholesky/LU
factorizations that follows a bottom-up methodol-
ogy. We discuss each individual component of the
factorization and how we can design or tune it to
operate at high speed on the GPU.

4) Three GPU kernels that perform the panel factor-
izations on the GPU (one kernel for Cholesky, two
kernels for LU). Our strategy in the three kernels is
to save as much as possible of the global memory
traffic, which matters the most when optimizing
for energy efficiency. One of the LU kernels uses
inter-block communication among thread blocks to
optimize data reuse.

5) An auxiliary pivot vector technique that enables fast
row permutations in LU, instead of pairwise serial
row-swapping, which improves the performance of
the whole factorization.

4 BACKGROUND

According to LAPACK [1], the LU factorization with partial
pivoting of a general matrix AM×N is defined as A = P ×
L × U, where P is a permutation matrix, L is unit lower
triangular (lower trapezoidal if M > N), and U is upper trian-
gular (upper trapezoidal if M < N). The permutation matrix
is stored in a condensed form using a pivot vector (IPIV).
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Algorithm 1 Blocked LU factorization. Assume nb fully
divides min(M, N).

1: for j = 0 to min(M,N) Step nb do
2: Panel: DGETF2(Aj:M−1,j:j+nb−1)
3: LEFT SWAP: DLASWP(Aj:M−1,0:j−1)
4: RIGHT SWAP: DLASWP(Aj:M−1,j+nb:N−1)
5: Triangular Solve (DTRSM):

Aj:j+nb−1,j+nb:N−1 *= A−1
j:j+nb−1,j:j+nb−1

6: Update (DGEMM):
Aj+nb:M−1,j+nb:N−1 -=
Aj+nb:M−1,j:j+nb−1 * Aj:j+nb−1,j+nb:N−1

7: end for

Symmetric positive definite matrices are often factorized
using Cholesky factorization, A = L × LT , where L is a
lower triangular matrix.

Algorithm 2 Blocked left-looking Cholesky factorization.
Assume nb fully divides N.

1: for j = 0 to N Step nb do
2: if (j > 0) then
3: Update current panel (DSYRK, DGEMM):

Aj:j+nb−1,j:j+nb−1-=Aj:j+nb−1,0:j−1A
T
j:j+nb−1,0:j−1

Aj+nb:,j:j+nb−1 -= Aj+nb:,0:j−1A
T
j:j+nb−1,0:j−1

4: end if
5: Panel: DPOTF2(Aj:j+nb−1,j:j+nb−1)
6: Triangular Solve (DTRSM):

Aj+nb:,j:j+nb−1 *=A
−1
j:j+nb−1,j:j+nb−1

7: end for

The key to performance in LAPACK relies on factorizing
a panel of width nb > 1 (called the blocking size), in order
to perform the updates using compute-bound kernels (e.g.
GEMM). Algorithm 1 shows a blocked dense LU factorization
with partial pivoting, which is equivalent to the standard
DGETRF routine in LAPACK. It is mainly dominated by two
compute-bound operations; triangular solve (DTRSM), and
matrix multiplication (DGEMM). Algorithm 2 also shows a
blocked Cholesky factorization. We consider the left-looking
variant of the algorithm since it is dominated by the same
two operations as the LU factorization (DTRSM and DGEMM).
The detailed comparison between the left-looking and the
right-looking variants of the algorithm is outside the scope
of this paper. The internal steps of the panel factorization
are discussed in Section 6.

5 DATA LAYOUT

Coalesced data access is a major key for high performance
on modern GPUs. The lack of coalesced accesses in a
GPU kernel results in an under-utilization of the memory
bandwidth (more data are moving around than actually
required), which in turn results in more power consumption
and less performance. Most LAPACK algorithms assume a
column major layout for dense matrices. This is convenient
for Cholesky factorization, due to the absence of explicit row
accesses in the algorithm. However, the situation is different
in LU factorization with partial pivoting. While a column
major layout is friendly for the pivot search (IDAMAX),
it is not convenient for row interchanges (DLASWP). The

situation is the exact opposite if row major layout is used. In
this regard, we consider two layouts for the LU factorization.
The first one uses a column major layout like LAPACK, and
mitigates the impact of row interchanges by introducing
auxiliary pivot information that enables fast row permuta-
tions (Section 6.6). Figure 1 shows the computational steps
of a single iteration on a column major layout.
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ROW.SWAP( 𝑪
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N

nb
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j

Fig. 1. Computational steps of one iteration of the LU factorization on a
column major layout.

