
Computational Benefit of GPU Optimization
for the Atmospheric Chemistry Modeling
Jian Sun1,2 , Joshua S. Fu1,3 , John B. Drake1 , Qingzhao Zhu1 , Azzam Haidar4,
Mark Gates4 , Stanimire Tomov3, and Jack Dongarra3

1Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Knoxville, TN, USA, 2Now at
Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington, USA,
3Climate Change Science Institute and Computational Sciences and Engineering Division, Oak Ridge National Laboratory,
Oak Ridge, TN, USA, 4Innovative Computing Laboratory, University of Tennessee, Knoxville, Knoxville, TN, USA

Abstract Global chemistry-climate models are computationally burdened as the chemical mechanisms
become more complex and realistic. Optimization for graphics processing units (GPU) may make longer
global simulation with regional detail possible, but limited study has been done to explore the potential
benefit for the atmospheric chemistry modeling. Hence, in this study, the second-order Rosenbrock solver
of the chemistry module of CAM4-Chem is ported to the GPU to gauge potential speed-up. We find that on
the CPU, the fastest performance is achieved using the Intel compiler with a block interleaved memory
layout. Different combinations of compiler and memory layout lead to ~11.02× difference in the
computational time. In contrast, the GPU version performs the best when using a combination of fully
interleaved memory layout with block size equal to the warp size, CUDA streams for independent kernels,
and constant memory. Moreover, the most efficient data transfer between CPU and GPU is gained by
allocating the memory contiguously during the data initialization on the GPU. Compared to one CPU core,
the speed-up of using one GPU alone reaches a factor of ~11.7× for the computation alone and ~3.82×
when the data transfer between CPU and GPU is considered. Using one GPU alone is also generally
faster than the multithreaded implementation for 16 CPU cores in a compute node and the single-source
solution (OpenACC). The best performance is achieved by the implementation of the hybrid CPU/GPU
version, but rescheduling the workload among the CPU cores is required before the practical
CAM4-Chem simulation.

1. Introduction

Physics and chemistry are closely coupled in the framework of earth system modeling. Most radiatively
active compounds (e.g., CH4, O3, and aerosols) in Earth’s current atmosphere are also chemically active.
The atmospheric chemistry is an essential component of climate (Tian & Chipperfield, 2006; Collins et al.,
2017), which includes the homogeneous (e.g., gas-phase species) and heterogeneous (e.g., gas and aero-
sol) reactions, aerosol and acid (nitrogen + sulfur) deposition, and cloud-aerosol interactions in the atmo-
sphere. A robust representation of atmospheric chemistry including the chemical reaction with other
species (e.g., gaseous species, aerosols, and water) and photolysis (interaction with solar radiation) is thus
crucial to determine the burden and lifetime of chemically active compounds (Dameris & Jöckel, 2013;
Lamarque et al., 2013; Su et al., 2011; Tilmes et al., 2016).

Due to the complex chemical mechanism and strong variability of temporal and spatial patterns, atmo-
spheric chemistry is usually characterized by the significant nonlinearity (Kleinman et al., 2001) and a
wide range of temporal and spatial scales (Isaksen et al., 2009), which makes it challenging to model.
High-resolution global models capture some of the same scales as mesoscale weather and regional air
quality models so an argument can be made that global models should exercise more comprehensive
chemistry. This prompts us to review and improve all the computational methods of global chemical
simulation. Currently, a first-order implicit solver is widely used in the global chemistry-climate models
(Austin et al., 2003; Emmons et al., 2010; Horowitz et al., 2003; Schraner et al., 2008). The first-order
implicit solver is unconditional stable (Kinnison et al., 2007), but may suffer from low computational
efficiency and low accuracy. Sun et al. (2017) implemented a second-order Rosenbrock (ROS-2) solver
in the global chemistry-climate model (CAM4-Chem), replacing the original first-order implicit solver.

SUN ET AL. 1952

Journal of Advances in Modeling Earth Systems

RESEARCH ARTICLE
10.1029/2018MS001276

Key Points:
• A combination of fully interleaved

memory layout, CUDA streams, and
constant memory yields the best
performance on the GPU

• The Intel compiler with
block-interleaved memory layout
provides the best performance on
the CPU

• The GPU version achieves a factor of
~11.7× speed-up for computation
alone and ~3.82× speed-up when the
data transfer is considered

Correspondence to:
J. S. Fu,
jsfu@utk.edu

Citation:
Sun, J., Fu, J. S., Drake, J. B., Zhu, Q.,
Haidar, A., Gates, M., et al. (2018).
Computational benefit of GPU
optimization for the atmospheric
chemistry modeling. Journal of
Advances in Modeling Earth Systems, 10,
1952–1969. https://doi.org/10.1002/
2018MS001276

Received 8 JAN 2018
Accepted 10 JUL 2018
Accepted article online 26 JUL 2018
Published online 13 AUG 2018

©2018. The Authors.
This is an open access article under the
terms of the Creative Commons
Attribution-NonCommercial-NoDerivs
License, which permits use and distri-
bution in any medium, provided the
original work is properly cited, the use is
non-commercial and no modifications
or adaptations are made.

http://orcid.org/0000-0002-6987-8052
http://orcid.org/0000-0001-5464-9225
http://orcid.org/0000-0001-9763-3653
http://orcid.org/0000-0003-2866-5322
http://orcid.org/0000-0003-2996-1641
http://orcid.org/0000-0003-3247-1782
http://publications.agu.org/journals/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1942-2466
http://dx.doi.org/10.1029/2018MS001276
http://dx.doi.org/10.1029/2018MS001276
mailto:jsfu@utk.edu
https://doi.org/10.1002/2018MS001276
https://doi.org/10.1002/2018MS001276

The results showed that utilizing the same optimized subroutine structure, the ROS-2 solver achieved
~2× speed-up on the CPU over the original first-order implicit solver. This speed-up results from avoid-
ing a re-evaluation of the Jacobian matrix and LU factorization during the two-stage computation. For
the overall performance, the chemistry takes ~24% of the total computational time for the atmospheric
component (CAM) and the chemical solver itself dominates ~52% of the computational time for the
chemistry. Thus ~2× speed-up from the chemical solver is likely to save ~6% of the total computa-
tional time for CAM.

In addition to improving the numerical method of the solver, new computer architectures demand a
review of the optimization strategy. The heterogeneous architecture of supercomputers has developed
rapidly now including multinode parallelism and graphics processing units (GPUs). Optimizing for the
GPU, considerable speed-up was achieved for both regional (Linford et al., 2009; Michalakes &
Vachharajani, 2008) and global models (Korwar et al., 2013; Xu et al., 2015). Networks of chemical reac-
tions required to model atmospheric chemistry and other applications were accelerated 2 or more orders
of magnitude on GPUs using a new algebraically stabilized fast explicit approach for kinetic integration
(Haidar et al., 2016). Implicit integration methods, while more stable and accurate, result in solving sys-
tems of equations. For these implicit solvers, the GPU is highly efficient in solving large and dense matrix
systems (Abdelfattah et al., 2018), but the atmospheric chemistry problem is characterized by small (size
less than 100 × 100) and sparse (10% nonzero elements) matrix systems. However, it was still possible to
utilize the GPU efficiently when a large number of small matrices were solved simultaneously and inde-
pendently (Abdelfattah et al., 2017; Dong et al., 2014; Haidar et al., 2018). Alvanos and Christoudias
(2017) recently used the GPU accelerators to speed up the chemistry module of the global chemistry-
climate model ECHAM/MESSy Atmospheric Chemistry (EMAC) by a factor of 1.75×. However, the CUDA
codes in their study were parsed from the Fortran codes generated by the Kinetic PreProcessor (KPP).
It was incompatible with the global chemistry-climate models such as CAM4-Chem that did not use
KPP. In addition, little information was provided to explore the optimal configurations of the CUDA ker-
nels. Hence, in this work, we will port the ROS-2 chemical solver of CAM4-Chem (Sun et al., 2017) to the
GPU to solve the chemistry as a box model and examine a series of optimization strategies. The goal is
to investigate whether the chemistry box model can benefit from the GPU and its associated most opti-
mized configuration. We use CUDA as it is the native, vendor-supported language for the NVIDIA GPUs
on Titan, which provides the best possible performance. OpenACC may provide some measure of port-
ability to other GPU platforms, and similar techniques should be applicable to those technologies.
Nevertheless, at best it could match CUDA’s performance, not exceed it. In addition, OpenACC is not
compatible with all the compilers so its application will be restricted for the machines with Intel compiler
only. The CUDA codes are translated from the original Fortran codes in CAM4-Chem by the Perl scripts,
with minor modifications for the header files and interface. These scripts can be further integrated into
the chemistry preprocessor so that it will be more feasible for the community. The investigation in this
study will inform the software engineering choices that developers need to make to effectively
optimize global chemistry-climate models for high-resolution and comprehensive atmospheric
chemical mechanisms.

