Journal of Computational Science 26 (2018) 237-245

Journal of Computational Science

journal homepage: www.elsevier.com/locate/jocs

= =
COMPUTATIONAL
CleNCE

Contents lists available at ScienceDirect

Accelerating the SVD bi-diagonalization of a batch of small matrices N

using GPUs*

Check for
updates

Tingxing Dong®*, Azzam HaidarP, Stanimire TomovP®, Jack Dongarra <4

2 Radeon Technologies Group, AMD, United States
b University of Tennessee, Knoxville, United States

¢ Oak Ridge National Laboratory, Oak Ridge, United States

d University of Manchester, Manchester, United Kingdom

ARTICLE INFO

Article history:

Received 16 October 2017
Accepted 28 January 2018
Available online 20 February 2018

Keywords:

Hardware accelerators

Batched

Two-sided factorization algorithms
Numerical linear algebra

Eigenvalue and singular value problems

ABSTRACT

The acceleration of many small-sized linear algebra problems has become extremely challenging for cur-
rent many-core architectures, and in particular GPUs. Standard interfaces have been proposed for some
of these problems, called batched problems, so that they get targeted for optimization and used in a stan-
dard way in applications, calling them directly from highly optimized, standard numerical libraries, like
(batched) BLAS and LAPACK. While most of the developments have been for one-sided factorizations and
solvers, many important applications - from big data analytics to information retrieval, low-rank approx-
imations for solvers and preconditioners — require two-sided factorizations, and most notably the SVD
factorization. To address these needs and the parallelization challenges related to them, we developed a
number of new batched computing techniques and designed batched Basic Linear Algebra Subroutines
(BLAS) routines, and in particular the Level-2 BLAS GEMV and the Level-3 BLAS GEMM routines, to solve
them. We propose a device functions-based methodology and big-tile setting techniques in our batched
BLAS design. The different optimization techniques result in many software versions that must be tuned,
for which we adopt an auto-tuning strategy to automatically derive the optimized instances of the rou-
tines. We illustrate our batched BLAS approach to optimize batched SVD bi-diagonalization progressively
on GPUs. The progression is illustrated on an NVIDIA K40c GPU, and also, ported and presented on AMD
Fiji Nano GPU, using AMD'’s Heterogeneous-Compute Interface for Portability (HIP) C++ runtime APIL. We
demonstrate achieving 80% of the theoretically achievable peak performance for the overall algorithm,
and significant acceleration of the Level-2 BLAS GEMV and Level-3 BLAS GEMM needed compared to
vendor-optimized libraries on GPUs and multicore CPUs. The optimization techniques in this paper are
applicable to the other two-sided factorizations as well.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

in magnetic resonance imaging. Also, thousands of matrix-matrix
(GEMM) and matrix-vector products (GEMV) are computed in

The emergence of multicore and heterogeneous architectures
requires many linear algebra algorithms to be redesigned to take
advantage of accelerators, such as GPUs. A particularly challeng-
ing class of problems, arising in numerous applications, involves
the use of linear algebra operations on many small-sized matrices.
Their number can be thousands, even millions. For example, bil-
lions of 8 x 8 and 32 x 32 eigenvalue problems need to be solved

* This is an extended version of our conference paper [18] that was invited to the
JoCS special issue (https://doi.org/10.1016/j.procs.2017.05.237).
* Corresponding author.
E-mail addresses: tingxing.dong@amd.com (T. Dong), haidar@icl.utk.edu
(A. Haidar), tomov@icl.utk.edu (S. Tomov), dongarra@icl.utk.edu (J. Dongarra).

https://doi.org/10.1016/j.jocs.2018.01.007
1877-7503/© 2018 Elsevier B.V. All rights reserved.

hydrodynamic simulations with finite element method [1]. Here
the size of matrices increases with the order of the numerical meth-
ods, and can range from ten to a few hundred. GEMM is at the heart
of deep neural network (DNN) computations, where rather than
treating convolution as one large GEMM problem, it is much more
efficient to view it as many small GEMMs [2]. Thus, Batched BLAS,
and Batched GEMM in particular, are central part of performing
deep learning, and therefore can be used to accelerate frameworks
like PaddlePaddle [3], Theano [4], TensorFlow [5], and Torch [6].
In an astrophysics ODE solver [7], multiple zones are simulated,
and each zone corresponds to a small linear system solve based
on an LU factorization [7]. If the matrix is symmetric and definite,
the problem is reduced to a batched Cholesky factorization [8,9].

https://doi.org/10.1016/j.jocs.2018.01.007
http://www.sciencedirect.com/science/journal/18777503
http://www.elsevier.com/locate/jocs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jocs.2018.01.007&domain=pdf
https://doi.org/10.1016/j.procs.2017.05.237
https://doi.org/10.1016/j.procs.2017.05.237
https://doi.org/10.1016/j.procs.2017.05.237
https://doi.org/10.1016/j.procs.2017.05.237
https://doi.org/10.1016/j.procs.2017.05.237
https://doi.org/10.1016/j.procs.2017.05.237
https://doi.org/10.1016/j.procs.2017.05.237
https://doi.org/10.1016/j.procs.2017.05.237
https://doi.org/10.1016/j.procs.2017.05.237
https://doi.org/10.1016/j.procs.2017.05.237
mailto:tingxing.dong@amd.com
mailto:haidar@icl.utk.edu
mailto:tomov@icl.utk.edu
mailto:dongarra@icl.utk.edu
https://doi.org/10.1016/j.jocs.2018.01.007

238 T. Dong et al. / Journal of Computational Science 26 (2018) 237-245

In [10], there are demands to compute one million 25 x 8 and n*20
SVD problems, where n ranges from 32 to 4096.

The acceleration of the aforementioned many small-sized linear
algebra problems has become extremely challenging for current
many-core architectures, and in particular GPUs. To address the
wide range of application needs and the parallelization challenges
related to them, we developed a number of new batched computing
techniques and designed batched Basic Linear Algebra Subrou-
tines (BLAS) routines, and in particular the Level-2 BLAS GEMV
and the Level-3 BLAS GEMM routines, to solve them. To describe
these developments, we start with other related work and sum-
mary of our contributions (Section 2), followed by algorithmic
background (Section 3) and the Householder Bi-diagonalization
algorithm (Section 4), performance analysis and a roofline model
that guides our design and optimizations (Section 5), the main
batched BLAS design, optimization techniques and implementation
for GPUs (Section 6), our auto-tuning strategy (Section 7), perfor-
mance on NVIDIA GPUs (Section 8) and AMD GPUs (Section 9).
Finally, conclusions and future work directions are given in Section
10.

2. Related work and contributions

The acceleration of many small-sized linear algebra prob-
lems has become extremely challenging for current many-core
architectures, and in particular GPUs. Standard interfaces have
been proposed for some of these problems, called batched prob-
lems, so that they get targeted for optimization and used in a
standard way in application directly from highly-optimized, stan-
dard numerical libraries, like (batched) BLAS and LAPACK [11].
Indeed, vendors like NVIDIA and Intel started to provide certain
batched functionalities in their cuBLAS and MKL libraries, respec-
tively. MAGMA [12,13], an open source library, provides the most
extended set of batched BLAS and LAPACK functionalities to date.
In particular, efficient batched one-sided factorizations (LU, QR,
and Cholesky) were developed in [14-17], and are now released
through MAGMA. These factorizations are compute-bound and rich
in Level-3 BLAS operations. Therefore, the main effort in developing
them lied in algorithmically enhancing the percentage of Level-
3 BLAS operations, using techniques such as recursive blocking,
parallel swapping, and other batched BLAS techniques and opti-
mizations.

While most of the developments have been for one-sided fac-
torizations and solvers, many important applications — from big
data analytics to information retrieval, low-rank approximations
for solvers and preconditioners - require two-sided factorizations,
and most notably the SVD factorization. To develop them, in con-
trast to the compute-bound one-sided factorizations, one must
consider the acceleration of the memory-bound two-sided House-
holder bi-diagonalizations (GEBRD). These routines are the most
time-consuming part that is needed for the singular value decom-
positions (SVD) in many applications. Instead of BLAS-3 GEMM, the
Householder bi-diagonalization problem is rich in memory-bound
Level-2 BLAS GEMV operations. Thus, the goal is to develop effi-
cient batched Level-2 BLAS that minimizes memory transactions
and maximizes bandwidth. To accomplish this, we propose a device
functions-based methodology and big-tile setting techniques in our
batched BLAS designs, in order to facilitate data reuse. The different
optimization techniques, as well as the various instances of GEMV
to accelerate, result in many software versions that must be tuned,
for which we adopt an auto-tuning strategy to automatically derive
the optimized instances of the routines.

