
Accelerating 2D FFT: Exploit GPU Tensor Cores through Mixed-Precision
Xiaohe Cheng, Anumeena Sorna, Eduardo D’Azevedo (Advisor), Kwai Wong (Advisor), Stanimire Tomov (Advisor)

Hong Kong University of Science and Technology, National Institute of Technology, Oak Ridge National Laboratory, University of Tennessee

Acknowledgements & References
This project was sponsored by the National Science Foundation through Research Experience for 

Undergraduates (REU) award, with additional support from the Joint Institute of Computational Sciences 

at University of Tennessee Knoxville. This project used allocations from the Extreme Science and 

Engineering Discovery Environment (XSEDE), which is supported by the National Science Foundation. In 

addition, the computing work was also performed on technical workstations donated by the BP High 

Performance Computing Team. This research is sponsored by the Office of Advanced Scientific 

Computing Research; U.S. Department of Energy. The work was performed at the Oak Ridge National 

Laboratory, which is managed by UT-Battelle, LLC under Contract No. De-AC05-00OR22725.

[1] Kumar, Vipin, et al. Introduction to parallel computing: design and analysis of algorithms, Vol. 400. Ch. 10.

Redwood City: Benjamin/Cummings, 1994.

[2] Staar, Peter, et al. "Taking a quantum leap in time to solution for simulations of high-Tc superconductors." 

High Performance Computing, Networking, Storage and Analysis (SC), 2013 International Conference for. 

IEEE, 2013.

[3] Göddeke, Dominik, Robert Strzodka, and Stefan Turek. “Performance and accuracy of hardware-oriented 

native-, emulated-and mixed-precision solvers in FEM simulations.” International Journal of Parallel, 

Emergent and Distributed Systems 22.4, 2007, pp. 221-256.

[4] Appleyard and Yokim, Programming Tensor Cores in CUDA 9, NVIDIA Developer Blog, Oct 2017.

Overview
q 2D FFT in HPC applications

§ Frequency domain analysis 

§ Quantum cluster simulations

q Large volume and high parallelism

§ Exploit modern parallel architectures

§ Graphics Processing Units (GPUs)

§ Nvidia CUDA

q cuFFT library: current state of the art, but can

NOT benefit from the FP16 arithmetic on 

recent hardware due to accuracy limitations

• cuFFT does not

achieve the same

level of acceleration

as cuBLAS GEMM

q Results: Tensor Core accelerated FFT & 

improved accuracy

§ Straightforward CUDA implementation

costs ~2.5x time of cuFFT32

§ Error within 10-4, 1000x better than

cuFFT16

Our Proposed Approach

Operation Acceleration
GEMM 320%
FFT FP16 17.02%
FFT FP32 12.33%

Experimental Results

Additional Observations 

Conclusions & Future Work

Motivation
q Mixed-precision methods benefit both

computation and memory

q Tensor cores on new GPU architecture

§ Matrix-multiply-and-accumulate units 

with throughput up to 125 TFLOPS

§ Multiply Inputs: FP16 (half type) only

q FFT properties: linearity, numerical 

stability, intensive matrix multiplications

Our novel implementation that exploits

tensor cores by dynamically splitting a

FP32 input into two FP16 operands

q Our dynamic splitting method computes 2D fast Fourier

transform efficiently by utilizing the hardware

advancement in half-precision floating-point arithmetic

q The implementation effectively emulates single

precision calculation, and produces highly accurate

results from a variety of inputs

q The speed of current cuBLAS-based implementation is

inferior to cuFFT library, but optimizations are available:

§ Tiled matrix transpose via GPU shared memory

§ Pre-computation of twiddle factors

§ Combination of real and imaginary operations

q Input-aware auto-tuning splitting algorithm is to be

designed to support ill-conditioned inputs. It may further

improve execution speed and accuracy.

S E E E E E M M M M M M M M M M

q Implementing 2D FFT

! = # $ % $ #&

m

n

1D FFT over 
each row

1

m

n

1D FFT over 
each column

2

q To utilize column major 1D 

FFT routine

! = (# $ # $ % &)&

m
n

1D FFT over 
each column

1

2
Transpose

n

m

1D FFT over 
each column

3 4 Transpose*

m

n

* The final transpose is
optional in many

applications

1D FFT: Apply Cooley–Tukey algorithm, choose N1 = 4 (radix-4)

to balance execution speed and accuracy.

Reshape &
Transpose

N

N1

N2
N1

N2

N1

N2

N1

N2
N1

N2

N· Tw

N2-Point DFTs
Factor 

Multiplication N1-Point DFTs

The input vector of size
N is reshaped into an
N1 * N2 matrix and
transposed.

Take N1 smaller DFTs of
size N2 recursively. In
the base case, split the
FP32 input into two FP16
vectors and multiply them
by FP16 Fourier matrix.

In the combine step, 
multiply each element by 
the corresponding 
twiddle factor (point-wise 
multiplication).

Transpose* and take N2 
smaller DFTs of size N1 
in FP16 through splitting. 
Transpose* and reshape 
it to get in-order result.

* In implementation we 
modify the DFT kernel to 
avoid taking transpose.v Mixed precision DFT: dynamic splitting

§ Linearity of FFT allows 
the separate computation
of FFT(Xhi) and FFT(Xlo)
in half precision

%(: ) =
*%+, : + .%/0 :
1 – infinity norm of input
2 – infinity norm of residue

q The method preserves high accuracy,

even with growing matrix sizes

q The cost of dynamic splitting and combine 

is not significant

The relative error of 2D FFT at different input sizes
(horizontal dimension * vertical dimension), using our
implementation and half precision cuFFT.

q The implementation can 

handle a wide range of

inputs and produce

accurate results

The execution time breakdown at different input sizes.
About 90% of total time is spent on matrix multiplication.

q For fixed number of

input elements, the

accuracy is affected by

the shape of matrix.

Particular matrix

dimensions lead to

higher accuracy, which

can be exploited by

FFT applications.

Data range ±4567 ±4568 ±4. 5 ±458 ±45: ±45;

cuFFT16 59.088 5.818% 5.602% 5.783% N/A N/A

Splitting 0.002% 0.001% 0.001% 0.001% 0.001% 0.001%

Relative error
at different
data ranges.


