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The  acceleration  of many  small-sized  linear  algebra  problems  has become  extremely  challenging  for  cur-
rent  many-core  architectures,  and  in particular  GPUs.  Standard  interfaces  have  been  proposed  for  some
of  these  problems,  called  batched  problems,  so  that  they  get  targeted  for optimization  and  used  in  a  stan-
dard  way  in  applications,  calling  them directly  from  highly  optimized,  standard  numerical  libraries,  like
(batched)  BLAS and  LAPACK.  While  most  of the  developments  have  been  for one-sided  factorizations  and
solvers,  many  important  applications  –  from  big  data  analytics  to  information  retrieval,  low-rank  approx-
imations  for  solvers  and preconditioners  –  require  two-sided  factorizations,  and  most  notably  the  SVD
factorization.  To address  these  needs  and  the  parallelization  challenges  related  to them,  we  developed  a
number  of  new  batched  computing  techniques  and  designed  batched  Basic  Linear  Algebra  Subroutines
(BLAS)  routines,  and  in  particular  the  Level-2  BLAS  GEMV  and  the  Level-3  BLAS  GEMM  routines,  to  solve
them.  We  propose  a device  functions-based  methodology  and  big-tile  setting  techniques  in our  batched
BLAS  design.  The  different  optimization  techniques  result  in  many  software  versions  that  must  be  tuned,
for  which  we  adopt  an auto-tuning  strategy  to automatically  derive  the  optimized  instances  of  the  rou-
tines.  We  illustrate  our batched  BLAS  approach  to optimize  batched  SVD  bi-diagonalization  progressively
on  GPUs.  The  progression  is illustrated  on  an  NVIDIA  K40c  GPU,  and  also,  ported  and presented  on  AMD

Fiji  Nano  GPU,  using  AMD’s  Heterogeneous–Compute  Interface  for Portability  (HIP)  C++  runtime  API.  We
demonstrate  achieving  80%  of  the  theoretically  achievable  peak  performance  for the  overall  algorithm,
and  significant  acceleration  of the  Level-2  BLAS  GEMV  and  Level-3  BLAS  GEMM  needed  compared  to
vendor-optimized  libraries  on GPUs  and  multicore  CPUs.  The  optimization  techniques  in this  paper  are
applicable  to the  other  two-sided  factorizations  as  well.

©  2018  Elsevier  B.V.  All  rights  reserved.

agne
M) 

odyn
ize o
and c
eep n
uction

ergence of multicore and heterogeneous architectures
many linear algebra algorithms to be redesigned to take
e of accelerators, such as GPUs. A particularly challeng-
of problems, arising in numerous applications, involves

in m
(GEM
hydr
the s
ods, 

of d

f linear algebra operations on many small-sized matrices.

ber can be thousands, even millions. For example, bil-
 × 8 and 32 × 32 eigenvalue problems need to be solved

n extended version of our conference paper [18] that was invited to the
 issue (https://doi.org/10.1016/j.procs.2017.05.237).
onding author.
ddresses: tingxing.dong@amd.com (T. Dong), haidar@icl.utk.edu

 tomov@icl.utk.edu (S. Tomov), dongarra@icl.utk.edu (J. Dongarra).

treating c
efficient 

and Batc
deep lear
like Padd
In an ast
and each
on an LU
the probl

org/10.1016/j.jocs.2018.01.007
© 2018 Elsevier B.V. All rights reserved.
tic resonance imaging. Also, thousands of matrix–matrix
and matrix–vector products (GEMV) are computed in
amic simulations with finite element method [1]. Here

f matrices increases with the order of the numerical meth-
an range from ten to a few hundred. GEMM is at the heart
eural network (DNN) computations, where rather than
onvolution as one large GEMM problem, it is much more

to view it as many small GEMMs  [2]. Thus, Batched BLAS,
hed GEMM in particular, are central part of performing
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ere are demands to compute one million 25 × 8 and n*20
lems, where n ranges from 32 to 4096.
celeration of the aforementioned many small-sized linear
roblems has become extremely challenging for current

re architectures, and in particular GPUs. To address the
ge of application needs and the parallelization challenges

 them, we developed a number of new batched computing
es and designed batched Basic Linear Algebra Subrou-
AS) routines, and in particular the Level-2 BLAS GEMV
evel-3 BLAS GEMM routines, to solve them. To describe
elopments, we start with other related work and sum-
our contributions (Section 2), followed by algorithmic
nd (Section 3) and the Householder Bi-diagonalization