Throughout this paper, our batched routines are named as
MAGMA batched routines, and released through the MAGMA
library. Our main contributions are: (1) design batched BLAS device

functions and kernels, as well as efficient implementations and
optimization techniques; (2) design two-sided bi-diagonalization
for batched execution based on the batched BLAS approach; and
(3) port and tune the developments to a number of high-end GPUs,
including both NVIDIA and AMD GPUs. Our batched BLAS can run
on NVIDIA GPU with a CUDA code version that we extend from [18],
but also on AMD GPUs through a HIP code version that we devel-
oped. HIP programming on AMD GPU is rather new [19]. To our best
knowledge, no similar work has been presented before.

3. Background

The SVD problem is to find orthogonal matrices U and V, and a
diagonal matrix ¥ with nonnegative elements, such that A=UXV7,
where A is an m x n matrix. The diagonal elements of X are singular
values of A, the columns of U are called left singular vectors of A,
and the columns of V are called right singular vectors of A. Such
problem is solved by a three-phase process:

1. Reduction phase: orthogonal matrices Q and P are applied on both
the left and the right side of A to reduce it to a bi-diagonal matrix
- hence these are called “two-sided factorizations.”

2. Solution phase: a singular value solver further computes the sin-
gular values ¥ and the left and right vectors U and V7 of the
bi-diagonal matrix;

3. Back transformation phase: if required, the left and the right sin-
gular vectors of A are computed by multiplying U and V7 by the
orthogonal matrices Q and P used in the reduction phase.

It is well known that the first phase is the most time consuming
portion of the SVD problem [20]. Benchmarks show that it con-
sists of more than 70% or 90% of the total time when all singular
vectors or only singular values are computed on modern architec-
tures, respectively. For that, we focus in this paper on the reduction
phase for a batch of small problems, and study its limitations.

4. Householder bi-diagonalization

The bi-diagonalization factorizes A=U BV, where U and V are
orthogonal matrices, and B is bi-diagonal with non-zeros only on
the diagonal and upper superdiagonal. This is done by the classic
stable Golub-Kahan method that applies a sequence of House-
holder transformations [21]. Algorithmically, this corresponds to a
sequence of in-place transformations, where Ais overwritten by the
entries of the bi-diagonal matrix B, as well as by the U and V hold-
ing the vectors defining the left and right householder reflectors,
respectively:

(0) (0) _(0) _(0) (1) (1) (1)
@y Gy O3 iy bin a; a3 ay

(0) (0) _(0) _(0) (1) (1) (1)
Gy Gy O3 Oy U1 Gy O3 Oy

(0 (0 (0 0| m M M|
G317 a3y Q33 d3y V1 O3y d33 A3y

(0) (0) (0) (0) (1) (1) (1)

Gy Ay OQy3 Gy Vit Oy Gy3 Gy
bi1 bz ur bi1 b1z ur
(2) (2) (2)
Vi Oy Gy Gy v by by w
- 2 2 2 -
g a(az) a(33) a(34) vi o V2 b3z bsg

(2) (2) (2) v % % b
V1 Gy (g g, 1 2 U3 44

This algorithm is sequential and rich in Level-2 BLAS GEMV rou-
tine calls that are applied in every step for updating the rest of

T. Dong et al. / Journal of Computational Science 26 (2018) 237-245 239

the matrix. The blocked two-phase algorithm is described in Algo-
rithm 1. The factorization of the panel Ay, A;, proceeds in n/nj, steps
of blocking size ny. Each step is composed of BLAS and LAPACK
routines, e.g., the Level-3 BLAS GEMM routine is used for the trail-
ing matrix update, and the LAPACK’s LABRD routine is used for
the panel factorization. LABRD is still sequential and composed of
Level-2 BLAS GEMV. LABRD saves Householder transformations in
matrices X and Y, respectively. Once the transformations are accu-
mulated within the panel, they are applied to the trailing matrix
using Level-3 BLAS operations. The blocked algorithm casts half of
the flops of the original sequential algorithm from Level-2 BLAS to
Level-3 BLAS GEMM operations.

Algorithm 1. Two-phase implementation of the Householder
GEBRD algorithm. Without loss of generality, A is assumed to be of
sizen x n.A(i:j, m: k) is the submatrix of A consisting of ith through
jth row and mth through kth column with 0-based indexing.

foriec{1,2,3,...,n/ny} do
Aix 1= A-1)xmy(n-1),(i-Dxny iy,
Aiy 1= Ali-1)xmysixny (i-1)xny:(n-1)
G :=Aixnb:(n—l)jxn,,:(n—l)
Panel Factorize using LABRD to reduce A and A;, to bi-diagonal form;
returns matrices X, Y to update trailing matrix C; in the next phase; U, V are
stored in the factorized part of A.
Trailing Matrix Update C;=C; — V x YT — X x UT with gemm
end for

5. Performance bound analysis and roofline model

In order to evaluate the performance behavior of the reduc-
tion to bi-diagonal and to analyze if there are opportunities for
improvements, we present a performance bound analysis and the
associated with it roofline model. Similar to the one-sided factoriza-
tions (LU, Cholesky, QR), the two-sided factorizations (in particular,
the bi-diagonal reduction) are split into a panel factorization and a
trailing matrix update. Unlike the one-sided factorizations, the panel
factorization requires computing Level-2 BLAS matrix-vector prod-
ucts involving the entire trailing matrix. This requires loading the
entire trailing matrix into memory, and thus, incurring a significant
amount of memory-bound operations. The application of two-sided
transformations creates data dependencies and produces artificial
synchronization points between the panel factorization and the
trailing submatrix update. This makes it impossible to overlap the
panel and the trailing submatrix update. Therefore, we can model
the performance of our algorithm by the performances of its basic
kernels (as they have to be executed in order).

The algorithm proceeds by steps of size nj,. We give the detailed
panel and update costs per step:

¢ The panel is of size nj, columns. The factorization of every column
is primarily dominated by two matrix-vector products with the
trailing matrix. Thus, the cost of a panel is 4 ny, I + ©(n), where I is
the size of the trailing matrix at step i. For simplicity, we omit ®(n)
and roundup the cost of the panel by the cost of the matrix-vector
product;

e The update of the trailing matrix consists of applying the house-
holder reflectors generated during the panel factorization to the
trailing matrix from both the left and the right side using Level-
3 BLAS routines: Ajny:n—1,ixnyn—1 <— Aisnyin-1isnyn-1 = V X YT —
X x UT, where V and U are the householder reflectors computed
during the panel phase, X and Y are two rectangular matrices
needed for the update and also computed during the panel phase.
This update phase can be performed by two matrix—matrix prod-
ucts using the gemm routine and its cost is 2 x 2 n, k2, where k is
the size of the trailing matrix at step i.

For all steps (n/ny), the trailing matrix size varies from n to n,
by steps of size nj,, where [varies from n to nj, and k varies from
(n—ny) to 2 ny. Thus, the total cost for the n/n;, steps is:

n—ny
n/ny Ny
4 4 8
~ 2 2 ~
~ 4n, E I? +4n, E k? ~ §ngemv + g”gemm ~ §n3.
ny 2ny

According to the above equation, we derive below the maximum
performance Ppqy that can be reached by the bi-diagonal reduction
algorithm as a function of the performances Pgemm and Pgemy for
the gemm and gemv kernels, respectively. In particular, for large
matrix sizes n:

8.3
Py = J1OPS _ >
tmin ﬂn3* 1 +ﬂ 3, 1 @)
. I:;; Pgemv 3 Pgemm
_ £* Fgemm * Tgemv < 2Pgemv, when Pgemm >> Pgemy.

Pgemm + Pgemv

The performance of the Level-2 BLAS routines such as the
batched matrix-vector multiplication (gemv) is memory bound
and very low compared to the Level-3 BLAS dgemm. For exam-
ple, on a K40c GPU the performance of batched_dgemv is about
40 Gflop/s as showninFig. 4(a), while for batched_dgemm it is about
323 Gflop/s as illustrated in Fig. 2. Thus, one can expect from Eq.
(1), that the performance of the reduction algorithm is bound by
the performance of the Level-2 BLAS operations. This explains the
well known low performance behavior observed for the algorithm.