2. Methodology
2.1. Data Structure

In CAM4-Chem, the default finite volume dynamic core uses a latitude × longitude × vertical-level grid over
the global sphere (Lin, 2004; Mirin & Worley, 2011). In order to achieve parallelization, domain decomposition
is involved, which divides the global domain into different subdomains. Each subdomain contains k chunks.
There are m columns inside each chunk and each column consists of n vertical layers. The parameters k, m,
and n are determined by the grid resolution and for the 1° × 1° horizontal resolution, k = 26, m = 16, and
n = 26 by default. Each subdomain is assigned as an MPI task, and OpenMP directives are used for thread-
level parallelism when looping over chunks in each subdomain (Worley & Drake, 2005). Therefore, each
OpenMP thread handles exactly the chemistry computation inside one chunk. For the chemistry at each grid
point inside a chunk, a system of ordinary differential equation (ODE) is solved at each time step, which takes
the following form:

10.1029/2018MS001276Journal of Advances in Modeling Earth Systems

SUN ET AL. 1953

Dy
Dt

¼ P yð Þ � L yð Þ þ I yð Þ (1)

where y is the vector of volumemixing ratios for the chemical species at
a given grid cell; the right-hand side source terms include the produc-
tion P (y) and loss L (y) due to chemical reactions and the external forcing
(i.e., lightning and aircraft emissions). To solve the ODE system above,
the second-order Rosenbrock method is applied (Verwer et al., 1999):

I� hγAð Þk1 ¼ F ynð Þ (2)

I� hγAð Þk2 ¼ F yn þ hk1ð Þ � 2k1 (3)

ynþ1 ¼ yn þ 3
2
hk1 þ 1

2
hk2 (4)

where I is an N x N identity matrix; h is the time step size; γ is a constant
parameter;A ¼ ∂F yð Þ

∂y

�
�
�
y¼yn

is the Jacobianmatrix at time t=tn; yn and yn + 1

are the species mixing ratios at time t = tn and tn + 1, respectively; and
vectors k1 and k2 are the intermediate solutions at each stage. In the
real implementation, the dimension of the species concentration array

is declared as (ncol, pver, gas_pcnst), where ncol is the number of columns allocated to a given chunk, pver is
the number of vertical layers allocated to a given column, and gas_pcnst is the total number of species. The
second-order Rosenbrock method solves an ODE system following equations (2)–(4) for a given column and
vertical layer. Therefore, the loop structure to solve the ODE above would look like the one shown in Figure 1.
Since the chemistry in CAM4-Chem is treated independently among different columns and vertical layers, it
behaves exactly like a box model for a given column and vertical layer. Therefore, the chemistry is character-
ized with potentially massive parallelism, whichmakes it suitable for the computation on the GPU. To simplify
the codes, the chemistry box model in the rest of this study will collapse the two loops inside one chunk as
one loop, with chunk size equal to the number of loop iterations. The number of loop iterations is calculated
by the equation below:

Number of loop iterations ¼ ncol�pver (5)

The number of loop iterations is tunable and examined for a wide range in this study. The main motivation is
to mimic the real scenarios with different horizontal resolutions, which leads to different number of columns
in each chunk. This will change the corresponding number of loop iterations for the chemistry update. A lar-
ger number of loop iterations corresponds to more columns inside a chunk. This typically represents a sce-
nario with fine horizontal resolution in CAM4-Chem, which may target at the purpose of numerical
weather prediction. On the other hand, the smaller number of loop iterations corresponds to fewer columns
inside a chunk. This typically represents a scenario with coarse horizontal resolution in CAM4-Chem, which
may target at the purpose of long-term climate simulation. Note that the number of loop iterations in a chunk
is ncol × pver for each CPU core on a Titan node. Thus, we are comparing one CPU core with one GPU
throughout the rest of this study to make the number of loop iterations identical.

2.2. Architecture

The Titan supercomputer at Oak Ridge National Laboratory is used for the computational performance and
analysis. Each Titan compute node contains one AMD Opteron™ 6274 (Interlagos) CPU (16 cores) and one
NVIDIA Tesla™ K20X (Kepler) GPU connected through a PCI express 2.0 interface. The AMD Opteron™ 6274
CPU supports the 4-wide Fused Multiply-Add (FMA) vector instructions. On the CPU, three major compilers
(GNU: gcc/4.9.3, Intel: intel/17.0.0.098, and PGI: pgi/17.9.0) are all supported by Titan. GPU computation is
organized into thread blocks, where each thread block has one or more warps of 32 threads each, and all

Figure 1. The flowchart of chemistry update. The diamond refers to the number
of loop iterations and the rectangular shape refers to the individual functions
involved in the chemistry update.

10.1029/2018MS001276Journal of Advances in Modeling Earth Systems

SUN ET AL. 1954

the instructions (e.g., addition) are issued at the warp level. This execution model is called single-instruction
multiple thread (SIMT). A function launched on the GPU is called a kernel. Each Kepler K20X GPU contains 14
streaming multiprocessors (SMX) that can run up to 2,048 threads, 16 thread blocks, or 64 warps. Note that
there are several other important limits imposed on the Kepler K20X GPU such as a maximum of 255
registers per thread or 65,536 per SMX, 48-KB shared memory per SMX, and 64-KB constant memory per
GPU. Violating any of these limits will lead to kernel launch failure.

2.3. Memory Layout

The memory layout is known to play a critical role in achieving good computational performance (Dongarra
et al., 2016). The strided and interleaved memory layouts are generally competitive for problems of very small
sizes that are available in the fast GPU-accelerated implementation of the standard basic linear algebra subrou-
tines (cuBLAS) and other research (Abdelfattah et al., 2016; Dong et al., 2014; Gates et al., 2017; Haidar et al.,
2018). Therefore, their effects on our problems will be investigated. In Fortran, arrays are stored column-wise,
so the strided memory layout (SML) stores the matrices consecutively as shown in Figure 2a. All the elements
in a matrix will be stored together before moving to the next matrix. Instead, the fully interleaved memory lay-
out (FIML) stores the i-th entries of all matrices consecutively (Figure 2b). By storing eachmatrix contiguously, it
is clear that the SML can access two elements in the same matrix quickly. In contrast, the elements in the same
matrix are not stored consecutively in the FIML. For example, if the number of matrices is N, moving from the
first element to the second element in the same matrix requires a jump of N memory locations, which could
hinder opportunities to reuse cached data, and thus reduce the overall performance when N is large. Despite
this drawback, the FIML is expected to benefit from vectorization—an implicit single instruction multiple data
(SIMD) parallelization for a single core processor, where the code is transformed into SIMD vector operations
(e.g., addition) that can be executed in parallel as single instructions. On a modern multicore computational
architecture, achieving a high-level vectorization is important for obtaining excellent performance. The SML
may not utilize vectorization as effortlessly as the FIML. For instance, consider the following four calculations:

a1 ¼ r1�b1 þ c1 (6)

a2 ¼ r2�b2 þ c2 (7)

a3 ¼ r3�b3 þ c3 (8)

a4 ¼ r4�b4 þ c4 (9)

where a, b, and c are the volumemixing ratios of three species and r is the reaction rate for different chemical
systems. For the SML, it can only use one Advanced Vector Extensions (AVX) register and thus will take four

Figure 2. The storage of matrices in Fortran using the (a) strided, (b) fully interleaved, and (c) block interleaved memory
layout.