The second design still accepts a column major layout
(for consistency with LAPACK), but internally transposes the
matrix in order to efficiently perform the row interchanges
(as in [32]). During the panel factorization, the panel is
transposed back to a column major layout to efficiently
perform the pivot search. Figure 2 shows the computational
steps of a single iteration on the transposed matrix. Note
that it is no longer needed to perform two swap operations
(left and right), since the factorized panel is in a separate
workspace, and is copied back after the swapping is fin-
ished. The extra steps required in this mode of operations
are: (1) Two transposition steps at the beginning and at the
end of the algorithm. This applies to the entire matrix, and
(2) Two transposition steps at every factorization iteration.
This applies to the panel only. The transposition steps are
bandwidth limited. As Section 7 shows, the transposition
overhead is amortized by the performance gains obtained
by performing the factorization on the transposed matrix.

6 ALGORITHMIC DESIGN

This section discusses the design of Cholesky and LU fac-
torizations on GPUs using a bottom-up approach. We study
each individual building block of both algorithms, which
gives insights on the performance of different designs and
the best tuning parameters for each algorithm.

6.1 Hardware Setup
Before describing our methodology, we first list the specifi-
cations of the three systems on which our experiments are
conducted.

SYSTEM 1 is configured with two sockets of a 10-core
Intel Haswell CPU (Intel Xeon E5-2650 v3, running at 2.3
GHz), and a Pascal generation GPU (Tesla P100 with 1.189
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Fig. 2. Computational steps of one iteration of LU factorization on a
transposed matrix.

GHz multiprocessor clock). The latter is the PCIe model,
which has 16GB of HBM2 memory, and 56 multiprocessors.
Each multiprocessor has 64 cores and 32 double precision
units. The vendor advertises a 9.3/4.7 Tflop/s theoretical
peak performance for single/double precision, respectively,
and a 250W of maximum power consumption. Installed on
the machine are CUDA 8.0, and MKL 11.3.0. We installed
MAGMA on this system to use MKL as the provider of
the CPU LAPACK. We use SYSTEM 1 to show intermediate
results for incremental improvements throughout the paper.

SYSTEM 2 is a self-hosted 68-core Intel Knights Landing
(KNL) architecture (Intel Xeon Phi CPU 7250, running at
1.40GHz). We use this system to show the final results of
MKL 11.3.0, and to compare the energy efficiency of the
KNL architecture against the GPU architecture.

SYSTEM 3 is a single node of the ORNL’s Summitdev
cluster, and is also used to show our final performance
results. A single node of Summitdev is equipped with
two sockets of 10-core IBM POWER8 CPU (POWER8NVL
(raw) with altivec, running at 2.094 GHz), and four Pascal
generation GPUs (Tesla P100-SXM2 with 1.48 GHz multi-
processor clock). Each GPU has similar specifications to the
one installed on SYSTEM 1 except for the faster clock and
the maximum power (300W). We run MAGMA with the
ESSL-SMP library as the provider of the CPU-optimized
LAPACK.

6.2 Matrix Multiplication and Triangular Solve
The GEMM and TRSM kernels are the dominant steps in both
the LU and the left-looking Cholesky. We use the kernels
provided by cuBLAS 8.0 [4]. The triangular solve kernel
has been optimized in the latest cuBLAS release based on a
recursive design that uses GEMM internally [33]. This means
that we can turn our attention to the GEMM kernel only.

While the cuBLAS GEMM kernel achieves its peak per-
formance on square multiplications, it is important to point
out that this case rarely appears in one-sided factorizations.
In fact, the GEMM performance relies on the input sizes, and
the transposition (if any) of the input matrices. In the left-
looking Cholesky factorization for example, the GEMM up-
dates the tall and skinny matrices C (step 5 in Algorithm 2),
such that Cm×nb = Cm×nb − Am×k × (BT )k×nb, where nb
is the blocking size, while m and k keep changing as the
factorization proceeds. On the other hand, LU factorization
invokes the GEMM kernel to compute rank-nb matrix updates
Cm×n = Cm×n − Am×nb × Bnb×n, i.e., A is often tall and
skinny, B is short and wide, and C is square if the original
matrix is square.

We conducted a benchmark to test the asymptotic per-
formance of the GEMM kernel on the typical call configu-
rations that are found in Cholesky and LU factorizations.
The purpose of this experiment is to empirically decide
the minimum blocking size that can get close to the peak
performance (e.g., within 90%). Figure 3 shows the asymp-
totic behavior of the cuBLAS GEMM kernel under the two
configurations using different blocking sizes. The figure
shows that a minimum blocking size of 256 is required for
double precision, while single precision requires at least a
blocking size of 1024. These values put insights for us when
we design our panel factorization kernels.
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Fig. 3. Performance of the cuBLAS GEMM kernel in typical call configu-
rations of the Cholesky/LU algorithms. Results are obtained on a Tesla
P100 GPU.

6.3 Recursive Panel Factorization

The panel factorization is an unblocked implementation
(i.e. column by column) of the algorithm. It is a memory-
bound operation, exposes very little data reuse, and is often
offloaded to the CPU (as in MAGMA) [12], [34]. On the con-
trary, we developed optimized GPU kernels for Cholesky
and LU panel factorizations. All the developed kernels are
compliant with LAPACK in terms of error checking, which
means that the kernels check for non-positive-definiteness
in Cholesky factorization, and for singularity in LU factor-
ization.