6. Batched BLAS design and implementation for GPUs

In a batched problem that is based on batched BLAS, many small
dense matrices must be factorized simultaneously, meaning that all
the matrices will be processed simultaneously by the same kernel.

6.1. Two-level parallelism and device-kernel mode

Our batched BLAS kernels do not make any assumption about
the layout of the matrices in memory, e.g., the matrices are not nec-
essarily stored continuously. The starting address of every matrix
is stored in an array of pointers, and the batched kernel takes the
array of pointers as input. Note that to use the array of pointers
interface, extra memory must be allocated as workspace, compared
to the assumption of consecutive matrix storage. Inside the ker-
nel, each matrix is assigned to a unique batch ID and processed
by one device function. Device functions are low-level and callable
only by CUDA or HIP kernels. The device function only sees a matrix
by the batched ID and thus still maintains the same interface as
the standard BLAS. Moreover, we use multiple GPU threads per
matrix factorization, which is different from [22], where only one
thread is used. Thus, our batched BLAS is characterized by two lev-
els of parallelism. The first level is a task-level parallelism among the
independent matrices that are simultaneously processed. The sec-
ond is fine-grained data parallelism within the computation of each
matrix and its goal is to exploit the SIMT architecture of the GPU
through device functions. This strategy yields higher parallelism in
our algorithms (occupancy) that results in better use of the GPU,
and therefore higher performance.

The device functions are templated with CUDA and HIP C++ for
NVIDIA and AMD GPUs, respectively. A number of tunable param-
eters are selected - thread blocks size, tile size, etc.; see Section 7.2
- and stored in C++ template parameters. The use of device func-
tions brings multiple advantages. First, merging kernels can reduce
kernel launching overhead but that usually demodulizes the BLAS-
based structure of an LAPACK algorithm. However, device functions

240 T. Dong et al. / Journal of Computational Science 26 (2018) 237-245

batched_GEMV vbatched_GE

_kernel _kernel

P

batched setting

big-tile setting

/ Vbatched setting
(fat/tall matrices) 4

batched LABRD
_kernel(s)

batched setting GEMV_device

(square matrix) i Jp‘agma standard

big-tilg setting standard

GEMV_kernel

batched_TRSV
_kernel

Fig. 1. The same GEMV device function is called by various kernels.

preserve the BLAS interface. Multiple small workload device func-
tion can be merged in one kernel easily but with the BLAS-based
LAPACK algorithm structure still gracefully maintained. Second,
since shared memory is alive per kernel-life-time, multiple device
functions can access the same shared memory to improve data
reuse. Merging kernels and data reuse is important to GEBRD.
They are possible because the panel factorization stage has many
small computations that if merged have a good possibility of data
reuse, e.g., in reusing the Householder vector. In order to reuse
data in shared memory, we propose a big-tile setting which will
be described in the next section. Third, if the underlying computa-
tion is the same, only one copy of device function is maintained for
different kernels. Fig. 1 shows that the same GEMV device function
can be called by different types of kernels, standard GEMV (tar-
geting a large matrix instead of many small ones), batched GEMV,
LABRD, and TRSV kernels. Each type of kernel requires optimiza-
tion accordingly. We use auto-tuning techniques (see Section 7.2)
to find the optimal setting for each particular kernel as shown in the
figure. Thus, using a device functions-based methodology to designs
for our internal APIs and to build higher-level algorithms on top of
these APIs, is a central characteristic of our developments towards
taking advantage of the aforementioned benefits.

6.2. Data reuse and degrees of parallelism

An important optimization technique in GPU programming is
to load frequently accessed data in shared memory to perform
computations as much as possible before storing back results to
the GPU main memory. However, shared memory is private per
thread block. When solving just one large matrix problem, the
matrix is divided into tiles with each tile loaded in shared memory.
Different thread blocks access different tiles in an order deter-
mined by the algorithm. Synchronization of the computation of the
tiles is accomplished by ending and re-launching kernels. When
one kernel exits, the resulting data in shared memory must be
stored back to the GPU main memory as the shared memory will
be flushed. However, in small-sized batched problems, too many
kernel launches should be avoided, especially in the panel fac-
torization, where each routine has a small workload, and a high
probability of data reuse exists in shared memory (if kernels are
merged).

Therefore, to avoid many kernel launches, in our design, each
matrix is assigned to a thread block, and the synchronization is
accomplished by barriers inside the thread block. We call this
thread block setting big-tile setting. The naming is from this obser-
vation: if the tile (i.e., thread block size) is big enough that a whole
matrix (from the batch) is inside the tile, that matrix computa-

tion reduces to the point that one thread block accesses the whole
matrix.

However, compared to the big-tile setting, the classic setting
with multiple thread blocks processing one matrix has a higher
degree of parallelism as different parts of the matrix are processed
simultaneously, especially for large square matrices. Thus, overall,
there is a trade-off. Big-tile setting allows data to be reused through
shared memory, but suffers a lower degree of parallelism. The clas-
sic setting has a higher degree of parallelism, but may lose the
data reuse benefits. The optimal setting depends on many factors,
including the algorithm type and matrix size, and is often selected
by auto-tuning (as in Section 7.2). Our experience shows that for
the panel factorization, the big-tile setting has advantage. While
for the trailing matrix update with GEMM computation, the classic
setting is preferred.

6.3. Batched bi-diagonalization implementations on GPUs

One approach to the batched problems is to consider that the
entire matrix is small enough to fit into shared memory. For exam-
ple, the current size of the shared memory is 48 KB per streaming
multiprocessor (SMX, or computing unit on AMD GPU) for the high-
end NVIDIA K40c GPUs, which is a low limit for the amount of
batched problems data that can fit at once. However, completely
saturating the shared memory per SMX can decrease the perfor-
mance of memory-bound routines since only one thread-block will
be mapped to that SMX at a time. Due to a limited parallelism in
the factorization of a small panel, the number of threads used in the
thread block will be limited, resulting in low occupancy, and sub-
sequently poor core utilization. The advantages of multiple blocks
residing on the same SMX is that the scheduler can swap out a
thread block waiting for data from memory and push in the next
block that is ready to execute [23]. We found that using a small
amount of shared memory per kernel (less than 10KB) not only
provides an acceptable data reuse, but also allows many thread-
blocks to be executed by the same SMX concurrently, thus taking
better advantage of its resources.

For good performance of Level-3 BLAS in trailing matrix updates,
panel width n, needs to be increased. Yet, increasing n; increases
tension as the panel is a sequential operation - a larger panel width
results in larger Amdahl’s sequential fraction which governs the
maximum speedup. The best panel size is usually a trade-off prod-
uct by balancing the two factors and is obtained by tuning. We
discovered empirically that the best value of n;, for one-sided factor-
izationsis 32 [14-16]. However, 16 or 8 is optimal for the two-sided
bi-diagonalization. A smaller n,, is better because the panel oper-
ations (mainly GEMV operations) in the two-sided factorizations
are more significant than the panel operations in the one-sided
factorizations.

GEBRD panel with LABRD: This provides the batched equivalent of
LAPACK’s LABRD routine that reduces the first n, rows and columns
of an m by n matrix A to upper or lower real bi-diagonal form by
Householder transformations, and returns the matrices Xand Y that
later are used to apply the transformation to the unreduced trail-
ing matrix. It consists of nj, steps where each step calls two routines
generating householder reflectors (LARFG), one for column and one
for row householder reflector, and a set of GEMV and scaling SCAL
routines. The LARFG involves a norm computation followed by a
SCAL that uses the results of the norm computation in addition
to some underflow/overflow checking. The norm computation is
a sum reduce and thus a synchronization step. To accelerate it, we
implemented a two-layer tree reduction where for sizes larger than
32, all 32 threads of a warp progress to do a tree reduction to reduce
to 32 elements. The last 32 elements are reduced to one by only one
thread. The householder reflectors are frequently accessed and are
loaded in shared memory. A set of GEMV routines are called to

T. Dong et al. / Journal of Computational Science 26 (2018) 237-245 241

update the rest of the panel and matrices X and Y. Since there are
n, steps, these routines are called n, times; thus, one can expect
that the performance depends on the performances of Level-2 and
Level-1 BLAS operations. Hence, it is a slow, memory-bound rou-
tine.

Trailing matrix updates with GEMM: The update is achieved by
two GEMMs with the matrices X and Y returned from the panel fac-
torization. The first one is a GEMM with a non-transpose matrix and
a transpose matrix (A=A — V*Y’), followed by another GEMM with
a non-transpose matrix and a non-transpose matrix (A=A -X*U’).
The update is directly applied on trailing matrix A. However, for
very small matrices it might be still difficult to extract performance
from Level-3 BLAS kernels.