 (Section 4), performance analysis and a roofline model
es our design and optimizations (Section 5), the main
LAS design, optimization techniques and implementation
(Section 6), our auto-tuning strategy (Section 7), perfor-

 NVIDIA GPUs (Section 8) and AMD  GPUs (Section 9).
nclusions and future work directions are given in Section

d work and contributions

cceleration of many small-sized linear algebra prob-
 become extremely challenging for current many-core
ures, and in particular GPUs. Standard interfaces have
posed for some of these problems, called batched prob-
that they get targeted for optimization and used in a

 way in application directly from highly-optimized, stan-
erical libraries, like (batched) BLAS and LAPACK [11].

endors like NVIDIA and Intel started to provide certain
unctionalities in their cuBLAS and MKL  libraries, respec-
GMA  [12,13], an open source library, provides the most

 set of batched BLAS and LAPACK functionalities to date.
lar, efficient batched one-sided factorizations (LU, QR,

esky) were developed in [14–17], and are now released
AGMA. These factorizations are compute-bound and rich

 BLAS operations. Therefore, the main effort in developing
 in algorithmically enhancing the percentage of Level-

perations, using techniques such as recursive blocking,
wapping, and other batched BLAS techniques and opti-
s.

 most of the developments have been for one-sided fac-
s and solvers, many important applications – from big
ytics to information retrieval, low-rank approximations
s and preconditioners – require two-sided factorizations,

 notably the SVD factorization. To develop them, in con-
he compute-bound one-sided factorizations, one must
the acceleration of the memory-bound two-sided House-
-diagonalizations (GEBRD). These routines are the most
suming part that is needed for the singular value decom-

 (SVD) in many applications. Instead of BLAS-3 GEMM,  the
lder bi-diagonalization problem is rich in memory-bound
LAS GEMV operations. Thus, the goal is to develop effi-
ched Level-2 BLAS that minimizes memory transactions
mizes bandwidth. To accomplish this, we propose a device
-based methodology and big-tile setting techniques in our
LAS designs, in order to facilitate data reuse. The different

tion techniques, as well as the various instances of GEMV
ate, result in many software versions that must be tuned,
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 and kernels, as well as efficient implementations and
tion techniques; (2) design two-sided bi-diagonalization
ed execution based on the batched BLAS approach; and
nd tune the developments to a number of high-end GPUs,

 both NVIDIA and AMD  GPUs. Our batched BLAS can run
A GPU with a CUDA code version that we extend from [18],
n AMD  GPUs through a HIP code version that we devel-

 programming on AMD  GPU is rather new [19]. To our best
ge, no similar work has been presented before.

round

D problem is to find orthogonal matrices U and V, and a
matrix � with nonnegative elements, such that A = U�VT,
s an m × n matrix. The diagonal elements of � are singular

 A, the columns of U are called left singular vectors of A,
olumns of V are called right singular vectors of A. Such
is solved by a three-phase process:

ion phase: orthogonal matrices Q and P are applied on both
t and the right side of A to reduce it to a bi-diagonal matrix
e these are called “two-sided factorizations.”
n phase: a singular value solver further computes the sin-
alues � and the left and right vectors Ũ  and Ṽ T of the
onal matrix;
ansformation phase: if required, the left and the right sin-
ectors of A are computed by multiplying Ũ and Ṽ T by the
onal matrices Q and P used in the reduction phase.

ell known that the first phase is the most time consuming
f the SVD problem [20]. Benchmarks show that it con-
ore than 70% or 90% of the total time when all singular

r only singular values are computed on modern architec-
pectively. For that, we  focus in this paper on the reduction

 a batch of small problems, and study its limitations.

holder bi-diagonalization

i-diagonalization factorizes A = U BVT, where U and V are
al matrices, and B is bi-diagonal with non-zeros only on
nal and upper superdiagonal. This is done by the classic
lub–Kahan method that applies a sequence of House-

ansformations [21]. Algorithmically, this corresponds to a
 of in-place transformations, where A is overwritten by the

f the bi-diagonal matrix B, as well as by the U and V hold-
ectors defining the left and right householder reflectors,
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x. The blocked two-phase algorithm is described in Algo-
he factorization of the panel Aix, Aiy proceeds in n/nb steps

ng size nb. Each step is composed of BLAS and LAPACK
e.g., the Level-3 BLAS GEMM routine is used for the trail-
ix update, and the LAPACK’s LABRD routine is used for

 factorization. LABRD is still sequential and composed of
LAS GEMV. LABRD saves Householder transformations in
X and Y, respectively. Once the transformations are accu-
within the panel, they are applied to the trailing matrix
el-3 BLAS operations. The blocked algorithm casts half of
of the original sequential algorithm from Level-2 BLAS to
LAS GEMM operations.