However, the previous section shows that we need rel-
atively large blocking sizes in order to get the best GEMM
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performance. Even an optimized kernel should not be used
to factorize a panel of width 1024 or even 256. The panel
factorization becomes very time consuming, and remains
bound by the memory bandwidth. This is why we follow
a recursive panel design in order to involve compute-bound
operations in the panel step. Figure 4 shows a sketch of the
recursive panel in both algorithms. The width of the panel
(rnb) at which recursion stops is a tuning parameter that
varies according to the GPU architecture.

M

nb

A00 A01

A10 A11

RDGETF2( 𝑨𝟎𝟎
𝑨𝟏𝟎

) 1

ROW.SWAP( 𝑨𝟎𝟏
𝑨𝟏𝟏

) 2

ROW.SWAP(A10) 6

SOLVE A00X=A01, A01ßX3

A11 = A11 – A10×A014

RDGETF2(A11) 5

nb

nb

A01

A10 A11

A00
RDPOTF2(A00) 1

2 SOLVE X(A00)T=A10, A10ßX

3 A11 = A11 – A10×(A10)T

4 RDPOTF2(A11) 

Fig. 4. Recursive panel of Cholesky (RDPOTF2) and LU (RDGETF2)
factorizations.

The RDPOTF2 and RDGETF2 routines have a stopping
condition if the width of the panel becomes less than a
certain value (typically 16 to 32), where the unblocked
POTF2 or GETF2 factorization routines are executed. If the
width of the panel is larger than the stopping condition,
the steps shown in Figure 4 are executed. The recursive
Cholesky panel factorization starts by a recursive call on the
A00 submatrix. The next step is to update A10 inplace using
a triangular solve with respect to the factorized A00 subma-
trix. A11 is then rank-updated before passing it to another
recursive factorization. On the other hand, the RDGETF2
routine starts by a recursive call on Ax0. The necessary row
interchanges are then performed on Ax1 before updating A01
using an inplace triangular solve with respect to A00. A11 is
then rank-updated and recursively factorized. The last step
is to perform the necessary row interchanges, resulting from
factorizing A11, on the A10 submatrix.

6.4 Cholesky Panel Factorization (DPOTF2)
We developed an optimized GPU kernel to factorize an
rnb× rnb square matrix. Unlike LU factorization, the panel
is relatively small, and can be factorized using one thread
block with rnb threads. We deviate from a fully unblocked
implementation and use in-kernel blocking with fused cus-
tomized BLAS functions in order to maximize data reuse.
Figure 5 shows the design concept of the kernel. Following

a left-looking scheme, the kernel iterates over the matrix
using an internal blocking size ib, and holds an (rnb−j)×ib
subpanel in shared memory, where j = 0, ib, 2ib, · · · , etc.
For every subpanel, the kernel performs an in-shared-
memory update (C = C−ABT ) using a customized DGEMM
sub-kernel. Note that this operation overwrites the upper
triangular part of C in shared memory, but ignores it when
writing the subpanel back to the global memory. This extra
computation allows a simpler kernel design and less thread
divergence during the update. The customized DGEMM sub-
kernel takes advantage of the overlap between A and B by
reading a portion of A of tunable width kb, and transposing
the corresponding part of B in shared memory. It also incor-
porates register double buffers to perform the updates using
overlapping stages, for example by prefetching a1 (which
includes b1) while computing a0 × bT0 . After the update is
complete, the kernel reuses the subpanel in shared memory
and executes the unblocked factorization sub-kernel. The
factorized panel is finally written to the global memory, and
can also be reused for the update of the next subpanel. We
point out that, with such a kernel design, our solution for
Cholesky factorization involves three layers of blocking be-
fore executing an unblocked factorization (LAPACK blocking
→ recursive blocking→ kernel blocking→ unblocked).

ib

rnb-j

kb

j

ib

rnb

a0 a1 a2 a3

b0 b1 b2 b3

Fig. 5. Design of the Cholesky panel factorization.

6.5 LU Panel Factorization (DGETF2)

The LU panel factorization is more challenging to optimize
on GPUs. This is because blocking reduces only the columns
in a panel, and thus, can not make a panel small enough to
be factorized entirely in “fast memory”. Indeed, following
Algorithm 1, the recursive panel sizes are (M − j) × rnb,
where j = 0, nb, 2nb, · · · , etc. Since we cannot make any
assumptions about the memory footprint size of the input
panel, which is unlike the Cholesky algorithm, we have to
provide a generic design (denoted below by D1) that works
for any size. However, we can take advantage of the panel if
its height is below some threshold T , where we can explore
more chances of data reuse. We adopt this strategy and
develop two different designs for the LU panel factorization.
The basic idea is, as the panel gets shorter, we are able to
launch a more optimized kernel D2 to perform the factoriza-
tion. The threshold T is a tunable parameter that depends on
the GPU architecture. We point out that large-scale matrix
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factorizations also benefit from Design D2. Namely, when
the height of the unfactorized part becomes less than T , our
recursive panel routine switches automatically from D1 to
D2.