7. Auto-tuning

The efforts of maximizing the performance of BLAS, especially
GEMM, generally fall into two directions: writing assembly code
and source level code tuning. The vendor libraries (e.g., Intel
MKL, AMD ACML and hipBLAS, NVIDIA CUBLAS) supply their own
routines on their hardware. To achieve performance, the GEMM
routine is implemented in assembly code, like the CUBLAS GEMM
on Kepler GPUs. The assembly code usually delivers high perfor-
mance. A disadvantage is that it is highly architecture-specific. The
vendors maintain the performance portability across different gen-
erations of their architectures [24]. Another direction is to explore
the source level code auto-tuning to achieve optimal performance
(within a preset kernel design space). Different from assembly code,
source code auto-tuning relies on the compilers to allocate regis-
ters and schedule instructions. The advantage is that source code
is architecturally independent and is easy to maintain. Our effort
focuses on source code auto-tuning.

7.1. Batched level-3 BLAS GEMM

The performance of linear algebra routines highly relies on the
Level-3 BLAS GEMM. Our batched GEMM is modified from the stan-
dard MAGMA GEMM [25]. The template parameters of our batched
GEMM include the number of threads, the size of shared memory,
and the data tile size. The product of the sizes for these parame-
ters produces a large search space, but it can be powerfully pruned
by constraints. The derived constraints of the search space include
correctness, as well as hardware constraints and soft constraints.
Hardware constraints stem from the realities of the accelerator
architecture, like registers and shared memory size. Based on these
metrics, invalid kernels violating the hardware requirement (like
exceeding 48 KB shared memory) will be discarded. The constraints
may be soft in terms of performance. We require at least 512
threads per GPU SMX (CU on AMD) to ensure a reasonable occu-
pancy. More details about tuning batched GEMM can be found in
[26].

Fig. 2 shows our batched DGEMM (denoted as the MAGMA
batched) performance against other solutions after auto-tuning.
The number of matrices is 400. The best CPU solution is to par-
allelize with 16 OpenMP threads on a 16-core Sandy Bridge CPU.
Its performance is stable around 100 Gflop/s. The non-batched GPU
solution is a loop over the 400 matrices by calling standard GEMM
routine, where the GPU sequentially processes each matrix and
relies on the multi-threading per matrix to achieve performance.
The non-batched curve linearly grows below size 320 and catches
up with CUBLAS batched GEMM around size 448. Our MAGMA
batched GEMM outperforms other solutions. It is 75 Gflop/s faster
(i.e., 30% faster) than CUBLAS on average and more than 3x faster
than the CPU solution. Fig. 3 also show the autotuning of the DGEMV
routine for wide matrices meaning matrices with small number

5 Batched DGEMM batchCount=400, K=32

~— GPU:MAGMA_Batched
400 | — GPU:Standard

~— GPU:CUBLAS_Batched
350 CPU:16 OMP Threads

. - /\V /WW”/\VWW

64 128 192 EIISGN 320 384 448 512

Fig. 2. Performance of our batched DGEMM (K =32) vs. other solutions on CPUs or
GPUs.

dgemv batched fat16
w1

Gflops
5

! : erformance bound —
i i : : Magma id5:8 16 10000
Magma id6:8 32 10000 ~ --------
Magma id4:8 8 10000 —
Magma id7:8 64 10000
Malqma |$112 16I 16 1q000 -

0 R S S R SR S S R
0 32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512
matrix size

Fig. 3. Tuning results of batched DGEMV for a wide matrix where m=16 and n is
reported in the x-axis.

of row (e.g., corresponding to the panel size of GEBRD) and large
number of columns.

7.2. Different batched level 2 BLAS GEMV instances tuning

In matrix-vector multiplication using a non-transpose matrix
(GEMVN), areduction is performed per row. Each thread is assigned
to arow and a warp of threads is assigned to a column. Each thread
iterates row-wise in a loop and naturally owns the reduction result.
Since matrices are stored in column-major format, the data access
in GEMVN by the warp is in a coalescing manner.

However, in GEMV using a transpose matrix (GEMVT), the
reduction must be performed on each column. Assigning a thread
to a column will make the reduction easy, but will lead to memory
access in a striding way. To overcome the non-coalescing problem
in GEMVT, a two-dimension thread block configuration is adopted.
Threads in x-dimension are assigned per row. These threads access
data row-wise to avoid the memory non-coalescing penalty. A loop
of these threads over the column is required in order to do the
column reduction in GEMVT. Partial results owned by each thread
are accumulated in every step of the loop. At the final stage, a tree
reduction among the threads is performed to obtain the final result,
similar to MPI_REDUCE.

Threads in y-dimension are assigned per column. A outside
loop is required to finish all the columns. Threads in x-dimension

242 T. Dong et al. / Journal of Computational Science 26 (2018) 237-245

ensure the data access is in a coalescing pattern. Threads in y-
dimension preserve the degree of parallelism, especially for the
wide matrix (or called fat matrix, with both terms being inter-
changeable throughout this paper) where the parallelism is more
critical to performance.

8. Performance on NVIDIA GPU

We conducted our experiments on a multicore system with two
8-cores socket Intel Xeon E5-2670 (Sandy Bridge) processors with
each running at 2.6 GHz. Each socket has a shared 20 MB L3 cache,
and each core has a private 256 KB L2 and a 64KB L1 cache. The
system is equipped with 64 GB of memory and the theoretical peak
in double precision is 20.8 Gflop/s per core, i.e., 332.8 Gflop/s in
total for the two sockets. It is also equipped with an NVIDIA K40c
GPU with 11.6 GB GDDR memory per card running at 825 MHz. The
theoretical peak in double precision is 1430 Gflop/s. The GPU is
connected to the CPU via PCle I/O hubs with 6 GB/s bandwidth.

In our testing, we assume the data already resided in the proces-
sor’'s memory. Unless explicitly noted, the memory transfer time
between processors is not considered. We believe this is a rea-
sonable assumption since the matrices are usually generated and
processed on the same processor. For example, in the high order
FEMs, each zone assembles one matrix on the GPU. The conjuga-
tion is performed immediately, followed by a batched GEMM. All
the data is generated and computed on the GPU [1].

8.1. Performance study and optimization of the
bi-diagonalization

Since the performance of the batched GEMV on K40c is around
40 Gflop/s (as shown in Fig. 4(a)), the GEBRD roofline bound is
80 Gflop/s according to Eq. (1). A sharper bound, using Eq. (1) and
that the Batched GEMM performance is 323 Gflop/s, is 2;33252> ~
71 Gflop/s.

Fig. 5 demonstrates the performance improvement progress of
our implementation. The non-blocked version purely composed of
Level 2 BLAS operations does not scale any more after size 256.
The first non-optimized blocked version v1 follows the LAPACK’s
two-phase implementation as depicted in Algorithm 1 in which the
trailing matrix is updated with Level 3 BLAS operations. Additional
memory allocation overhead has to be introduced in order to use
the array of pointers interfaces in the blocked algorithm. Below size
224, the performance of version v1 is even slower than the non-
blocked due to the overhead. Beyond 224, it starts to grow steadily
because of GEMM performance.

The main issue of the blocked version v1 is that the GEMVs are
not optimized for instances required by the GEBRD. By tuning these
GEMVs, as described in Section 7.2, the performance is immediately
doubled in version v2. These GEMV routines are called in the form of
device functions in the panel factorization kernel. The column/row
vector of householder reflectors and the to-be-updated column in
matrices X and Y are repeatedly accessed at each step. We load
them into fast on-chip shared memory. In order to reuse and syn-
chronize data in shared memory, one matrix can not span multiple
thread blocks. Therefore, we adopt the big-tile setting for the GEMV
device functions in v2. As discussed in Section 6.1, there is a trade-
off between data reuse (with big-tile setting) and the degree of
parallelism (with classic setting). We found there is a switch over
at size 128 for the two settings. We adopt classic setting beyond
size 128 and big-tile for size less than 128 for square instances. The
big-tile setting is still adopted for other wide/tall instances because
the data caching proves to be more important. By this switch-over,
the performance of version 3 boosts to 50 Gflop/s from 40 Gflops in
version 2 at size 512.

Batched DGEMV Transpose batchCount=1000

?AWN A "rﬂ |
VMUY

e

— aligned
5 — mis-aligned
pad

64 128 192 zas 320 384 448 512

(a) Performance of batched DGEMYV (transpose) in three situations: aligned, mis-

aligned, and pad.