10.1029/2018MS001276Journal of Advances in Modeling Earth Systems

SUN ET AL. 1955

clock cycles to complete the four addition instructions. However, for
the FIML, it only takes one clock cycle since it can use four AVX registers
due to its data storage structure. There is an intermediate approach
between these two memory layouts, called the block interleaved mem-
ory layout (BIML). In the BIML, instead of interleaving all N matrices, the
first K matrices are interleaved, then the next K matrices, and so on
(Figure 2c). The main benefit of the “block interleaved” approach is that
whenmoving from the first element to the second element in the same
matrix, it requires a jump of only Kmemory locations instead of Nmem-
ory locations for the FIML. Meanwhile, the BIML can readily utilize vector
instructions, unlike the SML. In this study, we will explore the perfor-
mance of these three memory layouts and see which one fits the best
for the atmospheric chemistry modeling. Note that the SML and FIML
can be treated as a special case of BIML. Take the array of volumemixing
ratios in CAM4-Chem for example. Denoting N as the number of loop
iterations, the array is declared as Array (gas_pcnst, N) for the SML,
Array (N, gas_pcnst) for the FIML, and Array (K, gas_pcnst, N/K) for the
BIML. Converting the data array between two memory layouts is done
efficiently by changing the parameter K in the main driver of chemistry
box model, and this is not included in the measurement of wall-clock

time. For the BIML, K is a tuning parameter and the optimal choice is shown as 4 for both GNU and Intel com-
piler but 8 for PGI compiler (Figure 3). This is reasonable as there is no benefit beyond matching the native
vector length of the processor (e.g., 4 for AVX, 32 (warp size) for NVIDIA GPUs), while a longer vector will
decrease cache performance, particularly for L1 cache due to its small size. Therefore, these optimal block
sizes will be used for the corresponding compilers throughout the following analysis.

3. Results and Discussion
3.1. Basic Analysis

Before proceeding to investigate the computational performance, it is necessary to understand the compu-
tational rate and memory bandwidth requirements of the chemistry box model. The main functions of the
chemistry box model include formation of the Jacobian matrix, LU factorization and solve, and formation
of the right-hand side source term. The analysis of floating point operations (FLOP) for one loop iteration indi-
cates that formation of the Jacobian matrix and LU (both factorization and solve) should consume roughly
70% of the total computational time (Table 1). Note that the calculations of FLOP for LU solve and formation
of the right-hand side source term have been multiplied by a factor of 2 due to the two-stage computation in
the ROS-2 method (the same for the calculation of data copy later). On the other hand, formation of the
Jacobian matrix requires a significantly higher amount of data copy (both copy in and copy out) than other
functions. This is due to the fact that formation of the Jacobian matrix consists of two subfunctions, which
calculate the linear and nonlinear components of the Jacobian matrix separately. However, in the real archi-
tecture, caching will significantly reduce the cost of accessing data from main memory. In order to take the
cache effect into account, the Performance Application Programming Interface (PAPI v5.5) is used tomeasure
the L2 cache misses. The data transfer per second (unit: GB/s) for the whole program and each function of the
chemistry box model is then estimated by

Date transfer per second ¼ L2 cache miss�size of cache line
time

(10)

where the size of cache line is 64 bytes for the processor on Titan.
Besides the L2 cache misses, the computational rate (unit: GFLOP per
second (GFLOPS = 1E + 9 FLOPS)) is also measured by PAPI for 128,
1,024, and 10,240 loop iterations. The results generally vary among dif-
ferent number of loop iterations, compilers, and memory layouts
(Figure 4) for the data transfer and computational rate (Figure 5).

Figure 3. Impact of block size (x axis) on the total wall-clock time (y axis, log
scale, unit: s) for the block interleaved memory layout (number of loop itera-
tions = 1,024). Different colors refer to different compilers (red: Intel, blue: GNU,
green: PGI).

Table 1
The Floating Point Operations (FLOP) and Data Copy (Unit: KB) Per Loop Iteration
for the Main Functions of the Chemistry Box Model

Function FLOP Copy in Copy out

Formation of the Jacobian matrix 3,070 25.64 13.18
LU factorization 4,075 6.59 6.59
LU solve 3,116 14.7 1.52
Formation of the right-hand side source term 4,086 6.69 3.04

10.1029/2018MS001276Journal of Advances in Modeling Earth Systems

SUN ET AL. 1956

Considering the AMD Opteron™ 6274 processor on Titan, the theoretical peak computational rate of one CPU
core is estimated by

Peak computational rate ¼ 2:2 GHzð Þ�8 double precision FLOP per cycle for FMA4ð Þ ¼ 17:6 GFLOPS (11)

The practical peak memory bandwidth is measured by the STREAM benchmark program provided by the
University of Virginia (https://www.cs.virginia.edu/stream/), and the results show that when running with

Figure 4. Data transfer per second (unit: GB/s) for (a–c) GNU, (d–f) Intel, and (g–i) PGI compiler using different memory layouts (left panel: strided memory layout,
middle panel: fully interleaved memory layout, right panel: block interleaved memory layout). Different colors refer to the different functions in the chemistry box
model (all: the whole chemistry box model, Init: data initialization, Jacob: formation of the Jacobian matrix, LF: LU factorization, LS: LU solve, others: update of
intermediate and final solutions, RHS: formation of the right-hand side source term).

10.1029/2018MS001276Journal of Advances in Modeling Earth Systems

SUN ET AL. 1957

https://www.cs.virginia.edu/stream/

one thread, the memory bandwidth on Titan varies from 6.86 to 12.68 GB/s for different operations, such as
copy and scale, and compilers. Compared with these hardware limitations, the whole chemistry box model
reaches only up to 8% of the theoretical peak computational rate (PGI compiler with BIML) and 27.58% of
the practical peak memory bandwidth (GNU compiler with FIML). However, these percentages increase to
12.21% (LU solve, GNU compiler with BIML) and 50.76% (Init, GNU compiler with BIML) for the individual
functions. It is worth noting that in modern computer processors, there is also a technique named “cache
prefetching” that fetches data into cache before it is needed. This will further increase the data transfer as
measured by L2 cache misses for the functions above. Therefore, the analysis here reveals that the
chemistry box model performance is not limited by the computational rate but by the memory
bandwidth. Since the GPU has both more floating point cores and higher memory bandwidth than the
CPU (Alvanos & Christoudias, 2017; Mantell et al., 2016), we believe that it is still promising to gain some
computational benefits from the GPU. Note that L2 cache misses are used as an indication of cache
performance and memory bandwidth. Although the limitation for the chemistry box model is the
bandwidth to the main memory and L3 cache, no counters for measuring the L3 cache hits and misses are

Figure 5. The same as Figure 4 but for the computational rate (unit: GFLOPS).

10.1029/2018MS001276Journal of Advances in Modeling Earth Systems

SUN ET AL. 1958

available on Titan. Besides, the data transfer between L1 and L2 cache is much faster than the data transfer
between L2 and L3 cache. Therefore, it is more appropriate to use the PAPI events for L2 cache instead of L1
cache as an indication of cache performance and memory bandwidth.

3.2. CPU

For the chemistry box model on the CPU, the two most dominant factors that may affect the computational
performance are the compilers and memory layouts. On Titan, three major compilers are examined in
this study with the flags that enable AVX vectorization (“-O3 -fopenmp -mavx” for GNU, “-O3 -qopenmp
-mavx” for Intel, and “-O3 -openmp -Mvect=simd:256” for PGI). In addition, memory alignment flags
(“-Mcache_align -fastsse” for PGI) or directives (“__assume_aligned” for Intel and “__builtin_assume_aligned”
for GNU) are used to further assist vectorization. The results show that the fastest computational time for a
given number of loop iterations is achieved by the BIML for all the three compilers (Figure 6). Using SML
and FIML require ~1.42× and ~2.89× the computational time of BIML for the GNU compiler (Figure 6a),
~1.75× and ~6.95× for the Intel compiler (Figure 6b), and ~1.54× and ~7.68× for the PGI compiler
(Figure 6c), respectively. In addition, the Intel compiler with BIML slightly outperforms among all the config-
urations for different number of loop iterations. The assembly files (*.s) for the individual functions are further
investigated for the three compilers and memory layouts. Many “packed double” vector instructions are gen-
erated for all the three compilers with FIML and BIML, while the instructions are mainly nonvectorized “scalar
double” for all the three compilers with SML. This highlights the benefit of using FIML and BIML to assist effi-
cient vectorization. However, using FIML generally yields poor computational performance here, which may
be related to its higher data transfer per second shown in Figure 4. On the other hand, using SML still
achieves fast computational performance, which is due to the fact that all the data are already loaded into
cache during data initialization (Figure 4). Therefore, the data transfer between cache and main memory is
significantly reduced for the remaining functions. Using BIML is able to vectorize the loops efficiently and
reduce the data copy at the same time, thus leading to the fastest computational performance for all the
three compilers.