6.5.1 Design D1
This design works for any panel size. It launches mul-
tiple kernels that correspond to the computational steps
described in Algorithm 3, except for the DSCAL and DGER
operations, which are fused into one kernel to increase data
reuse. At each iteration, Design D1 starts by launching the
IDAMAX kernel, which uses one thread block of IDAMAXTX
threads (typically 256 to 512). The kernel loops over the
current column in segments of IDAMAXTX elements, with
each thread computing its local maximum. The next stage
is a tree reduction in shared memory, after which the pivot
location is determined and written to IPIV. The DSWAP
kernel is a simple one that just exchanges two rows of the
current panel. Since this kernel does not respect coalesced
memory access, we keep the the panel width as small as
8− 16.

Algorithm 3 Unblocked LU factorization
1: for j = 0 to min(M, N) do
2: Locate Pivot (IDAMAX):

piv = IPIV[j] = j + IDAMAX(A[j:, j])
3: if piv6=j then
4: SWAP (DSWAP): A[j, 0:] with A[piv, 0:]
5: end if
6: SCALE (DSCAL):

A[j+1:,j] *= 1/A[j, j]
7: UPDATE (DGER):

A[j+1:,j+1:] -= A[j+1: ,j]*A[j,j+1:]
8: end for

The DSCAL and DGER steps are fused into one kernel in
order to reuse the data from the scaled column. The kernel
launches a 1D array of thread blocks, each with DSCALGERTX
threads (typically 128−512). Figure 6 shows an example that
uses three thread blocks. Each thread block reads the pivot
row and stores it in shared memory. It then uses the pivot
element to scale its respective segment of “a” and, while
writing it into global memory, reuses it in the outer product
to update the respective part of C in registers.

read by all thread blocks

Th
re

ad
   

  B
lo

ck
s

0

1

2

a0

a1

a2

pivot

Fig. 6. The fused DSCAL/DGER kernel.

6.5.2 Design D2
As the factorization progresses, the height of the panel gets
smaller than some threshold (T ), and we can take advantage
of that by introducing an alternate design D2 that increases
data reuse in fast memory levels. This reduces the memory
traffic and increases the energy efficiency. We set a target
to make T as large as possible, by introducing a design that
fuses all the computational steps of Algorithm 3 into a single
kernel. The kernel uses multiple thread blocks and inter-
block communication among thread blocks when sharing
of information is needed. Each thread block holds an entire
column of the panel in registers, which enables T to be as
large as 50k/25k in single/double precisions, respectively.

wait
dscal/WR

wait
idamax

idamax dswap

dscal/WR

bx=j bx ≠ j

pivot found
set IPIV[j]

IPIV[j]=0

scale flag
not set

bx < j

IPIV[j] ≠ 0

begin iteration j

GER

end iteration j
begin iteration j+1...

scale flag is set

end iteration j-1

...

Fig. 7. A FSM for a single iteration for Design D2

CUDA (versions 8.0 and earlier) does not natively sup-
port inter-block communication. It also adopts a weakly-
ordered memory model, meaning that the order of reads
and writes to the global memory does not necessarily follow
the order specified in the developed code. The inter-block
communication of Design D2 is realized using three compo-
nents. The first is global memory flags that enable thread
blocks to synchronize and share data. We adopt a simple
mechanism by assigning a separate set of flags for each
thread block, in order to avoid race conditions or deadlocks.
Each set of flags is readable by all thread blocks, but may be
written by only a unique thread block. The extra workspace
needed to hold these flags is negligible even if the original
matrix is small. The second component is atomic operations
for variables that are writable by all thread blocks, such as
the info parameter that is used to report singularity. We use
atomic exchange operations in order to set such variables,
which also ensures that the new written value is visible
to all thread blocks. The third component is memory fence
functions, which are used to make sure that data writes to
the global memory are visible to all thread blocks. This is
typically needed to trigger the update operation, when the
scaled column is written to the global memory.

The design of D2 uses a finite state machine (FSM) to coor-
dinate the factorization among independent thread blocks.
Figure 7 shows the state machine of the jth iteration of
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Design D2. The thread block who has an ID bx equal to
j performs the IDAMAX step on its column, while other
thread blocks wait for the jth entry of the pivot vector to
be updated to a non-zero value. Once the pivot is found,
all thread blocks perform the DSWAP step in registers and
then select one of three paths, based on their respective IDs.
Thread blocks with ID less than j move to the next iteration
and wait for a new pivot. The jth thread block scales
its column and writes it to global memory, so that thread
blocks with ID > j (that are meanwhile waiting) can begin
the update operation DGER. All operations occur on the
register level, and swapping does not lead to non-coalesced
memory accesses. Data reuse is significantly increased as
well, compared to Design D1, since all columns are kept in
registers for the lifetime of the kernel.