Memory Bandwidth and Transactions (1076)
600
(30)

500 i pad

400 (49) E Mis-aligned
=300
? (71)

200 | (58) (92)

(64)
0
L1 L2 Device Mem

(b) Number of transactions (on top of the bar, in millions) and achieved bandwidth

of the y axis.

Fig. 4. Effect of the padding.

By profiling the GEMV time in GEBRD step by step, we find it does
not match the optimal performance obtained in our auto-tuning.
In Fig. 4(a), the blue curves depicts the performance of GEMV
transpose of double precision with every matrix being aligned in
memory. However, when the algorithm iterates the sub-matrix as
in GEBRD factorization, the starting address may not be aligned

MAGMA DGEBRD,BatchCount = 1000

=—a CPU

*— non-blocked

— blocked v1
blocked v2

501 — blocked v3
~— blocked v4 /\/,_/
40 N S

60|

& "
B g
5
-
Ww.r—k" g

%2 128 224 320 416 512
M=N

Fig.5. Performance of batched dgebrd: progress of different versions on a K40c GPU.

T. Dong et al. / Journal of Computational Science 26 (2018) 237-245 243

(green curve). The performance curve fluctuates because when the
starting address of the sub-matrix is aligned in memory, the peak
performance is reached; otherwise, it drops drastically. The fluc-
tuation is more serious for bigger matrices since most threads are
mis-aligned as more threads are used in large size.

To overcome the fluctuation issue, we adopt a padding tech-
nique. The starting thread always reads from the recent upper
aligned address. It introduces extra data reading. The extra reading
is up to 15 elements per row because 16 threads fit in an aligned
128-byte segment as a double element is of 8 byte. Although more
data is read, it is coalescing that the 128-byte segment can be
fetched by only one transaction. Overall the number of memory
transactions is reduced as shown in Fig. 4(b). Since the number
of memory transactions decreases, the bandwidth is improved
accordingly. By padding elements in the multiplied vector as zeros,
extra results are computed but finally discarded in the writing
stage. Fig. 4(a) shows that our padding technique enables the GEMV
in the GEBRD algorithm to run at a speed close to the aligned speed.
By padding, version 4 reaches 56 Gflop/s at size 512 which is 80% of
the upper bound of the performance.

A breakdown of different components contributing to the over-
all time of GEBRD version 4 is depicted in Fig. 6. As the matrix size
(n) increases, the time of the square matrix (in blue) begins to dom-
inate. At a smaller size (n), the percentage of the wide/ tall matrix
(asymptotically of size nj, by n) to the square matrix (asymptotically
of size n by n) is larger, since ny, is fixed. Thus, the time spending on
the wide/tall matrix (in red) is more prominent. The GEMM time is
relative stable around 10% across different size problems.

9. Batched GEMV and GEMM performance on AMD GPU

Recently, AMD introduced the Radeon Open Compute Platform
(ROCm) open-sourced platform for GPU-based high-performance
computing [27]. The ROCm ecosystem includes Linux kernels, run-
times, the HCC compiler, and high level mathematical libraries.
ROCm introduces a Heterogeneous-Compute Interface for Porta-
bility (HIP) layer allowing users to create portable applications that
run on AMD and NVIDIA GPUs with similar source code. Compared
to the OpenCL C language, HIP is a C/C++ runtime API and kernel
language that is very familiar to CUDA users [19]. Most GPU kernel
optimizations techniques on OpenCL and CUDA equally apply on
HIP programming.

AMD provides their vendor-optimized GPU BLAS, called hipBLAS
[28]. Like cuBLAS, hipBLAS provides standard GEMM and GEMV, but
no batched GEMV. Different than cuBLAS, hipBLAS only provides a

100%
90%
80%

60%
50%

GEMM
M Fat/Tall GEMV

40% i Square GEMV

30% | :
20%
10%

0%

512 384 256 128 64 32

Fig. 6. A time breakdown of batched GEBRD on a K40c GPU. (For interpretation of
the references to color in text, the reader is referred to the web version of the article.)

Table 1
Hardware specification of NVIDIA K40c and AMD R9 Fiji Nano.
GPU Bandwidth DP peak performance Memory
(GB/s) (Gflop/s) size (GB)
K40c 288 1430 12
Fiji Nano 512 512

HIP Batched DGEMM batchCount=400 on AMD Fiji Nano

i A \ V\/\
A A /VNN/{D/yﬁ,,*F.
250 ‘ ,// A\ //\/\‘/\/{ ‘.‘V‘/" AV \ IR

/| N\ 4 2\, \
’/r ~ /\/ "\\ | /‘\(/ ‘\.w 1 .\ !
VA 1/

A“/
PN A

200{ 1

[

[T

300

Gflop/s
=5

=—= M=N K=32 (hipBLAS)
e—e M=N K=16 (hipBLAS)
— M=N K=32 (MAGMA)
< M=N K=16 (MAGMA)

0 64 128 192 256 320 384 448 512
size

Fig. 7. Performance of hipBLAS and MAGMA batched DGEMM for K=32 and K=16
on AMD Fiji Nano.

strided batched GEMM routine, where the batched matrices are
not stored in an array of pointers. Instead, a pointer is provided
that points to the very first matrix, and the following matrices are
located with a fixed address offset called stride.

The AMD GPU that we use to test and present our results is a
Radeon R9 Fiji Nano. Fiji Nano is equipped with 4 GB HBM memory.
The specification of Fiji Nano vs. K40c is outlined in Table 1. Fiji
Nano has much less double precision (DP) peak performance, but
otherwise owns higher bandwidth. The software environment is
the ROCm v1.6.3 with the HCC compiler based on Clang 6.0 [29].

To run on AMD GPUs, we need to hipify our CUDA source code
into HIP code with the assistance of the AMD provided hipify-
perl script. We found that most of our batched GEMV and GEMM
CUDA code, including device functions, and templates, can be hip-
ified successfully except that we had to manually add an extra
“hipLaunchParm Ip” parameter to every HIP kernel.

We compare our batched GEMM against hipBLAS in three dif-
ferent instances: square matrix, K=32, and K=16, as these are of
interest in the GEBRD routine. From Fig. 7, the MAGMA HIP code
outperforms hipBLAS for every M=N size for K=32 and K=16.
MAGMA can reach 300 Gflop/s while hipBLAS fluctuates around
240 Gflop/s. One interesting thing is, there is a sudden jump at size
224 for hipBLAS, indicating that there is either a tuning or algorithm
change at that switch-over. Compared to CPU in Fig. 2, cuBLAS and
hipBLAS (after size 250) both climb close to 250 Gflop/s and exceed
the MKL with 16 threads on Sandy Bridge CPU, which achieves only
half of the performance on GPU.

The square matrix result is shown in Fig. 8. MAGMA wins over
hipBLAS before size 250. Beyond it, hipBLAS and MAGMA are very
close, and both stable at round 300 Gflop/s. If we compare this figure
with Fig. 2, the MAMGA HIP code fluctuates around 275 Gflop/s,
while the MAGMA CUDA code fluctuates at around 325 Gflop/s. This
can be partially explained by the fact that the K40c GPU owns higher
double precision computing capability (1.4 Tflop/s), which is about
2.8x that of the Fiji Nano (0.5 Tflop/s). However, the 2.8 x cannot
fully justify the fact that K40c is only 50 Gflop/s (18%) faster here.
The reason is that batched GEMM is not totally compute-bound as

244 T. Dong et al. / Journal of Computational Science 26 (2018) 237-245

HIP Batched DGEMM batchCount=400 on AMD Fiji Nano

350

300

100

50
/ ~— M=N=K (hipBLAS)

~— M=N=K (MAGMA)

0 64 128 192 256 320 384 448 512
size

Fig. 8. Performance of hipBLAS and MAGMA batched DGEMM for square matrix on
AMD Fiji Nano.

120

HIP Batched DGEMV batchCount:lQOO on AMD Fiji Nano

100

MWM\J

T

20l ! — M= N(square)
;/ == M=16 (wide)
N e N=16 (slim)

0 64 128 192 256 320 384 448
size

Gflop/s
8

IS
S

Fig. 9. Performance of MAGMA HIP batched DGEMV on AMD Fiji Nano.

the standard BLAS Level-3 GEMM, but a mix of compute-bound and
bandwidth-bound routine. For the same byte access, the batched
GEMM on small matrices has much less floating-point operations
than the standard GEMM for larger matrices, as explained in [1].
When the matrix size is smaller, the performance is more bounded
by bandwidth than the compute capability, which is the case for
batched BLAS where matrices are much smaller than in standard
BLAS. Although Fiji Nano has less computing capability, it owns
higher bandwidth than the K40c, which offsets its double precision
shortage.