 1. Two-phase implementation of the Householder
gorithm. Without loss of generality, A is assumed to be of
. A(i : j, m : k) is the submatrix of A consisting of ith through
nd mth through kth column with 0-based indexing.

, 3, . . .,  n/nb} do
1)×nb :(n−1),(i−1)×nb :i×nb

1)×nb :i×nb,(i−1)×nb :(n−1)

b :(n−1),i×nb :(n−1)

torize using LABRD to reduce Aix and Aiy to bi-diagonal form;
atrices X, Y to update trailing matrix Ci in the next phase; U, V are
the factorized part of A.
atrix Update Ci = Ci − V × YT − X × UT with gemm

mance bound analysis and roofline model

er to evaluate the performance behavior of the reduc-
i-diagonal and to analyze if there are opportunities for

ents, we present a performance bound analysis and the
d with it roofline model. Similar to the one-sided factoriza-

 Cholesky, QR), the two-sided factorizations (in particular,
gonal reduction) are split into a panel factorization and a
atrix update. Unlike the one-sided factorizations, the panel
ion requires computing Level-2 BLAS matrix–vector prod-
lving the entire trailing matrix. This requires loading the
iling matrix into memory, and thus, incurring a significant
f memory-bound operations. The application of two-sided
ations creates data dependencies and produces artificial

ization points between the panel factorization and the
bmatrix update. This makes it impossible to overlap the

 the trailing submatrix update. Therefore, we  can model
rmance of our algorithm by the performances of its basic
s they have to be executed in order).

gorithm proceeds by steps of size nb. We  give the detailed
 update costs per step:

el is of size nb columns. The factorization of every column
arily dominated by two matrix–vector products with the

 matrix. Thus, the cost of a panel is 4 nb l2 + �(n), where l is
 of the trailing matrix at step i. For simplicity, we  omit �(n)
ndup the cost of the panel by the cost of the matrix–vector
t;
ate of the trailing matrix consists of applying the house-

reflectors generated during the panel factorization to the
 matrix from both the left and the right side using Level-
routines: Ai∗nb:n−1,i∗nb:n−1 ←− Ai∗nb:n−1,i∗nb:n−1 − V × YT −

 where V and U are the householder reflectors computed
the panel phase, X and Y are two rectangular matrices
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l steps (n/nb), the trailing matrix size varies from n to nb
of size nb, where l varies from n to nb and k varies from
o 2 nb. Thus, the total cost for the n/nb steps is:

b

l2 + 4nb

n − nb

nb∑
2nb

k2 ≈ 4
3

n3
gemv + 4

3
n3

gemm ≈ 8
3

n3.

ding to the above equation, we derive below the maximum
nce Pmax that can be reached by the bi-diagonal reduction

 as a function of the performances Pgemm and Pgemv for
 and gemv kernels, respectively. In particular, for large

zes n:

lops

min
=

8
3

n3

4
3

n3 ∗ 1
Pgemv

+ 4
3

n3 ∗ 1
Pgemm

gemm ∗ Pgemv

mm + Pgemv
< 2Pgemv, when Pgemm >> Pgemv.

(1)

erformance of the Level-2 BLAS routines such as the
matrix–vector multiplication (gemv) is memory bound

 low compared to the Level-3 BLAS dgemm. For exam-
 K40c GPU the performance of batched dgemv is about
s as shown in Fig. 4(a), while for batched dgemm it is about
/s as illustrated in Fig. 2. Thus, one can expect from Eq.

the performance of the reduction algorithm is bound by
rmance of the Level-2 BLAS operations. This explains the

n low performance behavior observed for the algorithm.

ed BLAS design and implementation for GPUs

tched problem that is based on batched BLAS, many small
trices must be factorized simultaneously, meaning that all
ces will be processed simultaneously by the same kernel.