The total wall-clock time of each function in the chemistry box model shows that for GNU compiler, LU fac-
torization consumes the highest amount of time for both SML and BIML (Figures 7a and 7c) while formation
of the Jacobian matrix and LU solve become the most computationally expensive parts for FIML, depending
on the number of loop iterations (Figure 7b). For the Intel compiler (Figures 7d–7f), formation of the Jacobian
matrix costs the highest amount of time for all three memory layouts, except the FIML with larger number of
loop iterations, where LU factorization dominates the consumption of time. For the PGI compiler (Figures 7g–7i),
formation of the Jacobian matrix and LU factorization take similar computational time for SML. However,
formation of the Jacobian matrix is more computationally expensive than other functions when using BIML,
and LU factorization consumes more computational time for FIML with larger number of loop iterations. It is clear
that formation of the Jacobian matrix and LU (both factorization and solve) cost more than 70% of the total
wall-clock time in most configurations, which is consistent with the previous analysis in section 3.1. It also proves
that the compilers, together with the choice of memory layout, can affect the computational performance
significantly. For a given compiler, the largest difference between different memory layouts can be as high as a
factor of 11.02 (i.e., PGI: FIML versus BIML). For a fixed memory layout, the largest difference between different
compilers can also be around a factor of 3.01 (i.e., FIML: GNU versus PGI).

Figure 6. The total wall-clock time (y axis, log scale, unit: s) of the chemistry box model with different number of loop iterations (x axis, log scale) for (a) GNU, (b) Intel,
and (c) PGI compiler. Different colors refer to different memory layouts (blue: strided, red: fully interleaved, black: block interleaved).

10.1029/2018MS001276Journal of Advances in Modeling Earth Systems

SUN ET AL. 1959

3.3. GPU
3.3.1. Strided Versus Interleaved Versus Block Interleaved Memory Layout
The CUDA platform used in this study is cudatoolkit/7.5 on Titan. The NVIDIA visual profiler (NVVP) results of
the GPU version of chemistry box model for SML, FIML, and BIML show that the LU factorization kernel has
already hit the limit of 255 registers per thread. Therefore, a maximum 256 threads (correspondingly 12.5%
occupancy) can be launched simultaneously in each SMX for this kernel in order to not exceed the threshold
of 65,536 registers per SMX. Since there are 14 SMXs per GPU on Titan and instructions are executed at the
warp (size = 32) level, the number of loop iterations is therefore chosen as a multiple of 14 × 32 = 448. Similar
to section 3.1, we first examine the impact of different block sizes for the BIML on the GPU, ranging from 4 to
256. It turns out that using a thread count smaller than 32 leads to a clear increase of computational time,
especially for large number of loop iterations (Figure 8). This is reasonable as all the computation on the
GPU is executed at the warp level, which equals to 32 threads per block. Using fewer than 32 threads per
block will fail to fully use the resources and thus perform worse. On the other hand, using 32, 64, 128, and
256 threads will launch 8, 4, 2, and 1 thread blocks per SMX, respectively. In this study, they behave very close
to each other and using 32 threads per block may outperform slightly. Therefore, 32 is used as the optimal
block size for the rest of this study. For SML, the computational time is 2.27× to 4.13× the data transfer time
between CPU and GPU (Figures 9a and 9b). Except for the data deallocation (Figure 9c), the time of both com-
putation and data transfer grows linearly with the number of loop iterations. In contrast, for both FIML and

Figure 7. The total wall-clock time (y axis, log scale, unit: s) of each function (black: formation of the Jacobian matrix, pink: LU factorization, green: LU solve, pink:
formation of the right-hand side source term, red: update of intermediate and final solutions, blue: cudaFree) in the GPU version of chemistry box model with
different number of loop iterations (x axis) for different compilers ((a–c): GNU, (d–f): Intel, and (g–i): PGI) and memory layouts (left panel: strided, middle panel: fully
interleaved, right panel: block interleaved).

10.1029/2018MS001276Journal of Advances in Modeling Earth Systems

SUN ET AL. 1960

BIML, the computational time is less than the data transfer time except
when doing 448 loop iterations. For the summed time (Figure 9d),
using SML requires 1.65× to 2.80× total wall-clock time as that of using
BIML and 1.89× to 3.18× total wall-clock time as that of using FIML. This
difference is mainly caused by the shorter computational time using
BIML and FIML. On the GPU, each thread works on exactly one matrix
and the memory bandwidth is much higher than that on the CPU.
GPU cores usually access the global memory directly instead of through
the memory hierarchy on the CPU. Hence, FIML and BIML seem to ben-
efit more from the SIMT model than SML. In particular, FIML achieves
the fastest computation, which is different from what is observed on
the CPU (see section 3.2). The total wall-clock time of each function
shown in Figure 10 further confirms that using SML will spend a signif-
icant amount of time on formation of the Jacobian matrix, formation of
the right-hand side source term, and update of intermediate and final
solutions, which can be done very efficiently using FIML. Even for the
LU functions (factorization and solve), the actual wall-clock time using
FIML is also smaller than the one using SML. According to Figures 10a,
10b, and 10d, the better computational performance of FIML over
BIML is mainly attributed to the fast computation of formation of the
Jacobian matrix, LU factorization, and formation of the right-hand side

Figure 9. The total wall-clock time (y axis, log scale, unit: s) of the GPU version of chemistry box model with different
number of loop iterations (x axis) for the (a) computation alone, (b) data transfer between CPU and GPU, (c) data deallo-
cation on the GPU, and (d) summed time from the three above (red: strided memory layout, blue: fully interleaved memory
layout, black: block interleaved memory layout).

Figure 8. The total wall-clock time (y axis, log scale, unit: s) of the GPU version of
chemistry box model with different number of threads per block (x axis),
using the block interleavedmemory layout (blue: 7,168 loop iterations; red: 1,792
loop iterations).

10.1029/2018MS001276Journal of Advances in Modeling Earth Systems

SUN ET AL. 1961

source term using FIML. This suggests that FIML is the best choice of memory layout on the GPU for the chem-
istry box model and thus will be used for the following examinations in this study.
3.3.2. Multiple Kernels Versus One Kernel
In section 3.3.1, the GPU version of chemistry box model is implemented by launching each function as
an individual kernel. The NVVP results show that there is a clear overhead time between two separate
kernels. In order to avoid the overhead time, it is possible to assemble all the functions into one kernel
that is launched just once. It seems when the number of loop iterations is smaller than 3,584, using one
kernel costs about 96 to 98% of the total wall-clock time as that of using the multiple kernels (Figure 11).

However, when the number of loop iterations is larger than 3,584,
using one kernel takes ~1.1× total wall-clock time as that of using
the multiple kernels. Although the overhead time between two func-
tions is eliminated by implementing the one kernel version, this
does not necessarily always speed up the computation. One poten-
tial reason is that the compiler can optimize each kernel separately
in the multiple kernels version, while it may not be feasible for the
one kernel version. For example, in the one kernel version, the max-
imum number of threads per SMX is limited by the LU factorization,
which is 256 in this study (see section 3.3.1). However, in the
multiple-kernel version, the theoretical occupancies for functions like
formation of the Jacobian matrix and the right-hand side source
term can reach as high as 18.8 and 25%, respectively. Therefore,
more threads per SMX can be involved for these functions and the
computational time is thus reduced, especially for the large number
of loop iterations.
3.3.3. Shared and Constant Memory
As mentioned in section 2.2, there are 48-KB shared memory per SMX
and its memory latency is relatively low compared to the GPU’s global
DRAM memory. Porting some frequently visited arrays to shared

Figure 11. The computational time (y axis, log scale, unit: s) of the GPU version
of chemistry box model with different number of loop iterations (x axis) for the
multiple kernels (blue) and one kernel (red).

Figure 10. The total wall-clock time (y axis, log scale, unit: s) of each function ((a) formation of the Jacobian matrix, (b) LU factorization, (c) LU solve, (d) formation of
the right-hand side source term, (e) update of intermediate and final solutions, (f) cudaFree) in the GPU version of chemistry box model (red: strided memory layout,
blue: fully interleaved memory layout, black: block interleaved memory layout).