The bandwidth advantage of the Fiji Nano is further shown in the
fully memory-bounded BLAS Level 2 batched GEMV routine, as in
Fig. 9. Because neither cuBLAS nor hipBLAS provides such routine,
we compare the MAGMA CUDA code and the HIP code. For square
matrices, the MAGMA HIP code fluctuates around 80 Gflop/s and
reaches up to 100 Gflop/s on the Fiji Nano, while the MAGMA CUDA
code stabilizes at around 40 Gflop/s, as in Fig. 4(a). For wide (or fat)
matrices (e.g., M=16), the MAMGA HIP code reaches more than
40 Gflop/s on the Fiji Nano GPU. In contrast, the MAGMA CUDA
code stabilizes at around 17 Gflop/s on the K40c, as in Fig. 3.

10. Conclusions and future work

The use of GPUs to accelerate scientific codes has been observed
extensively on large dense and sparse linear algebra problems that
feature abundant data parallelism. Solving small linear algebra
problems on current high-end many-core systems is more chal-
lenging. Still, small problems can be implemented relatively easy
for multicore CPUs by taking advantage of the large CPU caches for
data reuse. On the other hand, the development of small problems
on GPUs is not as straightforward. We demonstrated that with a
batched approach, small problems can be accelerated on GPUs to
have a significant advantage over CPUs, as well.

We consider a batched two-sided bi-diagonalization based on
the batched BLAS approach. We first adopt optimal blocking algo-
rithm to maximize the GPU-friendly GEMM operations. We then
propose device functions as the underlying components of the
batched BLAS kernels. The use of device functions allows the data to
be reused through shared memory and avoids multiple small ker-
nel launches, but without demodulizing the BLAS-based LAPACK
algorithm structure at the same time. The device functions are
CUDA/HIP C++ templated. Auto-tuning is used to help find the opti-
mal template setting for different types of kernels, e.g., standard,
batched, or different instances for a type of kernel, like transpose,
wide, slim for GEMV. Because the GEBRD algorithm iterates the
sub-matrix resulting in a mis-aligned starting address, we adopt
padding techniques to overcome the fluctuation. Using these tech-
niques, we achieve 56 Gflop/s, which is 80% of the upper bound
performance for the bi-diagonalization problem on a Kepler K40c
GPU.

We compare our batched BLAS across different platforms and
vendor-optimized libraries, whenever they have the corresponding
routines, including Intel MKL with 16 threads on Sandy Bridge CPU,
Nvidia cuBLAS on K40c GPU, and AMD hipBLAS on R9 Fiji Nano GPU.
Our test shows that our batched GEMM implementation exceeds all
of them in performance for the sizes of interest. For GPUs, we found
that the HIP code on Fiji Nano is 2x faster than the CUDA code on
K40c for the memory-bound GEMV routine. For batched DGEMM,
Fiji Nano hasinherent disadvantagesin double precision computing
ability, but heavily alleviated by its high bandwidth advantage.

The methods in this paper can be applied to other two-sided
factorizations, e.g., the Hessenberg reduction (GEHRD) and the tri-
diagonalization (SYTRD), as well. Besides the GEMV, GEHRD and
SYTRD use additional BLAS-2 triangular matrix-vector multiplica-
tion (TRMV) and symmetric matrix-vector multiplication (SYMV)
operations, respectively. The same optimization techniques used
for GEMV are applicable to TRMV and SYMV.

Acknowledgements

This work is partially supported by NSF Grant No. SI2:SSE
1740250, and the Exascale Computing Project (17-SC-20-SC), a col-
laborative effort of two U.S. Department of Energy organizations
(Office of Science and the National Nuclear Security Administra-
tion) responsible for the planning and preparation of a capable
exascale ecosystem, including software, applications, hardware,
advanced system engineering and early testbed platforms, in sup-
port of the nations exascale computing imperative.

References

[1] T. Dong, V. Dobrev, T. Kolev, R. Rieben, S. Tomov, J. Dongarra, A step towards
energy efficient computing: redesigning a hydrodynamic application on
CPU-GPU, IEEE 28th International Parallel Distributed Processing Symposium
(IPDPS) (2014).

[2] L. Brown, Accelerate Machine Learning with the cuDNN Deep Neural Network
Library, 2015 http://devblogs.nvidia.com/parallelforall/accelerate-machine-
learning-cudnn-deep-neural-network-library/.

http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0005
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0005
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0005
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0005
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0005
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0005
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0005
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0005
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0005
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0005
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0005
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0005
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0005
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0005
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0005
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0005
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0005
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0005
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0005
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0005
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0005
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0005
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0005
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0005
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0005
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0005
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0005
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0005
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0005
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0005
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0005
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0005
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0005
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0005
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0005
http://devblogs.nvidia.com/parallelforall/accelerate-machine-learning-cudnn-deep-neural-network-library/
http://devblogs.nvidia.com/parallelforall/accelerate-machine-learning-cudnn-deep-neural-network-library/
http://devblogs.nvidia.com/parallelforall/accelerate-machine-learning-cudnn-deep-neural-network-library/
http://devblogs.nvidia.com/parallelforall/accelerate-machine-learning-cudnn-deep-neural-network-library/
http://devblogs.nvidia.com/parallelforall/accelerate-machine-learning-cudnn-deep-neural-network-library/
http://devblogs.nvidia.com/parallelforall/accelerate-machine-learning-cudnn-deep-neural-network-library/
http://devblogs.nvidia.com/parallelforall/accelerate-machine-learning-cudnn-deep-neural-network-library/
http://devblogs.nvidia.com/parallelforall/accelerate-machine-learning-cudnn-deep-neural-network-library/
http://devblogs.nvidia.com/parallelforall/accelerate-machine-learning-cudnn-deep-neural-network-library/
http://devblogs.nvidia.com/parallelforall/accelerate-machine-learning-cudnn-deep-neural-network-library/
http://devblogs.nvidia.com/parallelforall/accelerate-machine-learning-cudnn-deep-neural-network-library/
http://devblogs.nvidia.com/parallelforall/accelerate-machine-learning-cudnn-deep-neural-network-library/
http://devblogs.nvidia.com/parallelforall/accelerate-machine-learning-cudnn-deep-neural-network-library/
http://devblogs.nvidia.com/parallelforall/accelerate-machine-learning-cudnn-deep-neural-network-library/

T. Dong et al. / Journal of Computational Science 26 (2018) 237-245 245

[3] PArallel Distributed Deep LEarning (Paddle), Available at https://github.com/
PaddlePaddle/Paddle, 2017.

[4] Theano Development Team, Theano: A Python Framework for Fast
Computation of Mathematical Expressions, arXiv e-prints http://arxiv.org/
abs/1605.02688.

[5] TensorFlow Development Team, TensorFlow: Large-Scale Machine Learning
on Heterogeneous Systems, Software Available at http://tensorflow.org/.

[6] R. Collobert, K. Kavukcuoglu, C. Farabet, Torch7: a Matlab-like environment
for machine learning, BigLearn, NIPS Workshop (2011).

[7] O. Messer, J. Harris, S. Parete-Koon, M. Chertkow, Multicore and accelerator
development for a leadership-class stellar astrophysics code, Proceedings of
PARA 2012: State-of-the-Art in Scientific and Parallel Computing (2012).

[8] J. Molero, E. Garzon, I. Garcia, E. Quintana-Orti, A. Plaza, Poster: A Batched
Cholesky Solver for Local RX Anomaly Detection on GPUs, PUMPS, 2013.

[9] N. Corporation, https://devtalk.nvidia.com/default/topic/527289/help-with-
gpu-cholesky-factorization-/.

[10] Batched SVD, Available at https://devtalk.nvidia.com/default/topic/851534/
batched-svd-/, 2015.

[11] J. Dongarra, I. Duff, M. Gates, A. Haidar, S. Hammarling, N.J. Higham, J. Hogg, P.
Valero-Lara, S.D. Relton, S. Tomov, M. Zounon, A proposed API for batched
basic linear algebra subprograms, in: MIMS EPrint 2016.25, Manchester
Institute for Mathematical Sciences, The University of Manchester, UK, 2016
http://eprints.ma.man.ac.uk/2464/.