-level parallelism and device-kernel mode

atched BLAS kernels do not make any assumption about
t of the matrices in memory, e.g., the matrices are not nec-
tored continuously. The starting address of every matrix
in an array of pointers, and the batched kernel takes the
pointers as input. Note that to use the array of pointers
, extra memory must be allocated as workspace, compared
sumption of consecutive matrix storage. Inside the ker-

 matrix is assigned to a unique batch ID and processed
vice function. Device functions are low-level and callable
UDA or HIP kernels. The device function only sees a matrix
tched ID and thus still maintains the same interface as
ard BLAS. Moreover, we use multiple GPU threads per
ctorization, which is different from [22], where only one
used. Thus, our batched BLAS is characterized by two  lev-
allelism. The first level is a task-level parallelism among the
ent matrices that are simultaneously processed. The sec-
e-grained data parallelism within the computation of each
d its goal is to exploit the SIMT architecture of the GPU
evice functions. This strategy yields higher parallelism in

ithms (occupancy) that results in better use of the GPU,
fore higher performance.
vice functions are templated with CUDA and HIP C++ for

nd AMD  GPUs, respectively. A number of tunable param-
selected – thread blocks size, tile size, etc.; see Section 7.2

red in C++ template parameters. The use of device func-
gs multiple advantages. First, merging kernels can reduce
nching overhead but that usually demodulizes the BLAS-

ucture of an LAPACK algorithm. However, device functions
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the BLAS interface. Multiple small workload device func-
be merged in one kernel easily but with the BLAS-based
algorithm structure still gracefully maintained. Second,
red memory is alive per kernel-life-time, multiple device

 can access the same shared memory to improve data
erging kernels and data reuse is important to GEBRD.
possible because the panel factorization stage has many
putations that if merged have a good possibility of data

., in reusing the Householder vector. In order to reuse
hared memory, we propose a big-tile setting which will
bed in the next section. Third, if the underlying computa-

 same, only one copy of device function is maintained for
kernels. Fig. 1 shows that the same GEMV device function
lled by different types of kernels, standard GEMV (tar-
arge matrix instead of many small ones), batched GEMV,
nd TRSV kernels. Each type of kernel requires optimiza-
rdingly. We  use auto-tuning techniques (see Section 7.2)
e optimal setting for each particular kernel as shown in the
us, using a device functions-based methodology to designs
ternal APIs and to build higher-level algorithms on top of
s, is a central characteristic of our developments towards
vantage of the aforementioned benefits.

 reuse and degrees of parallelism

portant optimization technique in GPU programming is
requently accessed data in shared memory to perform
tions as much as possible before storing back results to
main memory. However, shared memory is private per
lock. When solving just one large matrix problem, the
divided into tiles with each tile loaded in shared memory.

 thread blocks access different tiles in an order deter-
 the algorithm. Synchronization of the computation of the
complished by ending and re-launching kernels. When
el exits, the resulting data in shared memory must be
ck to the GPU main memory as the shared memory will
d. However, in small-sized batched problems, too many
unches should be avoided, especially in the panel fac-
, where each routine has a small workload, and a high

ty of data reuse exists in shared memory (if kernels are

fore, to avoid many kernel launches, in our design, each
 assigned to a thread block, and the synchronization is
shed by barriers inside the thread block. We  call this
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ces to the point that one thread block accesses the whole

ver, compared to the big-tile setting, the classic setting
ltiple thread blocks processing one matrix has a higher

 parallelism as different parts of the matrix are processed
eously, especially for large square matrices. Thus, overall,

 trade-off. Big-tile setting allows data to be reused through
emory, but suffers a lower degree of parallelism. The clas-
g has a higher degree of parallelism, but may lose the
e benefits. The optimal setting depends on many factors,

 the algorithm type and matrix size, and is often selected
uning (as in Section 7.2). Our experience shows that for
l factorization, the big-tile setting has advantage. While
ailing matrix update with GEMM computation, the classic

 preferred.