The kernel driver makes sure that all thread blocks are
simultaneously live in order to avoid deadlocks. This is
done by launching a number of thread blocks that is less
than or equal to the number of multiprocessors on the GPU.
We also force the runtime to schedule exactly one thread
block per multiprocessor by allocating more than half the
shared memory available. The driver reads, at run time, the
number of multiprocessors of the GPU, and tunes the value
of rnb accordingly. For example, on a Pascal P100, we run at
least 32 thread blocks, since the GPU has 56 multiprocessors.
Each thread block is a 1D array of D2TX threads, typically
256 − 512 based on the GPU architecture. Each column is
stored in registers using multiple segments, each of length
D2TX.

0 20 40 60 80 100 120 140

Thread block 0
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Thread block 4

Thread block 5

Thread block 6
Thread block 7

read
scal_write

idamax wait_idamax swap
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Time (µs)
(matrix size 8192✕8)

(a) Design D2 with greedy update
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(b) Design D2 with lazy update

Fig. 8. Execution traces of thread blocks inside the D2 kernel with
greedy/lazy updates. Matrix size is 8192× 8. GPU is Tesla P100.

6.5.3 Tracing Execution for Design D2

We conducted an experiment that enables tracing the exe-
cution of thread blocks within the D2 kernel. The purpose
of this trace is two fold. First, it generates a realistic visu-
alization of the state machine shown in Figure 7. Second,
it allows assessing a tradeoff between a greedy update and a
lazy update. The former overlaps the DSCAL and DGER oper-
ations by triggering an update for every written segment of
the factorized column. The latter waits for the entire column
to be written and then triggers the update. Therefore, the
tradeoff is between having more parallelism versus less
synchronization among thread blocks.

We modified the D2 kernel in order to allow thread
blocks log their progress in an auxiliary workspace in the
global memory. Each thread block records the value of the
special GPU register %globaltimer at the times it en-
ters/leaves a certain state. Figure 8 shows two visualizations
of the log information for a matrix of size 8192×8. The time
scale is the same for the two traces. In either case, eight
thread blocks are launched. They follow the state machine
shown in Figure 7, except in the way they execute the
update. A greedy update (Figure 8a) pipelines the DSCAL
and the DGER operations, thus seeking more parallelism.
Although the overlap between the two stages is apparent,
the greedy update suffers from frequent synchronization
among thread blocks, which is required after scaling each
segment of the current column. This causes the DSCAL and
the DGER operations to take longer times than they do in
Figure 8b, which shows that a traditional “lazy” update is
faster due to the use of fewer synchronization points.
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Fig. 9. Performance comparison of Designs D1 and D2 on a Tesla P100
in double precision arithmetic.

6.5.4 Performance Comparison between D1 and D2

Figure 9 compares the impacts of Designs D1 and D2 on the
performance of the recursive panel factorization of Figure 4.
Shown also is the performance of cuSOLVER. The exper-
iment uses tall and skinny matrices, where the panel fac-
torization kernels become more dominant than the update
kernels. We use a fixed panel width of 256, while varying
the number of rows up to ≈ 25k. The recursive panel using
Design D1 trails cuSOLVER for panel heights up to 7k, but
steadily outperforms cuSOLVER as the panel becomes taller.
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The recursive panel with Design D2 outperforms the other
two implementations for every size, achieving asymptotic
speedups of 2.4× against cuSOLVER, and 1.8× against the
recursive panel calling D1. We also observe oscillations in
the best performing design. Our profiling results show that
the oscillations are due to other components of the recursive
panel (i.e. BLAS kernels operating on small sizes). These
oscillations still appear when Design D1 is used, but they
are less apparent since the factorization kernels are more
dominant.

Unfortunately, the higher performance comes at the cost
of increased register pressure as the panel grows taller.
We empirically observe that Design D2 is limited to panels
shorter than 25k in double precision. Considering single
precision, we are able to factorize panels as tall as 40k, which
is the maximum size used in the reported results of this
paper. As mentioned before, Design D1 is used whenever
the D2 limit is reached. The recursive panel transparently
makes a choice between the two designs every time the
factorization is done.
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Fig. 10. Percentage time spent on row interchanges on a Tesla P100
GPU. Matrix width is fixed at 1024. Results are for double precision
arithmetic.