[12] S. Tomov,]. Dongarra, M. Baboulin, Towards dense linear algebra for hybrid
GPU accelerated manycore systems, Parellel Comput. Syst. Appl. 36 (5-6)
(2010) 232-240, http://dx.doi.org/10.1016/j.parco.2009.12.005.

[13] J. Dongarra, M. Gates, A. Haidar, J. Kurzak, P. Luszczek, S. Tomov, I. Yamazaki,
Accelerating numerical dense linear algebra calculations with GPUs, Numer.
Comput. GPUs (2014) 1-26.

[14] A.Haidar, T.T. Dong, S. Tomov, P. Luszczek,]. Dongarra, A framework for
batched and GPU-resident factorization algorithms applied to block
householder transformations, in: 30th Proceedings of the International
Conference on High Performance Computing, ISC High Performance 2015,
Frankfurt, Germany, July 12-16, 2015, 2015, pp. 31-47.

[15] T.Dong, A. Haidar, S. Tomov, J. Dongarra, A fast batched Cholesky factorization
on a GPU, in: 43rd International Conference on Parallel Processing, ICPP 2014,
Minneapolis, MN, USA, September 9-12, 2014, 2014, pp. 432-440.

[16] T. Dong, A. Haidar, P. Luszczek, A. Harris, S. Tomov,]. Dongarra, LU
factorization of small matrices: accelerating batched DGETRF on the GPU,
16th IEEE International Conference on High Performance and
Communications (HPCC 2014) (2014).

[17] A.Haidar, T. Dong, S. Tomov, P. Luszczek,]. Dongarra, Framework for batched
and GPU-resident factorization algorithms to block householder
transformations, in: ISC High Performance, Springer, Frankfurt, Germany,
2015.

[18] T. Dong, A. Haidar, S. Tomov, J.J. Dongarra, Optimizing the SVD
bidiagonalization process for a batch of small matrices, in: International
Conference on Computational Science (ICCS'17), 12-14 June 2017, Zurich,
Switzerland, 2017, pp. 1008-1018, http://dx.doi.org/10.1016/j.procs.2017.05.
237.

[19] Hip, Available at https://github.com/ROCm-Developer-Tools/HIP, 2016.

[20] K. Kabir, A. Haidar, S. Tomov, J. Dongarra, On the Design, Development, and
Analysis of Optimized Matrix-Vector Multiplication Routines for
Coprocessors, Springer International Publishing, Cham, 2015, pp. 58-73,
http://dx.doi.org/10.1007/978-3-319-20119-1.5.

[21] G. Golub, W. Kahan, Calculating the Singular Values and Pseudo-Inverse of a
Matrix, http://www jstor.org/stable/2949777.

[22] V. Oreste, M. Fatica, N.A. Gawande, A. Tumeo, Power/performance trade-offs
of small batched LU based solvers on GPUs, in: 19th International Conference
on Parallel Processing, Euro-Par 2013, Vol. 8097 of Lecture Notes in Computer
Science, Aachen, Germany, 2013, pp. 813-825.

[23] B. Rymut, B. Kwolek, Real-time multiview human body tracking using
GPU-accelerated PSO, in: International Conference on Parallel Processing and
Applied Mathematics (PPAM 2013), Lecture Notes in Computer Science,
Springer-Verlag, Berlin, Heidelberg, 2014.

[24] Q. Wang, X. Zhang, Y. Zhang, Q. Yi, AUGEM: automatically generate high
performance dense linear algebra kernels on x86 CPUs, in: Proceedings of the
International Conference on High Performance Computing, Networking,
Storage and Analysis, SC '13, ACM, New York, NY, USA, 2013, pp. 25:1-25:12,
http://dx.doi.org/10.1145/2503210.2503219.

[25] R. Nath, S. Tomov,]. Dongarra, An improved magma Gemm for Fermi graphics
processing units, Int. J. High Perform. Comput. Appl. 24 (4) (2010) 511-515,
http://dx.doi.org/10.1177/1094342010385729.

[26] A. Abdelfattah, A. Haidar, S. Tomov, J.J. Dongarra, Performance, Design, and
Autotuning of Batched GEMM for GPUs, 2016, pp. 21-38, http://dx.doi.org/10.
1007/978-3-319-41321-1.2.

[27] ROCm, https://github.com/RadeonOpenCompute/ROCm, 2016.

[28] hipBLAS, https://github.com/ROCmSoftwarePlatform/hipBLAS, 2016.

[29] HCC, https://github.com/RadeonOpenCompute/hcc, 2016.