hed bi-diagonalization implementations on GPUs

pproach to the batched problems is to consider that the
trix is small enough to fit into shared memory. For exam-
urrent size of the shared memory is 48 KB per streaming
cessor (SMX, or computing unit on AMD GPU) for the high-
IA K40c GPUs, which is a low limit for the amount of

problems data that can fit at once. However, completely
g the shared memory per SMX  can decrease the perfor-

 memory-bound routines since only one thread-block will
ed to that SMX  at a time. Due to a limited parallelism in
ization of a small panel, the number of threads used in the
ock will be limited, resulting in low occupancy, and sub-

 poor core utilization. The advantages of multiple blocks
on the same SMX  is that the scheduler can swap out a
ock waiting for data from memory and push in the next
t is ready to execute [23]. We  found that using a small
f shared memory per kernel (less than 10 KB) not only
an acceptable data reuse, but also allows many thread-

 be executed by the same SMX  concurrently, thus taking
vantage of its resources.
od performance of Level-3 BLAS in trailing matrix updates,
th nb needs to be increased. Yet, increasing nb increases

s the panel is a sequential operation – a larger panel width
 larger Amdahl’s sequential fraction which governs the

 speedup. The best panel size is usually a trade-off prod-
lancing the two factors and is obtained by tuning. We
d empirically that the best value of nb for one-sided factor-

s 32 [14–16]. However, 16 or 8 is optimal for the two-sided
alization. A smaller nb is better because the panel oper-
ainly GEMV operations) in the two-sided factorizations

 significant than the panel operations in the one-sided
tions.

 panel with LABRD: This provides the batched equivalent of
 LABRD routine that reduces the first nb rows and columns
y n matrix A to upper or lower real bi-diagonal form by

lder transformations, and returns the matrices X and Y that
used to apply the transformation to the unreduced trail-
x. It consists of nb steps where each step calls two routines
g householder reflectors (LARFG), one for column and one
ouseholder reflector, and a set of GEMV and scaling SCAL

 The LARFG involves a norm computation followed by a
t uses the results of the norm computation in addition
underflow/overflow checking. The norm computation is
uce and thus a synchronization step. To accelerate it, we

nted a two-layer tree reduction where for sizes larger than
ents. The last 32 elements are reduced to one by only one
he householder reflectors are frequently accessed and are

 shared memory. A set of GEMV routines are called to



ience 26 (2018) 237–245 241

update th
nb steps, 

that the p
Level-1 B
tine.

Trailin
two GEM
torization
a transpo
a non-tra
The upda
very sma
from Leve

7.  Auto-

The ef
GEMM, g
and sour
MKL, AM
routines 

routine is
on Keple
mance. A
vendors m
erations o
the sourc
(within a
source co
ters and 

is archite
focuses o

7.1. Batc

The pe
Level-3 B
dard MAG
GEMM in
and the d
ters prod
by constr
correctne
Hardware
architectu
metrics, i
exceedin
may be s
threads p
pancy. M
[26].

Fig. 2 

batched) 

The num
allelize w
Its perfor
solution i
routine, w
relies on 

The non-
up with 

batched G
(i.e., 30% 

than the C
routine f

. Performance of our batched DGEMM (K = 32) vs. other solutions on CPUs or
.

. Tun
ted in

w (e
ber o

Diffe

 ma
VN)

row a
tes r
e ma
EMV
owe
ction
colum
ss in
MVT

ads i
 row
ese 

mn r
ccum
T. Dong et al. / Journal of Computational Sc

e rest of the panel and matrices X and Y. Since there are
these routines are called nb times; thus, one can expect
erformance depends on the performances of Level-2 and
LAS operations. Hence, it is a slow, memory-bound rou-

g matrix updates with GEMM:  The update is achieved by
Ms  with the matrices X and Y returned from the panel fac-
. The first one is a GEMM with a non-transpose matrix and
se matrix (A = A − V * Y′), followed by another GEMM with
nspose matrix and a non-transpose matrix (A = A − X * U′).
te is directly applied on trailing matrix A. However, for
ll matrices it might be still difficult to extract performance
l-3 BLAS kernels.

tuning

forts of maximizing the performance of BLAS, especially
enerally fall into two directions: writing assembly code
ce level code tuning. The vendor libraries (e.g., Intel
D  ACML and hipBLAS, NVIDIA CUBLAS) supply their own
on their hardware. To achieve performance, the GEMM

 implemented in assembly code, like the CUBLAS GEMM
r GPUs. The assembly code usually delivers high perfor-

 disadvantage is that it is highly architecture-specific. The
aintain the performance portability across different gen-
f their architectures [24]. Another direction is to explore

e level code auto-tuning to achieve optimal performance
 preset kernel design space). Different from assembly code,
de auto-tuning relies on the compilers to allocate regis-

schedule instructions. The advantage is that source code
cturally independent and is easy to maintain. Our effort
n source code auto-tuning.