6.6 Fast Row Permutations

The standard LU factorization in LAPACK uses a pivot vector
IPIV to store the permutation matrix P in a condensed
form. The LAPACK documentation describes IPIV as an
integer vector that stores pivot indices, such that for 1
≤ j ≤ min(M,N), row j of the matrix was interchanged
with row IPIV[j]. When a panel of width nb is factorized,
the corresponding nb entries in the pivot vector are used
to perform the row interchanges to the left and right of
the panel. The row interchanges are required in the design
shown in Figure 1, and also in the recursive panel design
shown in Figure 4. This operation leads to many non-
coalesced memory accesses, and is purely memory-bound,
since no FLOPs are performed.

However, the way the pivots are stored forces a serial
pairwise row swapping. In other words, the DLASWP routine
must loop over the pivot vector, interchanging two rows at a
time for each entry. For example, consider a factorization of
an 8× 8 matrix that results in a pivot vector of [7, 7, 4, 4, 5,
8, 7, 8]. The order of swapping is fixed, e.g., row 7 has been
selected as pivot in the first two iterations, which means
that, generally, a row can change its place multiple times
during the row interchanges. This leads to a serial behavior
and redundant non-coalesced memory traffic.

We developed an auxiliary pivot vector XIPIV that
mitigates this effect. The use of XIPIV is internal only,
and we still provide the same pivot vector that is provided
by the LAPACK software. The new pivot vector describes
“permutations” rather than “a series of pairwise swaps”. It
stores the final destination of each row, so that each row
changes its place once, and permutations occur in parallel.
For example, the equivalent XIPIV vector to the example
discussed above is [7, 1, 4, 3, 5, 8, 2, 6]. We can read it as
“the first row of the new matrix is the seventh row of the
original matrix”, and “the second row of the new matrix is
the first row in the original matrix”, and so on. We build
the two vectors as the factorization goes on, and use XIPIV
to perform the permutations. Two GPU kernels have been
developed for this purpose. The first converts from IPIV
to XIPIV, and the second performs the permutations using
XIPIV. Note that writing back the permuted nb rows can
now be done using coalesced memory accesses.

Figure 10 compares the percentage time spent in row
interchanges between the LAPACK-style swapping and the
new permutation mechanism. For the latter, we include the
times of both the conversion and the permutations. Results
are shown for matrices of sizes M × 1024, which are typical
panel sizes. We observe that row permutations are at least
2.4× faster than the serial swapping, and can be up to 4.9×
faster. Row permutations take around 7− 8% of the time of
the whole factorization, compared to 19 − 20% in the case
of serial swapping. The increase in the percentage time after
size 10k for row permutations is due to a switch-of-kernels
when building up the XIPIV vector. Below size 10k, we are
able to build the new vector in shared memory and write it
once to the global memory. Another kernel is used for larger
sizes, where XIPIV is built directly in global memory.

7 EXPERIMENTAL RESULTS

This section presents the final performance and energy
efficiency results for the developed Cholesky and LU factor-
izations, which we call magma-native. Comparisons are made
against (1) the MAGMA-hybrid routines (on SYSTEMs 1 &
3), (2) cuSOLVER (on SYSTEMs 1 & 3), which is provided
by the vendor and uses a full GPU design, (3) the MKL
library running on SYSTEM 1 (which we call mkl-haswell),
(4) the MKL library running on SYSTEM 2 (which we
call mkl-knl), and (5) the ESSL-SMP library running on
SYSTEM 3 (which we call essl-power8). MAGMA hybrid
routines uses the multithreaded MKL/ESSL for the panel
factorization on SYSTEM 1/2, with the number of threads
set to 20. Experiments on the KNL hardware set the value of
OMP_NUM_THREADS to 68. These five competitors represent
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Fig. 11. Performance of Cholesky factorizationon on SYSTEMs 1 & 2.

the state of the art in their respective categories (CPU+GPU,
GPU only, and CPU (and KNL) only).

7.1 Performance

7.1.1 Cholesky Factorization

Figure 11 shows the performance of the Cholesky factoriza-
tion on SYSTEMs 1 & 2. In single precision (Figure 11a),
the magma-native solution asymptotically matches the per-
formance of magma-hybrid. This is where the time of the
panel factorization becomes almost negligible with respect
to the rest of the computational steps. This means that large
matrices do not have to use a hybrid CPU+GPU solutions to
achieve high performance. However, the midrange observes
an advantage of the hybrid design that is up to 20%. This ad-
vantage comes at the cost of increased energy consumption,
as we show later in Section 7.2. The native solution slightly
outperforms magma-hybrid and cuSOLVER for matrices of
size less than 8K, and outperforms cuSOLVER afterwards
by up to 10%. In double precision (Figure 11b) the perfor-
mances of magma-native, magma-hybrid, and cuSOLVER are
very similar across all sizes. We also observe that a full GPU
solution for Cholesky factorization can be up to 8×/7×
faster than a CPU solution in single/double precision.
Against MKL running on the KNL platform, the asymptotic
speedups of magma-native are 2.5×/3.0× in single/double
precision.
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Fig. 12. Performance of Cholesky factorization on SYSTEM 3.