https://github.com/PaddlePaddle/Paddle
https://github.com/PaddlePaddle/Paddle
https://github.com/PaddlePaddle/Paddle
https://github.com/PaddlePaddle/Paddle
https://github.com/PaddlePaddle/Paddle
http://arxiv.org/abs/1605.02688
http://arxiv.org/abs/1605.02688
http://arxiv.org/abs/1605.02688
http://arxiv.org/abs/1605.02688
http://arxiv.org/abs/1605.02688
http://arxiv.org/abs/1605.02688
http://tensorflow.org/
http://tensorflow.org/
http://tensorflow.org/
http://tensorflow.org/
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0030
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0030
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0030
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0030
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0030
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0030
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0030
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0030
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0030
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0030
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0030
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0030
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0030
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0030
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0030
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0030
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0030
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0035
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0035
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0035
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0035
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0035
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0035
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0035
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0035
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0035
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0035
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0035
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0035
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0035
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0035
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0035
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0035
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0035
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0035
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0035
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0035
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0035
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0035
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0035
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0035
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0035
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0035
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0035
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0035
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0035
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0040
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0040
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0040
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0040
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0040
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0040
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0040
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0040
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0040
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0040
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0040
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0040
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0040
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0040
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0040
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0040
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0040
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0040
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0040
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0040
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0040
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0040
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0040
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0040
https://devtalk.nvidia.com/default/topic/527289/help-with-gpu-cholesky-factorization-/
https://devtalk.nvidia.com/default/topic/527289/help-with-gpu-cholesky-factorization-/
https://devtalk.nvidia.com/default/topic/527289/help-with-gpu-cholesky-factorization-/
https://devtalk.nvidia.com/default/topic/527289/help-with-gpu-cholesky-factorization-/
https://devtalk.nvidia.com/default/topic/527289/help-with-gpu-cholesky-factorization-/
https://devtalk.nvidia.com/default/topic/527289/help-with-gpu-cholesky-factorization-/
https://devtalk.nvidia.com/default/topic/527289/help-with-gpu-cholesky-factorization-/
https://devtalk.nvidia.com/default/topic/527289/help-with-gpu-cholesky-factorization-/
https://devtalk.nvidia.com/default/topic/527289/help-with-gpu-cholesky-factorization-/
https://devtalk.nvidia.com/default/topic/527289/help-with-gpu-cholesky-factorization-/
https://devtalk.nvidia.com/default/topic/527289/help-with-gpu-cholesky-factorization-/
https://devtalk.nvidia.com/default/topic/527289/help-with-gpu-cholesky-factorization-/
https://devtalk.nvidia.com/default/topic/527289/help-with-gpu-cholesky-factorization-/
https://devtalk.nvidia.com/default/topic/851534/batched-svd-/
https://devtalk.nvidia.com/default/topic/851534/batched-svd-/
https://devtalk.nvidia.com/default/topic/851534/batched-svd-/
https://devtalk.nvidia.com/default/topic/851534/batched-svd-/
https://devtalk.nvidia.com/default/topic/851534/batched-svd-/
https://devtalk.nvidia.com/default/topic/851534/batched-svd-/
https://devtalk.nvidia.com/default/topic/851534/batched-svd-/
https://devtalk.nvidia.com/default/topic/851534/batched-svd-/
https://devtalk.nvidia.com/default/topic/851534/batched-svd-/
https://devtalk.nvidia.com/default/topic/851534/batched-svd-/
http://eprints.ma.man.ac.uk/2464/
http://eprints.ma.man.ac.uk/2464/
http://eprints.ma.man.ac.uk/2464/
http://eprints.ma.man.ac.uk/2464/
http://eprints.ma.man.ac.uk/2464/
http://eprints.ma.man.ac.uk/2464/
http://eprints.ma.man.ac.uk/2464/
http://eprints.ma.man.ac.uk/2464/
dx.doi.org/10.1016/j.parco.2009.12.005
dx.doi.org/10.1016/j.parco.2009.12.005
dx.doi.org/10.1016/j.parco.2009.12.005
dx.doi.org/10.1016/j.parco.2009.12.005
dx.doi.org/10.1016/j.parco.2009.12.005
dx.doi.org/10.1016/j.parco.2009.12.005
dx.doi.org/10.1016/j.parco.2009.12.005
dx.doi.org/10.1016/j.parco.2009.12.005
dx.doi.org/10.1016/j.parco.2009.12.005
dx.doi.org/10.1016/j.parco.2009.12.005
dx.doi.org/10.1016/j.parco.2009.12.005
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0065
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0065
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0065
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0065
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0065
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0065
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0065
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0065
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0065
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0065
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0065
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0065
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0065
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0065
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0065
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0065
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0065
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0065
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0065
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0065
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0065
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0065
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0065
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0065
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0065
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0065
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0065
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0065
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0065
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0070
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0070
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0070
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0070
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0070
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0070
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0070
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0070
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0070
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0070
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0070
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0070
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0070
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0070
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0070
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0070
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0070
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0070
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0070
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0070
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0070
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0070
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0070
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0070
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0070
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0070
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0070
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0070
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0070
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0070
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0070
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0070
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0070
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0070
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0070
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0070
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0070
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0070
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0070
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0070
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0070
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0070
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0070
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0070
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0070
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0070
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0070
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0070
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0070
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0070
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0075
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0075
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0075
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0075
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0075
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0075
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0075
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0075
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0075
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0075
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0075
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0075
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0075
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0075
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0075
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0075
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0075
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0075
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0075
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0075
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0075
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0075
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0075
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0075
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0075
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0075
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0075
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0075
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0075
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0075
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0075
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0075
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0075
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0075
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0075
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0075
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0075
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0075
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0080
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0080
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0080
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0080
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0080
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0080
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0080
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0080
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0080
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0080
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0080
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0080
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0080
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0080
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0080
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0080
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0080
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0080
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0080
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0080
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0080
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0080
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0080
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0080
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0080
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0080
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0080
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0080
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0080
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0080
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0080
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0080
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0080
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0080
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0080
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0085
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0085
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0085
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0085
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0085
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0085
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0085
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0085
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0085
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0085
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0085
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0085
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0085
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0085
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0085
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0085
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0085
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0085
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0085
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0085
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0085
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0085
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0085
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0085
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0085
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0085
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0085
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0085
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0085
dx.doi.org/10.1016/j.procs.2017.05.237
dx.doi.org/10.1016/j.procs.2017.05.237
dx.doi.org/10.1016/j.procs.2017.05.237
dx.doi.org/10.1016/j.procs.2017.05.237
dx.doi.org/10.1016/j.procs.2017.05.237
dx.doi.org/10.1016/j.procs.2017.05.237
dx.doi.org/10.1016/j.procs.2017.05.237
dx.doi.org/10.1016/j.procs.2017.05.237
dx.doi.org/10.1016/j.procs.2017.05.237
dx.doi.org/10.1016/j.procs.2017.05.237
dx.doi.org/10.1016/j.procs.2017.05.237
https://github.com/ROCm-Developer-Tools/HIP
https://github.com/ROCm-Developer-Tools/HIP
https://github.com/ROCm-Developer-Tools/HIP
https://github.com/ROCm-Developer-Tools/HIP
https://github.com/ROCm-Developer-Tools/HIP
https://github.com/ROCm-Developer-Tools/HIP
https://github.com/ROCm-Developer-Tools/HIP
dx.doi.org/10.1007/978-3-319-20119-1_5
dx.doi.org/10.1007/978-3-319-20119-1_5
dx.doi.org/10.1007/978-3-319-20119-1_5
dx.doi.org/10.1007/978-3-319-20119-1_5
dx.doi.org/10.1007/978-3-319-20119-1_5
dx.doi.org/10.1007/978-3-319-20119-1_5
dx.doi.org/10.1007/978-3-319-20119-1_5
dx.doi.org/10.1007/978-3-319-20119-1_5
dx.doi.org/10.1007/978-3-319-20119-1_5
dx.doi.org/10.1007/978-3-319-20119-1_5
dx.doi.org/10.1007/978-3-319-20119-1_5
dx.doi.org/10.1007/978-3-319-20119-1_5
http://www.jstor.org/stable/2949777
http://www.jstor.org/stable/2949777
http://www.jstor.org/stable/2949777
http://www.jstor.org/stable/2949777
http://www.jstor.org/stable/2949777
http://www.jstor.org/stable/2949777
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0110
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0110
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0110
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0110
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0110
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0110
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0110
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0110
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0110
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0110
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0110
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0110
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0110
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0110
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0110
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0110
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0110
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0110
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0110
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0110
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0110
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0110
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0110
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0110
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0110
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0110
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0110
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0110
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0110
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0110
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0110
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0110
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0110
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0110
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0110
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0110
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0110
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0110
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0110
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0110
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0110
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0110
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0115
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0115
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0115
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0115
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0115
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0115
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0115
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0115
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0115
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0115
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0115
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0115
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0115
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0115
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0115
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0115
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0115
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0115
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0115
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0115
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0115
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0115
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0115
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0115
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0115
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0115
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0115
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0115
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0115
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0115
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0115
http://refhub.elsevier.com/S1877-7503(17)31150-X/sbref0115
dx.doi.org/10.1145/2503210.2503219
dx.doi.org/10.1145/2503210.2503219
dx.doi.org/10.1145/2503210.2503219
dx.doi.org/10.1145/2503210.2503219
dx.doi.org/10.1145/2503210.2503219
dx.doi.org/10.1145/2503210.2503219
dx.doi.org/10.1145/2503210.2503219
dx.doi.org/10.1145/2503210.2503219
dx.doi.org/10.1177/1094342010385729
dx.doi.org/10.1177/1094342010385729
dx.doi.org/10.1177/1094342010385729
dx.doi.org/10.1177/1094342010385729
dx.doi.org/10.1177/1094342010385729
dx.doi.org/10.1177/1094342010385729
dx.doi.org/10.1177/1094342010385729
dx.doi.org/10.1007/978-3-319-41321-1_2
dx.doi.org/10.1007/978-3-319-41321-1_2
dx.doi.org/10.1007/978-3-319-41321-1_2
dx.doi.org/10.1007/978-3-319-41321-1_2
dx.doi.org/10.1007/978-3-319-41321-1_2
dx.doi.org/10.1007/978-3-319-41321-1_2
dx.doi.org/10.1007/978-3-319-41321-1_2
dx.doi.org/10.1007/978-3-319-41321-1_2
dx.doi.org/10.1007/978-3-319-41321-1_2
dx.doi.org/10.1007/978-3-319-41321-1_2
dx.doi.org/10.1007/978-3-319-41321-1_2
dx.doi.org/10.1007/978-3-319-41321-1_2
https://github.com/RadeonOpenCompute/ROCm
https://github.com/RadeonOpenCompute/ROCm
https://github.com/RadeonOpenCompute/ROCm
https://github.com/RadeonOpenCompute/ROCm
https://github.com/RadeonOpenCompute/ROCm
https://github.com/ROCmSoftwarePlatform/hipBLAS
https://github.com/ROCmSoftwarePlatform/hipBLAS
https://github.com/ROCmSoftwarePlatform/hipBLAS
https://github.com/ROCmSoftwarePlatform/hipBLAS
https://github.com/ROCmSoftwarePlatform/hipBLAS
https://github.com/RadeonOpenCompute/hcc
https://github.com/RadeonOpenCompute/hcc
https://github.com/RadeonOpenCompute/hcc
https://github.com/RadeonOpenCompute/hcc
https://github.com/RadeonOpenCompute/hcc

	Accelerating the SVD bi-diagonalization of a batch of small matrices using GPUs
	1 Introduction
	2 Related work and contributions
	3 Background
	4 Householder bi-diagonalization
	5 Performance bound analysis and roofline model
	6 Batched BLAS design and implementation for GPUs
	6.1 Two-level parallelism and device-kernel mode
	6.2 Data reuse and degrees of parallelism
	6.3 Batched bi-diagonalization implementations on GPUs

	7 Auto-tuning
	7.1 Batched level-3 BLAS GEMM
	7.2 Different batched level 2 BLAS GEMV instances tuning

	8 Performance on NVIDIA GPU
	8.1 Performance study and optimization of the bi-diagonalization

	9 Batched GEMV and GEMM performance on AMD GPU
	10 Conclusions and future work
	Acknowledgements
	References