hed level-3 BLAS GEMM

rformance of linear algebra routines highly relies on the
LAS GEMM. Our batched GEMM is modified from the stan-
MA  GEMM [25]. The template parameters of our batched

clude the number of threads, the size of shared memory,
ata tile size. The product of the sizes for these parame-

uces a large search space, but it can be powerfully pruned
aints. The derived constraints of the search space include
ss, as well as hardware constraints and soft constraints.

 constraints stem from the realities of the accelerator
re, like registers and shared memory size. Based on these

nvalid kernels violating the hardware requirement (like
g 48 KB shared memory) will be discarded. The constraints
oft in terms of performance. We  require at least 512
er GPU SMX  (CU on AMD) to ensure a reasonable occu-
ore details about tuning batched GEMM can be found in

shows our batched DGEMM (denoted as the MAGMA
performance against other solutions after auto-tuning.
ber of matrices is 400. The best CPU solution is to par-
ith 16 OpenMP threads on a 16-core Sandy Bridge CPU.

mance is stable around 100 Gflop/s. The non-batched GPU
s a loop over the 400 matrices by calling standard GEMM

here the GPU sequentially processes each matrix and
the multi-threading per matrix to achieve performance.
batched curve linearly grows below size 320 and catches
CUBLAS batched GEMM around size 448. Our MAGMA
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or wide matrices meaning matrices with small number

reduction
similar to

Threa
loop is re
ing results of batched DGEMV for a wide matrix where m = 16 and n is
 the x-axis.

.g., corresponding to the panel size of GEBRD) and large
f columns.

rent batched level 2 BLAS GEMV instances tuning

trix–vector multiplication using a non-transpose matrix
, a reduction is performed per row. Each thread is assigned
nd a warp of threads is assigned to a column. Each thread

ow-wise in a loop and naturally owns the reduction result.
trices are stored in column-major format, the data access
N by the warp is in a coalescing manner.
ver, in GEMV using a transpose matrix (GEMVT), the

 must be performed on each column. Assigning a thread
n will make the reduction easy, but will lead to memory

 a striding way. To overcome the non-coalescing problem
, a two-dimension thread block configuration is adopted.

n x-dimension are assigned per row. These threads access
-wise to avoid the memory non-coalescing penalty. A loop
threads over the column is required in order to do the
eduction in GEMVT. Partial results owned by each thread

ulated in every step of the loop. At the final stage, a tree

 among the threads is performed to obtain the final result,

 MPI  REDUCE.
ds  in y-dimension are assigned per column. A outside
quired to finish all the columns. Threads in x-dimension
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e data access is in a coalescing pattern. Threads in y-
n preserve the degree of parallelism, especially for the
trix (or called fat matrix, with both terms being inter-
le throughout this paper) where the parallelism is more

 performance.

mance on NVIDIA GPU

nducted our experiments on a multicore system with two
ocket Intel Xeon E5-2670 (Sandy Bridge) processors with
ing at 2.6 GHz. Each socket has a shared 20 MB  L3 cache,

 core has a private 256 KB L2 and a 64 KB L1 cache. The
 equipped with 64 GB of memory and the theoretical peak

 precision is 20.8 Gflop/s per core, i.e., 332.8 Gflop/s in
he two sockets. It is also equipped with an NVIDIA K40c

 11.6 GB GDDR memory per card running at 825 MHz. The
al peak in double precision is 1430 Gflop/s. The GPU is
d to the CPU via PCIe I/O hubs with 6 GB/s bandwidth.

 testing, we assume the data already resided in the proces-
ory. Unless explicitly noted, the memory transfer time

processors is not considered. We  believe this is a rea-
ssumption since the matrices are usually generated and

 on the same processor. For example, in the high order
ch zone assembles one matrix on the GPU. The conjuga-
rformed immediately, followed by a batched GEMM.  All
s generated and computed on the GPU [1].

rmance study and optimization of the
alization

the performance of the batched GEMV on K40c is around
s (as shown in Fig. 4(a)), the GEBRD roofline bound is
s according to Eq. (1). A sharper bound, using Eq. (1) and
atched GEMM performance is 323 Gflop/s, is 2∗323∗40