Figure 12 shows the performance of the Cholesky fac-
torization on SYSTEM 3. We observe that magma-hybrid is
not competitive until sizes beyond 10k in both precisions.
This behavior indicates that the CPU panel is not as fast
as it is on SYSTEM 1. In addition, while cuSOLVER has a
slight advantage for small sizes, magma-native outperforms
cuSOLVER in single precision by an asymptotic speedup
of 10%, and is nearly identical to cuSOLVER and magma-
hybrid in double precision for sizes larger than 10k. We also
observe that magma-native is asymptotically more than 10×
faster than the pure CPU solution using the multithreaded
ESSL library.

7.1.2 LU Factorization

Figure 13 shows the performance of the LU factorization
on SYSTEMs 1 & 2. Recall that we provide two native
solutions based on the data layout of the matrix. The magma-
native (NT) graph corresponds to the design for column
major layouts in Figure 1, while the magma-native (T) graph
corresponds to the design of Figure 2. The performance of
the latter includes all overheads of the transpositions and
workspace allocations. In both precisions, a transposition
of the input matrix achieves the better performance out of
the two proposed solutions. However, we observe a very
slight advantage of the non-transposed solution for sizes
less than 4k/3k in single/double precision. For the rest of
the discussion, we focus on the transposed solution only.
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Fig. 13. Performance of LU factorization on SYSTEMs 1 & 2.

In single precision, the magma-native (T) solution matches
the magma-hybrid performance for sizes up to 10k, and
mostly stays within 10% or less of the magma-hybrid per-
formance for larger matrices. Note that the LU panel is
much more expensive than the Cholesky panel, and its
cost grows as the matrix becomes larger. This explains why
our solution does not match the magma-hybrid performance
asymptotically. We also outperform cuSOLVER by speedups
that range between 30%-50%. In double precision, magma-
native (T) nearly matches the performance of magma-hybrid
up to size 15k, and then maintains a performance within
at least 90% of the MAGMA performance. Magma-native (T)
also scores speedups against cuSOLVER that range between
15%-50%. In both precisions, we show that a full GPU
solution can be up to 6× faster than a high performance
CPU solution. It is also 1.9×/2.2× faster than MKL running
on the KNL architecture for single/double precision.

Figure 14 shows the performance of the LU factorization
on SYSTEM 3, where we observe a behavior opposite to Fig-
ure 13. Surprisingly, the native GPU routines (both magma-
native and cuSOLVER) are generally faster than magma-
hybrid. This is a scenario where the reliance on the CPU
to factorize the panel does not pay off. Due to the lack of
enough optimization and the oscillatory performance, the
panel factorization routine on the CPU becomes a bottle-
neck, resulting in performance penalties. The magma-native
routine is asymptotically 33%/17% faster than cuSOLVER
in single/double precision. With the performance drops
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Fig. 14. Performance of LU factorization on SYSTEM 3.

of magma-hybrid excluded, the speedups scored by magma-
native are up to 2.6× in single precision, and 2.03× in dou-
ble precision. In addition, magma-native is asymptotically
10×/12× faster than a pure CPU solution.

To better illustrate the contradicting behaviors of magma-
hybrid between Figures 13 and 14, we profiled the factoriza-
tion of a 10k×10k matrix in double precision. Figures 15a
and 15b show partial execution traces on SYSTEMs 1 & 3,
respectively. On SYSTEM 1, the panel factorization on the
CPU is fast enough to overlap the GEMM update on the
GPU, resulting in the very good performance of Figure 13.
On SYSTEM 3, however, and due to the lack of enough
optimization, the CPU panel becomes a bottleneck, and the
GPU has to wait for it to finish. This means that hybrid
routines are not necessarily the best performing solution.
On the absence of optimized CPU software, they can be
outperformed by other solutions.

7.1.3 Performance Efficiency
While absolute performance comparisons show a general
advantage for the MAGMA hybrid designs on SYSTEM 1,
a comparison that is based on the performance as percentage
of the peak shows the opposite. A hybrid design has a
performance upper bound that is equal to the sum of the
peak performances of the CPU and the GPU, while the
upper bound of a full GPU design is the peak of the GPU
plus the peak of one CPU core. Rather than the theoretical
peak performance, we use a more practical bound that is
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Fig. 15. Overlapping the CPU-based LU panel with the GPU-based
updates. Matrix size is 10k.

equal to the peak GEMM performance. Our experiments show
8.9/4.55 Tflop/s peaks for the P100 GPU (using cuBLAS),
and 1.2/0.6 Tflop/s for the 20-core Haswell CPU (using
MKL). Figure 16 shows the asymptotic performance as a
percentage of the aggregate GEMM peak. In every category,
our solution achieves a better performance efficiency than
the MAGMA hybrid designs, with more than 90% perfor-
mance efficiency for Cholesky factorization, and more than
80% performance efficiency for LU factorization.
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7.2 Energy Efficiency

The energy efficiency experiments are conducted on SYS-
TEMs 1 & 2 only, due to the lack of power measurement
software on Summitdev. Our energy measurements use the
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Fig. 17. Performance per Watt for Cholesky factorization on SYSTEMs
1 & 2.