10.1029/2018MS001276Journal of Advances in Modeling Earth Systems

SUN ET AL. 1962

memory should increase the memory access speed and thus save some computational time. For the
chemistry box model, two arrays (solution vector and intermediate solution vectors) are good candidates
for the shared memory:

Size of solution vector ¼ 103 number of speciesð Þ�32 numer of threadsð Þ
�8 bytes for double precision numberð Þ ¼ 25:75 KB

(12)

Size of intermediate solution vectors ¼ 95 number of extracted speciesð Þ�32 number of threadsð Þ
�2 number of stagesð Þ�8 bytes for double precision numberð Þ
¼ 47:5 KB

(13)

We port these two vectors separately to the shared memory and compare their performances with the one
kernel version (note that only the one kernel version is able to effectively exploit the shared memory). The
NVVP results show that when using shared memory, the theoretical occupancy reaches just 1.6% (corre-
sponding to 1.6% × 2,048 (maximum number of threads per SMX) = 32 threads), and thus, only one thread
block can be launched per SMX. The results show that when the number of loop iterations is 448, each
SMX will launch only one thread block and using shared memory is faster in this case (Figure 12). In particular,
porting the intermediate solution vectors to shared memory can save up to 26% of the computational time
since it could almost fully use the shared memory. However, when the number of loop iterations increases to
898 or larger, the shared memory version is slower than the no shared memory version by ~4.4× (blue line in
Figure 12) and ~3.5× (red line in Figure 12) when the number of loop iterations equals to 3,584. This is caused
by the fact that for the no shared memory version, each SMX can have 256 threads working simultaneously
and the total number of working threads is 14 × 256 = 3,584. Therefore, the no shared memory version can
launch 8 thread blocks per SMX (256 (maximum number of threads per SMX)/32 (number of threads per
block) = 8), while the shared memory version can launch only one thread block per SMX as mentioned above.
This is also consistent with the observation that the computational time of shared memory version grows
linearly with the number of loop iterations, while the computational time of the no shared memory version
increases slightly within 3,584 loop iterations (mainly due to the overhead time) but dramatically between
3,584 and 5,376 loop iterations.

Besides the shared memory, there is also 64-KB constant memory that resides in the GPU’s global DRAM
memory and can be broadcast among all the SMXs. For the chemistry box model in this study, there are
two integer mapping arrays used to extract the 95 reaction-active species from the total 103 chemical

Figure 12. The computational time (y axis, log scale, unit: s) of the GPU version of chemistry box model with different
number of loop iterations (x axis) using the shared memory for the solution vector (blue), the shared memory for the
intermediate solution vectors (red), and no shared memory (black).

10.1029/2018MS001276Journal of Advances in Modeling Earth Systems

SUN ET AL. 1963

species and permute it to an appropriate order with fewer fill-in values
(Sun et al., 2017). In the previous implementation, one copy of these
arrays is generated for each thread, which is clearly not necessary since
all the values in the mapping arrays are constant. Therefore, some com-
putational time can be saved by storing the mapping arrays in the con-
stant memory where all the SMXs can access them simultaneously. The
results show that for the shared memory version which stores the inter-
mediate solution vectors, using constant memory for the mapping
arrays could save up to 6.7% of the computational time (blue and green
lines in Figure 13). For the no shared memory version, using the con-
stant memory can also save 3.6 to 5.2% of the computational time
(black and red lines in Figure 13). This small improvement is still
impressive and worth implementation considering the small size of
the mapping arrays (2 (number of arrays) × 95 (elements in each
array) × 4 (bytes of an integer for a 64-bit system) = 760 bytes).
3.3.4. Stream
A CUDA stream refers to a queue of work such as kernel launches and
memory copies. Operations in the same stream are ordered and cannot
be overlapped, while operations in different streams can be run in par-
allel if there are no data dependencies between streams. According to
the numerical steps in section 2.1, formation of the Jacobian matrix can

be done in parallel with the initialization of local data and formation of the right-hand side source term in the
first stage. Hence, some computational time can be saved by involving CUDA streams here. Note that the
streamed version works only with multiple kernels, so we also compare with the computational time of
the one kernel version with constant memory (the fastest version so far) to see whether we really benefit from
the streamed multiple-kernel version. The results indicate that using the streamed multiple kernels with con-
stant memory (red line in Figure 14) is likely to save about 4% (7,168 loop iterations) to 16% (448 loop itera-
tions) of the computational time, compared to the previous multiple-kernel version (blue line in Figure 14). It
is also faster than the one-kernel version with constant memory (black line in Figure 14) but may only save
1.8% (3,584 loop iterations) to 11.2% (5,376 loop iterations) of the computational time.
3.3.5. Memory Copy
In the previous sections, we mainly focus on the optimization of the computational time. As observed in
Figure 9, the data transfer between CPU and GPU can also consume a significant amount of time and its time
is even higher than the computational time when using FIML and BIML (Figures 9a and 9b). Therefore, opti-

mizing the data transfer between CPU and GPU is likely to save addi-
tional total wall-clock time. Three strategies are investigated here: (1)
calling “cudaMalloc” for each array separately; (2) allocating a large
space for all the arrays, like mixing ratios of chemical species and reac-
tion rates, so that they are contiguous in the memory locations; and
(3) using pinned memory by calling the function “cudaMallocHost”
before “cudaMemcpy.” The results show that when allocating all the
arrays contiguously in the memory locations (red line in Figure 15),
it saves about 40% of the time for the 448 loop iterations, compared
to the baseline (blue line in Figure 15) where each array is allocated
separately. When the number of loop iterations increases, the percent
of saved time decreases to as low as 10% for the 7,168 loop iterations.
When using the pinned memory, it costs ~1.1× data transfer time as
that of baseline for the 448 loop iterations but increases to ~2.1× for
the 7,168 loop iterations (black line in Figure 15). The NVVP results
indicate that for all the three cases, the copy rate can reach 5.75 GB/s
for the 448 loop iterations. When the number of loop iterations grows
to 7,168, the copy rate reduces to ~3 GB/s for the nonpinned memory
but increases slightly to 6 GB/s for the pinned memory. However, it
also suggests that for the pinned memory, it spends much more

Figure 13. The computational time (y axis, log scale, unit: s) of the GPU version
of chemistry box model with different number of loop iterations (x axis) using
the shared memory for the intermediate solution vectors (blue), shared memory
plus constant memory (green), no shared memory (black), and no shared
memory but constant memory (red).

Figure 14. The computational time (y axis, log scale, unit: s) of the GPU version of
chemistry box model with different number of loop iterations (x axis) for the
multiple kernels (blue), one kernel with constant memory (black), and streamed
multiple kernels with constant memory (red).

10.1029/2018MS001276Journal of Advances in Modeling Earth Systems

SUN ET AL. 1964

time on the “cudaMallocHost” and thus eliminates the benefit of the
fast copy rate for different number of loop iterations. On the other
hand, it is worth our efforts to allocate a contiguous memory space
for all the input arrays, especially for the small number of
loop iterations.

Based on the results above, it seems that themost efficient GPU version
of the chemistry box model is using the streamed multiple kernels with
constant memory and the contiguous memory allocation for all the
arrays. We further compare it with the fastest CPU version (Intel compi-
ler with BIML), and the results show that the CPU version (black line in
Figure 16) requires ~2.33× computational time as that of GPU version
(blue line in Figure 16) for the 448 loop iterations. This factor increases
rapidly with the number of loop iterations and reaches up to 11.7× for
the 7,168 loop iterations. When the time for the data transfer between
CPU and GPU (green line in Figure 16) and “cudaFree” (pink line in
Figure 16) is considered, the total wall-clock time of CPU version is still
~1.29× as that of GPU version for the 448 loop iterations and grows to
~3.82× for the 7,168 loop iterations. This clearly shows that the GPU
version is superior to the CPU version for the computation alone.

When the number of loop iterations is larger than 1,792 and the data transfer time is higher than the compu-
tational time alone, the GPU version is still faster than the CPU version and this speed-up is considerable as
long as the number of loop iterations is large enough.