323+40 ≈
s.
demonstrates the performance improvement progress of
mentation. The non-blocked version purely composed of
LAS operations does not scale any more after size 256.
non-optimized blocked version v1 follows the LAPACK’s
e implementation as depicted in Algorithm 1 in which the
atrix is updated with Level 3 BLAS operations. Additional

allocation overhead has to be introduced in order to use
 of pointers interfaces in the blocked algorithm. Below size
performance of version v1 is even slower than the non-
ue to the overhead. Beyond 224, it starts to grow steadily
f GEMM performance.
ain issue of the blocked version v1 is that the GEMVs are
ized for instances required by the GEBRD. By tuning these
s described in Section 7.2, the performance is immediately
n version v2. These GEMV routines are called in the form of
nctions in the panel factorization kernel. The column/row

 householder reflectors and the to-be-updated column in
X and Y are repeatedly accessed at each step. We  load

 fast on-chip shared memory. In order to reuse and syn-
data in shared memory, one matrix can not span multiple
ocks. Therefore, we adopt the big-tile setting for the GEMV
nctions in v2. As discussed in Section 6.1, there is a trade-
en data reuse (with big-tile setting) and the degree of

m (with classic setting). We  found there is a switch over
8 for the two settings. We  adopt classic setting beyond
nd big-tile for size less than 128 for square instances. The

B
not 

In F
tran
mem
in G
tting is still adopted for other wide/tall instances because
aching proves to be more important. By this switch-over,
rmance of version 3 boosts to 50 Gflop/s from 40 Gflops in

 at size 512. Fig. 5. Perf
Fig. 4. Effect of the padding.

filing the GEMV time in GEBRD step by step, we  find it does
h the optimal performance obtained in our auto-tuning.
ormance of batched dgebrd: progress of different versions on a K40c GPU.
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rve). The performance curve fluctuates because when the
ddress of the sub-matrix is aligned in memory, the peak
nce is reached; otherwise, it drops drastically. The fluc-

 more serious for bigger matrices since most threads are
ed as more threads are used in large size.
rcome the fluctuation issue, we adopt a padding tech-
e starting thread always reads from the recent upper

ddress. It introduces extra data reading. The extra reading
5 elements per row because 16 threads fit in an aligned

 segment as a double element is of 8 byte. Although more
ad, it is coalescing that the 128-byte segment can be
y only one transaction. Overall the number of memory
ns is reduced as shown in Fig. 4(b). Since the number
ry transactions decreases, the bandwidth is improved
ly. By padding elements in the multiplied vector as zeros,

ults are computed but finally discarded in the writing
. 4(a) shows that our padding technique enables the GEMV
RD algorithm to run at a speed close to the aligned speed.
g, version 4 reaches 56 Gflop/s at size 512 which is 80% of

r bound of the performance.
kdown of different components contributing to the over-
f GEBRD version 4 is depicted in Fig. 6. As the matrix size
ses, the time of the square matrix (in blue) begins to dom-
a smaller size (n), the percentage of the wide/ tall matrix
tically of size nb by n) to the square matrix (asymptotically
y n) is larger, since nb is fixed. Thus, the time spending on
tall matrix (in red) is more prominent. The GEMM time is
table around 10% across different size problems.

ed GEMV and GEMM performance on AMD GPU

tly,  AMD introduced the Radeon Open Compute Platform
pen-sourced platform for GPU-based high-performance
g [27]. The ROCm ecosystem includes Linux kernels, run-
e HCC compiler, and high level mathematical libraries.
troduces a Heterogeneous–Compute Interface for Porta-
) layer allowing users to create portable applications that
D  and NVIDIA GPUs with similar source code. Compared

enCL C language, HIP is a C/C++ runtime API and kernel
 that is very familiar to CUDA users [19]. Most GPU kernel
tions techniques on OpenCL and CUDA equally apply on
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MD  GPU that we use to test and present our results is a
9 Fiji Nano. Fiji Nano is equipped with 4 GB HBM memory.
ification of Fiji Nano vs. K40c is outlined in Table 1. Fiji

 much less double precision (DP) peak performance, but
e owns higher bandwidth. The software environment is

 v1.6.3 with the HCC compiler based on Clang 6.0 [29].
 on AMD  GPUs, we need to hipify our CUDA source code
code with the assistance of the AMD  provided hipify-
t. We  found that most of our batched GEMV and GEMM
e, including device functions, and templates, can be hip-
essfully except that we  had to manually add an extra

chParm lp” parameter to every HIP kernel.
mpare our batched GEMM against hipBLAS in three dif-
tances: square matrix, K = 32, and K = 16, as these are of
n the GEBRD routine. From Fig. 7, the MAGMA  HIP code
ms hipBLAS for every M = N size for K = 32 and K = 16.
can reach 300 Gflop/s while hipBLAS fluctuates around
/s. One interesting thing is, there is a sudden jump at size
pBLAS, indicating that there is either a tuning or algorithm
t that switch-over. Compared to CPU in Fig. 2, cuBLAS and
after size 250) both climb close to 250 Gflop/s and exceed
ith 16 threads on Sandy Bridge CPU, which achieves only

e performance on GPU.
uare matrix result is shown in Fig. 8. MAGMA  wins over

before size 250. Beyond it, hipBLAS and MAGMA  are very
 both stable at round 300 Gflop/s. If we compare this figure