Intel RAPL driver for the CPU and NVIDIA NVML library
for the GPU. We use a sampling window of 100ms in order
to get stable readings, as recommended in [35]. These soft-
ware tools are validated to provide accuracy that is within
+/- 5% of current power draw [36]. The energy efficiency
is measured in (Gflop/s)/Watt. For every data point, we
divide the achieved performance by the average power
consumption based on the several samples collected during
the computation. In order to have enough samples, we
consider matrices that require at least a second to factorize.
We also point out that, for cuSOLVER and magma-native,
we add the power of one CPU socket to the GPU power.
Table 1 summarizes the average performance per Watt for
all solutions, while Figures 17 and 18 show more detailed
results for every size that has been tested.

Solution Name Cholesky LU
SP DP SP DP

MAGMA-native 38.91 17.70 29.40 14.64
cuSOLVER 36.97 17.17 21.85 12.09
MAGMA-hybrid 26.83 12.22 20.33 10.04
MKL-KNL 12.02 5.33 15.43 6.95
MKL-CPU 5.08 2.44 4.87 2.56

TABLE 1
The average (Gflop/s)/W scored on SYSTEMs 1 & 2.

Figure 17 shows the performance per Watt for Cholesky
factorization. Magma-native shows a slight advantage over
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Fig. 18. Performance per Watt for LU factorization with partial pivoting
on SYSTEMs 1 & 2.

cuSOLVER in both precisions. More importantly, the pro-
posed design achieves about 35/17 (Gflop/s)/Watt in sin-
gle/double precision, which is at least 50% better than the
magma-hybrid implementation. The achieved performance
per Watt is also within 90+% of the theoretical peak, as
advertised by the vendor. The discontinuity in the KNL
results correspond to the performance spikes after size 30k,
which obviously leads to a better performance per Watt.

A similar behavior is observed for LU factorization, as
shown in Figure 18. Not only does magma-native achieve
a similar 50% improvement against magma-hybrid, but it
also outperforms cuSOLVER by 25%/15% in single/double
precision. Figures 17 and 18 show that a full GPU solution
can achieve 6 − 7× better performance per Watt than a
20-core Haswell CPU. They also show that the developed
solution is 1.8 − 3.0× more energy efficient than the KNL
platform running MKL.

Figures 19a and 19b show a power trace for LU factor-
ization of a 40k×40k matrix using magma-hybrid and magma-
native, respectively. Both figures have the same scale in both
axes. The figures show the main difference between the
hybrid and the native designs. The former keeps the CPU
operating at full power, performing the panel factorization
and communicating with the GPU. The latter barely uses
any CPU resources, and so the CPU in magma-native con-
sumes at least 4× less power. Figure 19b also shows an
interesting behavior of nearly periodic drops in the GPU
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Fig. 19. Power traces for double precision LU factorization on a 40k×40k
matrix (SYSTEM 1).

power consumption. These drops correspond to the panel
factorization kernels. Such kernels are very memory-bound
and lack compute-intensiveness, thus consuming way less
power than the update steps.

8 CONCLUSION AND FUTURE WORK

This paper presented an alternative design that is high
performant and power efficient for dense one-sided fac-
torization on GPUs. Rather than a hybrid design that uses
the CPU and the GPU, we adopt a full GPU design to im-
prove the energy efficiency. Our optimized GPU kernels for
performing the panel factorization enables achieving 90%
of the performance of the hybrid design, while scoring up
to 50% improvement in performance per unit power. They
also achieve 15%-60% performance improvements against
a competitive GPU design by the vendor. In addition, we
show that hybrid designs can be slower than the proposed
solution in the absence of optimized CPU software.

Future directions include following a similar path for
QR factorization, singular and Eigenvalue problems, and
multi-GPU designs. The authors are also interested in op-
timizations for embedded systems, such as the Jetson TX2
platform, where hybrid designs fail to provide high perfor-
mance due to the absence of server class CPUs and fast inter-
connects. Another work direction is to apply the GPU only
factorizations to large problems that do not fit at once in
the GPU memory. These problems are solved using out-of-
GPU-memory algorithms [37], where a hybrid panel can be
replaced by the GPU-only panel to seamlessly benefit from
the new developments. Finally, we are currently working
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on extending the techniques and the GPU-only panel fac-
torizations presented to be used as essential building blocks
in developing high-performance and energy-efficient factor-
izations for large scale heterogeneous distributed-memory
supercomputers.
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