3.4. Application
3.4.1. Study of the Effect of the Multithreading for CPU

In the previous context, the comparison was made between one GPU and one CPU core. In section 2.1
we have mentioned that the parallel design for a CPU implementation would be applied to loop over the
chunks inside one subdomain. This means that if we use OpenMP as a multithreading framework to
easily implement the parallelization as described above, each OpenMP thread will have to solve indepen-
dent loop iterations of chemistry. Therefore, in this section, we will report on the comparison of the com-
putational performance between 16 CPU cores in a node and one GPU for the Titan architecture. In
Figure 17, we illustrate the performance obtained by one CPU core (solid black line) and the parallel mul-

tithreaded implementation using OpenMP (solid blue line). The com-
parison of total wall-clock time for various numbers of loop
iterations shows that running 16 CPU cores in parallel is very attrac-
tive and it could achieve a factor of ~4.17× speed-up when the
number of loop iterations is larger than 28,672. We could not simply
gain a factor of 16× speed-up here mainly due to the fact that the
chemistry box model is found to be memory bound (e.g., limited
by the bandwidth to the main memory instead of the computational
intensity) as described and analyzed in section 3.1. Using 16 CPU
cores could increase the computational capacity but would not
resolve the issue of being bandwidth bound. The GPU performance
result is depicted by the solid green line in Figure 17. Compared to
using 16 CPU cores, using one GPU achieves up to 1.33× speed-up
when the number of loop iterations is smaller than 14,336 but both
implementation become very competitive with each other when the
number of loop iterations further grows. This is mainly due to the
data transfer between CPU and GPU. When the number of loop
iterations is large, the profiling of the GPU execution shows that
70% of the time is spent on the data transfer between CPU and
GPU. Thus, even if the GPU provide 4× ratio of memory bandwidth
and is about 4× faster, only ~30% speed-up is observed.

Figure 15. The data transfer time (y axis, log scale, unit: s) of the GPU version of
chemistry box model with different number of loop iterations (x axis) using
the separate memory allocation (blue), the contiguous memory allocation (red),
and the pinned memory (black).

Figure 16. The total wall-clock time (y axis, log scale, unit: s) of the chemistry box
model with different number of loop iterations (x axis). Different colors refer to
different metrics of time (black: total wall-clock time of CPU version, red: total
wall-clock time of GPU version, blue: time of computation alone, green: time of
data transfer between CPU and GPU, pink: time of data deallocation on the GPU).

10.1029/2018MS001276Journal of Advances in Modeling Earth Systems

SUN ET AL. 1965

3.4.2. Analysis of the Portability Design by Using OpenACC
In this section we investigate the code portability (e.g., single source
(CPU/GPU) solution). For that we decide to take advantage of the
OpenACC framework to add “!$acc” directives to make the CPU
Fortran codes portable to GPU and can run on GPU. We evaluate
the computational performance of OpenACC with PGI compiler in
this study. In order to minimize the data transfer, we specify two
types of data in the OpenACC data region: the data that only need
to be copied from the host (CPU) and the one that only need to
be allocated on the device (GPU). We also specify the number of
thread blocks and the number of threads per thread block to help
the compiler better parallelize the codes. The result depicted in
Figure 17 shows that OpenACC (solid pink line) requires ~16× total
wall-clock time compared to the CUDA version for 448 loop itera-
tions. Nevertheless, the difference reduces gradually with the
increase of the number of loop iterations and OpenACC variant is
able to achieve very similar computational performance as the
CUDA variant when the number of loop iterations is 57,344 or larger.
For all the cases, OpenACC could not beat CUDA with respect to the
computational performance, which is consistent with the previous lit-

erature (Hoshino et al., 2013; Li et al., 2016; Memeti et al., 2017). On the other hand, using OpenACC
indeed saves significant amount of time to modify the pure CPU codes and it is easier to switch the codes
between CPU and GPU version with the compiler flags.
3.4.3. Development of a Hybrid CPU/GPU Implementation
Last, we investigate a hybrid CPU/GPU version (OpenMP + CUDA) for the chemistry box model. In the hybrid
implementation, one OpenMP thread is assigned to launch the CUDA kernels while the remaining 15
OpenMP threads are still active and will contribute to the computation. The total number of loop iterations
is split accordingly between CPUs and GPU based on the power of each hardware. Different numbers of loop
iterations are assigned for CPU and GPU computation in order to balance the workload. Our experiments
show that for the loop iterations smaller than 3,584, the hybrid CPU/GPU version (red line in Figure 17)
requires up to 1.34× total wall-clock time compared to using one GPU alone. This is due to the fact that
the data layout differs for the CPUs and the GPU computation (i.e., CPUs work the best with BIML but GPU
works the best with FIML). Therefore, when both are working together, a data translation is required and it
slows down the hybrid CPU/GPU version when the number of loop iterations is small. However, when the
number of loop iterations further increases, the hybrid CPU/GPU version begins to outperform over either
the multithreaded CPU variant or the GPU only variant. It could reach ~1.75× speed-up when the number
of loop iterations is 57,344. This is equivalent to ~1.95× speed-up compared to using either 16 CPU cores
alone or one GPU alone. Note that the CPU version of chemistry box model in this study has already been
optimized for thememory layout and compilers. Therefore, the speed-up of the hybrid CPU/GPU version over
the default CPU version of chemistry box model from CAM4-Chem (the strided version shown in Figure 6) is
even higher.
3.4.4. Practical Scenario
Referring to the practical CAM4-Chem simulation with 1° × 1° horizontal resolution, there are 416 loop itera-
tions (16 columns × 26 levels) inside one chunk. Since each CPU core in a compute node is assigned indepen-
dent chunks, there are totally 6,656 (416 loop iterations per CPU core × 16 CPU cores) loop iterations involved
in the chemistry update when the 16 CPU cores are running simultaneously. For this particular scenario, using
either one GPU alone or the hybrid CPU/GPU implementation will provide better computational performance
than other CPU only approaches. If the horizontal resolution is refined to 0.5° × 0.5°, the vertical layer is
refined to 72 layers, and the computational resource remains the same, the loop iterations per chunk will
increase rapidly to 73,728, and using hybrid CPU/GPU version is clearly the best choice. This makes the
GPU only or the hybrid CPU/GPU implementation of the chemistry module very promising in the global simu-
lation, especially for the fine grid resolution. In addition, although we use Titan as a test bed, this optimized
configuration can be implemented on other supercomputing platforms as well. However, overlapping the
computation in the CAM4-Chem requires more work since rescheduling for workload balance leads to

Figure 17. The total wall-clock time (y axis, log scale, unit: s) of the chemistry box
model with different number of loop iterations (x axis). Different colors refer to
different approaches (black: one CPU core, blue: 16 CPU cores, green: one GPU
alone, pink: OpenACC, red: hybrid CPU/GPU).

10.1029/2018MS001276Journal of Advances in Modeling Earth Systems

SUN ET AL. 1966

modification of the main data structure of CAM4-Chem. This is beyond the scope of this study, but we would
like to work on that in the future.

4. Conclusion

The growing complexity of the global chemistry-climate model increases the computational burden, challen-
ging progress in model development for high-resolution simulations. The strong computational power and
fast memory access of the GPU in modern supercomputer architectures provides an opportunity to acceler-
ate the computation. The global chemistry-climate model is a natural fit for massive data and instruction par-
allelism. However, programming for a GPU is difficult and error-prone and limited studies have been done to
explore its corresponding benefit to the components of global chemistry-climate model. Therefore, in this
study, we port the ROS-2 solver in the chemistry module of the global chemistry-climate model (CAM4-
Chem) to the GPU and seek potential speed-up compared with the CPU version. The basic analysis of the
chemistry box model reveals that it is not bounded by the computational rate, but by the data access from
the CPU to the main memory. Both parts can be further accelerated by the GPU.

For the CPU version, different compilers and memory layouts play an important role in the computational
time. All the three compilers yield the fastest computation by using block interleaved memory layout
(BIML), while the Intel compiler with BIML further outperforms over the other two compilers. Formation of
the Jacobian matrix and LU (both factorization and solve) are shown to be the most time-consuming parts
during the chemistry update (around 70%) for most configurations. In contrast, the GPU version benefits
more from the fully interleavedmemory layout (FIML). In addition, the computational time of the GPU version
increases slowly with the number of loop iterations, opposite to the quick increase of computational time for
the CPU version. Tuning the kernel’s block size, it is shown that similar performance can be achieved as long
as the block is a multiple of the warp size. But it will be slower if the block is smaller than the warp size since it
does not fully utilize all the threads in a warp. The multiple-kernel version provides better performance for
larger number of loop iterations, while the one-kernel version runs faster for smaller number of loop itera-
tions. The shared memory version yields better performance only for the 448 loop iterations but runs much
slower for the larger number of loop iterations, as it is constrained by the small size of shared memory.
Nevertheless, the GPU version can always improve slightly from the usage of constant memory. The best per-
formance of the GPU version is achieved using CUDA streams, which enable the simultaneous execution of
independent kernels. The data transfer between CPU and GPU, which is also a critical limitation for the overall
performance, is done most efficiently by a contiguous allocation when declaring the arrays on the GPU.