 2, the MAMGA  HIP code fluctuates around 275 Gflop/s,
 MAGMA  CUDA code fluctuates at around 325 Gflop/s. This
rtially explained by the fact that the K40c GPU owns higher
ecision computing capability (1.4 Tflop/s), which is about
 of the Fiji Nano (0.5 Tflop/s). However, the 2.8× cannot
ify the fact that K40c is only 50 Gflop/s (18%) faster here.
n is that batched GEMM is not totally compute-bound as
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Fig. 8. Performance of hipBLAS and MAGMA  batched DGEMM for square matrix on
AMD Fiji Nano.

Fig. 9. Performance of MAGMA HIP batched DGEMV on AMD  Fiji Nano.
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th-bound routine. For the same byte access, the batched

 small matrices has much less floating-point operations
standard GEMM for larger matrices, as explained in [1].

 matrix size is smaller, the performance is more bounded
idth than the compute capability, which is the case for
LAS where matrices are much smaller than in standard

hough Fiji Nano has less computing capability, it owns
ndwidth than the K40c, which offsets its double precision

ndwidth advantage of the Fiji Nano is further shown in the
ory-bounded BLAS Level 2 batched GEMV routine, as in

cause neither cuBLAS nor hipBLAS provides such routine,
are the MAGMA  CUDA code and the HIP code. For square

 the MAGMA  HIP code fluctuates around 80 Gflop/s and
p to 100 Gflop/s on the Fiji Nano, while the MAGMA CUDA
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lusions and future work

e of GPUs to accelerate scientific codes has been observed
ly on large dense and sparse linear algebra problems that
bundant data parallelism. Solving small linear algebra

 on current high-end many-core systems is more chal-
till, small problems can be implemented relatively easy

core CPUs by taking advantage of the large CPU caches for
e. On the other hand, the development of small problems
is not as straightforward. We  demonstrated that with a
pproach, small problems can be accelerated on GPUs to
nificant advantage over CPUs, as well.
nsider a batched two-sided bi-diagonalization based on
ed BLAS approach. We  first adopt optimal blocking algo-
maximize the GPU-friendly GEMM operations. We  then
device functions as the underlying components of the
LAS kernels. The use of device functions allows the data to

 through shared memory and avoids multiple small ker-
hes, but without demodulizing the BLAS-based LAPACK

 structure at the same time. The device functions are
P C++ templated. Auto-tuning is used to help find the opti-
late setting for different types of kernels, e.g., standard,

or different instances for a type of kernel, like transpose,
 for GEMV. Because the GEBRD algorithm iterates the

ix resulting in a mis-aligned starting address, we adopt
echniques to overcome the fluctuation. Using these tech-
e achieve 56 Gflop/s, which is 80% of the upper bound
nce for the bi-diagonalization problem on a Kepler K40c

mpare our batched BLAS across different platforms and
ptimized libraries, whenever they have the corresponding

 including Intel MKL  with 16 threads on Sandy Bridge CPU,
BLAS on K40c GPU, and AMD  hipBLAS on R9 Fiji Nano GPU.
hows that our batched GEMM implementation exceeds all
n performance for the sizes of interest. For GPUs, we  found

IP code on Fiji Nano is 2× faster than the CUDA code on
the memory-bound GEMV routine. For batched DGEMM,
has inherent disadvantages in double precision computing
t heavily alleviated by its high bandwidth advantage.
ethods in this paper can be applied to other two-sided

tions, e.g., the Hessenberg reduction (GEHRD) and the tri-
zation (SYTRD), as well. Besides the GEMV, GEHRD and
e additional BLAS-2 triangular matrix–vector multiplica-
V) and symmetric matrix–vector multiplication (SYMV)
s, respectively. The same optimization techniques used

 are applicable to TRMV and SYMV.
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