Using the most optimized configurations from those experiments, the GPU version shows up to 11.7× speed-
up of the computational time compared to the optimized CPU version for the memory layout and compiler
(Intel with BIML, using one CPU core). When the data transfer between CPU and GPU is considered, the
speed-up can still be as high as 3.82×. Even compared to using 16 CPU cores, using one GPU is again overall
faster, especially when the number of loop iterations is not too large (~1.33× speed-up). In addition, using
OpenACC requires fewer modifications of the original CPU codes and provides a single-source solution to dif-
ferent heterogeneous architectures. However, there is no computational benefit gained compared to the
optimized CUDA version in this study. The best performance is achieved by the implementation of the hybrid
CPU/GPU version, which is slightly slower when the number of loop iterations is small but clearly outperforms
over other approaches for large number of loop iterations (~6.75× speed-up against one CPU core, ~1.95×
speed-up against 16 CPU cores, and ~1.75× speed-up against one GPU alone). This is the most promising
strategy to be introduced into CAM4-Chem, but more efforts are required to reschedule the workload among
the CPU cores in a compute node.

References
Abdelfattah, A., Haidar, A., Tomov, S., & Dongarra, J. (2018). Analysis and design techniques towards high-performance and energy-efficient

dense linear solvers on GPU. EEE Transactions on Parallel & Distributed Systems, 1. https://doi.org/10.1109/TPDS.2018.2842785
Abdelfattah, A., Haidar, A., Tomov, S., & Dongarra, J. J. (2017). Factorization and inversion of a million matrices using GPUs: Challenges and

countermeasures. Procedia Computer Science, 108, 606–615. https://doi.org/10.1016/j.procs.2017.05.250
Abdelfattah, A., Haidar, A., Tomov, S., & Dongarra, J. (2016). Performance, design, and autotuning of batched GEMM for GPUs. In J. Kunkel,

P. Balaji, & J. Dongarra (Eds.), High Performance Computing, ISC High Performance 2016, Lecture Notes in Computer Science (Vol. 9697,
pp. 21–38). Cham: Springer. https://doi.org/10.1007/978-3-319-41321-1_2

10.1029/2018MS001276Journal of Advances in Modeling Earth Systems

SUN ET AL. 1967

Acknowledgments
The diagnostic simulations in this study
use the resources of the Oak Ridge
Leadership Computing Facility at the
Oak Ridge National Laboratory, which is
supported by the Office of Science of
the U.S. Department of Energy (contract
DE-AC05-00OR22725). The CESM
project is supported by the National
Science Foundation and the Office of
Science (BER) of the U.S. Department of
Energy. The GPU material is also based
on the work supported by the National
Science Foundation under grant OAC
1740250. The authors want to thank
Jean-Francois Lamarque for his support
from the previous university subproject
of the DOE SciDAC project “Chemistry in
CESM-SE: Evaluation, Performance, and
Optimization” (UCAR subaward Z12-
93537 to University of Tennessee,
Knoxville). The source code for the
model used in this study, the CAM4-
Chem, is freely available at http://www.
cesm.ucar.edu/models/cesm1.2/. The
CPU and GPU codes for the chemistry
box model are available from the
authors upon request (jsfu@utk.edu).

https://doi.org/10.1109/TPDS.2018.2842785
https://doi.org/10.1016/j.procs.2017.05.250
https://doi.org/10.1007/978-3-319-41321-1_2
http://www.cesm.ucar.edu/models/cesm1.2/
http://www.cesm.ucar.edu/models/cesm1.2/
mailto:jsfu@utk.edu

Alvanos, M., & Christoudias, T. (2017). GPU-accelerated atmospheric chemical kinetics in the ECHAM/MESSy (EMAC) Earth system model
(version 2.52). Geoscientific Model Development, 10(10), 3679–3693. https://doi.org/10.5194/gmd-10-3679-2017

Austin, J., Shindell, D., Beagley, S. R., Brühl, C., Dameris, M., Manzini, E., et al. (2003). Uncertainties and assessments of chemistry-climate
models of the stratosphere. Atmospheric Chemistry and Physics, 3(1), 1–27. https://doi.org/10.5194/acp-3-1-2003

Collins, W. J., Lamarque, J.-F., Schulz, M., Boucher, O., Eyring, V., Hegglin, M. I., et al. (2017). AerChemMIP: Quantifying the effects of chemistry
and aerosols in CMIP6. Geoscientific Model Development, 10(2), 585–607. https://doi.org/10.5194/gmd-10-585-2017

Dameris, M., & Jöckel, P. (2013). Numerical modeling of climate-chemistry connections: Recent developments and future challenges.
Atmosphere, 4(2), 132–156. https://doi.org/10.3390/atmos4020132

Dong, T., Haidar, A., Luszczek, P., Harris, J. A., Tomov, S., & Dongarra, J. (2014). LU factorization of small matrices: Accelerating batched DGETRF
of the GPU. In 2014 IEEE Intl. Conf. on High Performance Computing and Communications, 2014 IEEE 6th Intl. Symp. on Cyberspace Safety and
Security, 2014 IEEE 11th Intl. Conf. on Embedded Software and Syst. (HPCC, CSS, ICESS) (pp. 157–160). Paris, France. https://doi.org/10.1109/
HPCC.2014.30

Dongarra, J., Duff, I., Gates, M., Haidar, A., Hammarling, S., Higham, N. J., et al. (2016). A proposed API for batched basic linear algebra sub-
programs, MIMS EPrint 2016.25, Manchester Institute for Mathematical Sciences, the University of Manchester, UK. Retrieved from http://
eprints.ma.man.ac.uk/2464/

Emmons, L. K., Walters, S., Hess, P. G., Lamarque, J.-F., Pfister, G. G., Fillmore, D., et al. (2010). Description and evaluation of the model for
ozone and related chemical tracers, version 4 (MOZART-4). Geoscientific Model Development, 3(1), 43–67. https://doi.org/10.5194/gmd-3-
43-2010

Gates, M., Kurzak, J., Luszczek, P., Pei, Y., & Dongarra, J. (2017). Autotuning batch Cholesky factorization in CUDA with interleaved layout of
matrices. In 2017 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW) (pp. 1408–1417). Lake Buena Vista,
FL. https://doi.org/10.1109/IPDPSW.2017.18

Haidar, A., Abdelfattah, A., Zounon, M., Tomov, S., & Dongarra, J. (2018). A guide for achieving high performance with very small matrices on
GPU: A case study of batched LU and Cholesky factorizations. IEEE Transactions on Parallel and Distributed Systems, 29(5), 973–984. https://
doi.org/10.1109/TPDS.2017.2783929

Haidar, A, Brock, B., Tomov, S., Guidry, M., Billings, J. J., Shyles, D., & Dongarra, J. (2016). Performance analysis and acceleration of explicit
integration for large kinetic networks using batched GPU computations, 2016 IEEE high performance extreme computing conference
(HPEC). Waltham, MA. https://doi.org/10.1109/HPEC.2016.7761605

Horowitz, L. W., Walters, S., Mauzerall, D. L., Emmons, L. K., Rasch, P. J., Granier, C., et al. (2003). A global simulation of tropospheric ozone and
related tracers: Description and evaluation of MOZART, version 2. Journal of Geophysical Research, 108(D24), 4784. https://doi.org/10.1029/
2002JD002853

Hoshino, T., Maruyama, N., Matsuoka, S., & Takaki, R. (2013). CUDA vs OpenACC: Performance case studies with kernel benchmarks and a
memory-bound CFD application, 13th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid’13) (pp 136–
143). Delft, Netherlands. https://doi.org/10.1109/CCGrid.2013.12

Isaksen, I. S. A., Granier, C., Myhre, G., Berntsen, T. K., Dalsøren, S. B., Gauss, M., et al. (2009). Atmospheric composition change: Climate–
chemistry interactions. Atmospheric Environment, 43(33), 5138–5192. https://doi.org/10.1016/j.atmosenv.2009.08.003

Kinnison, D. E., Brasseur, G. P., Walters, S., Garcia, R. R., Marsh, D. R., Sassi, F., et al. (2007). Sensitivity of chemical tracers to meteorological
parameters in the MOZART-3 chemical transport model. Journal of Geophysical Research, 112, D20302. https://doi.org/10.1029/
2006JD007879

Kleinman, L. I., Daum, P. H., Lee, Y. N., Nunnermacker, L. J., Springston, S. R., WeinsteinLloyd, J., & Rudolph, J. (2001). Sensitivity of ozone
production rate to ozone precursors. Geophysical Research Letters, 28(15), 2903–2906. https://doi.org/10.1029/2000GL012597

Korwar, S. K., Vadhiyar, S., & Nanjundiah, R. S. (2013). GPU-enabled efficient executions of radiation calculations in climate modeling,
20th annual international conference on high performance computing (pp. 353–361). Bangalore. https://doi.org/10.1109/
HiPC.2013.6799141

Lamarque, J.-F., Shindell, D. T., Josse, B., Young, P. J., Cionni, I., Eyring, V., et al. (2013). The atmospheric chemistry and climate model
Intercomparison project (ACCMIP): Overview and description of models, simulations and climate diagnostics. Geoscientific Model
Development, 6(1), 179–206. https://doi.org/10.5194/gmd-6-179-2013

Li, X., Shih, P.-C., Overbey, J., Seals, C., & Lim, A. (2016). Comparing programmer productivity in OpenACC and CUDA: An empirical investi-
gation. International Journal of Computer Science, Engineering and Applications (IJCSEA), 6(5), 1–15. https://doi.org/10.5121/ijcsea.2016.6501

Lin, S. (2004). A “vertically Lagrangian” finite-volume dynamical Core for global models.Monthly Weather Review, 132(10), 2293–2307. https://
doi.org/10.1175/1520-0493(2004)132<2293:AVLFDC>2.0.CO;2

Linford, J. C., Michalakes, J., Vachharajani, M., & Sandu, A. (2009). Multi-core acceleration of chemical kinetics for simulation and prediction. In
Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis, SC’09, Association for Computing
Machinery (Vol. 7, pp. 1–11). New York. https://doi.org/10.1145/1654059.1654067

Mantell, R. G., Pitt, C. E., & Wales, D. J. (2016). GPU-accelerated exploration of biomolecular energy landscapes. Journal of Chemical Theory and
Computation, 12(12), 6182–6191. https://doi.org/10.1021/acs.jctc.6b00934

Memeti, S., Li, L., Pllana, S., Kolodziej, J., & Kessler, C. (2017). Benchmarking OpenCL, OpenACC, OpenMP, and CUDA: Programming pro-
ductivity, performance, and energy consumption, Proceedings of the 2017 workshop on adaptive resource management and scheduling
for cloud computing, ACM, New York, NY, USA, ARMS-CC’17 (pp. 1–6). https://doi.org/10.1145/3110355.3110356

Michalakes, J., & Vachharajani, M. (2008). GPU acceleration of numerical weather prediction. Parallel Processing Letters, 18(04), 531–548.
https://doi.org/10.1142/S0129626408003557

Mirin, A. A., & Worley, P. H. (2011). Improving the performance scalability of the community atmosphere model. The International Journal of
High Performance Computing Applications, 26(1), 17–30. https://doi.org/10.1177/1094342011412630

Schraner, M., Rozanov, E., Schnadt Poberaj, C., Kenzelmann, P., Fischer, A. M., Zubov, V., et al. (2008). Technical note: Chemistry-climate model
SOCOL version 2.0 with improved transport and chemistry/microphysics schemes. Atmospheric Chemistry and Physics, 8(19), 5957–5974.
https://doi.org/10.5194/acp-8-5957-2008

Su, H., Cheng, Y. F., Oswald, R., Behrendt, T., Trebs, I., Meixner, F. X., et al. (2011). Soil nitrite as a source of atmospheric HONO and OH radicals.
Science, 333(6049), 1616–1618. https://doi.org/10.1126/science.1207687

Sun, J., Fu, J. S., Drake, J., Lamarque, J.-F., Tilmes, S., & Vitt, F. (2017). Improvement of the prediction of surface ozone concentration over
conterminous U.S. by a computationally efficient second-order Rosenbrock solver in CAM4-Chem. Journal of Advances in Modeling Earth
Systems, 9(1), 482–500. https://doi.org/10.1002/2016MS000863

Tian, W. S., & Chipperfield, M. P. (2006). A new coupled chemistry–climate model for the stratosphere: The importance of coupling for future
O3-climate predictions. Quarterly Journal of the Royal Meteorological Society, 131(605), 281–303. https://doi.org/10.1256/qj.04.05

10.1029/2018MS001276Journal of Advances in Modeling Earth Systems

SUN ET AL. 1968

https://doi.org/10.5194/gmd-10-3679-2017
https://doi.org/10.5194/acp-3-1-2003
https://doi.org/10.5194/gmd-10-585-2017
https://doi.org/10.3390/atmos4020132
https://doi.org/10.1109/HPCC.2014.30
https://doi.org/10.1109/HPCC.2014.30
http://eprints.ma.man.ac.uk/2464/
http://eprints.ma.man.ac.uk/2464/
https://doi.org/10.5194/gmd-3-43-2010
https://doi.org/10.5194/gmd-3-43-2010
https://doi.org/10.1109/IPDPSW.2017.18
https://doi.org/10.1109/TPDS.2017.2783929
https://doi.org/10.1109/TPDS.2017.2783929
https://doi.org/10.1109/HPEC.2016.7761605
https://doi.org/10.1029/2002JD002853
https://doi.org/10.1029/2002JD002853
https://doi.org/10.1109/CCGrid.2013.12
https://doi.org/10.1016/j.atmosenv.2009.08.003
https://doi.org/10.1029/2006JD007879
https://doi.org/10.1029/2006JD007879
https://doi.org/10.1029/2000GL012597
https://doi.org/10.1109/HiPC.2013.6799141
https://doi.org/10.1109/HiPC.2013.6799141
https://doi.org/10.5194/gmd-6-179-2013
https://doi.org/10.5121/ijcsea.2016.6501
https://doi.org/10.1175/1520-0493(2004)132%3C2293:AVLFDC%3E2.0.CO;2
https://doi.org/10.1175/1520-0493(2004)132%3C2293:AVLFDC%3E2.0.CO;2
https://doi.org/10.1175/1520-0493(2004)132%3C2293:AVLFDC%3E2.0.CO;2
https://doi.org/10.1145/1654059.1654067
https://doi.org/10.1021/acs.jctc.6b00934
https://doi.org/10.1145/3110355.3110356
https://doi.org/10.1142/S0129626408003557
https://doi.org/10.1177/1094342011412630
https://doi.org/10.5194/acp-8-5957-2008
https://doi.org/10.1126/science.1207687
https://doi.org/10.1002/2016MS000863
https://doi.org/10.1256/qj.04.05

Tilmes, S., Lamarque, J.-F., Emmons, L. K., Kinnison, D. E., Marsh, D., Garcia, R. R., et al. (2016). Representation of the community earth system
model (CESM1) CAM4-chem within the chemistry-climate model initiative (CCMI). Geoscientific Model Development, 9(5), 1853–1890.
https://doi.org/10.5194/gmd-9-1853-2016

Verwer, J. G., Spee, E. J., Blom, J. G., & Hundsdorfer, W. (1999). A second-order Rosenbrock method applied to photochemical dispersion
problems. SIAM Journal on Scientific Computing, 20(4), 1456–1480. https://doi.org/10.1137/S1064827597326651

Worley, P. H., & Drake, J. B. (2005). Performance portability in the physical parameterizations of the community atmospheric model. The
International Journal of High Performance Computing Applications, 19(3), 187–201. https://doi.org/10.1177/1094342005056095

Xu, S., Huang, X., Oey, L.-Y., Xu, F., Fu, H., Zhang, Y., & Yang, G. (2015). POM.gpu-v1.0: A GPU-based Princeton Ocean Model. Geoscientific Model
Development, 8(9), 2815–2827. https://doi.org/10.5194/gmd-8-2815-2015.1

10.1029/2018MS001276Journal of Advances in Modeling Earth Systems

SUN ET AL. 1969

https://doi.org/10.5194/gmd-9-1853-2016
https://doi.org/10.1137/S1064827597326651
https://doi.org/10.1177/1094342005056095
https://doi.org/10.5194/gmd-8-2815-2015.1

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (ECI-RGB.icc)
 /CalCMYKProfile (Photoshop 5 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /Courier-Oblique
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Symbol
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /Times-Roman
 /ZapfDingbats
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

