Tensor contraction on distributed hybrid
architectures using a task-based runtime system

George Bosilca Damien Genet

Robert J. Harrison Thomas Herault

ICL, University of Tennessee ICL, University of Tennessee IACS, Stony Brook University ICL, University of Tennessee

Knoxville, TN, USA Knoxville, TN, USA
Mohammad Mahdi Javanmard
IACS, Stony Brook University
Stony Brook, NY, USA

Abstract—The needs for predictive simulation of elec-
tronic structure in chemistry and materials science calls for
fast/reduced-scaling formulations of quantum n-body methods
that replace the traditional dense tensors with element-, block-,
rank-, and block-rank-sparse (data-sparse) tensors. The re-
sulting, highly irregular data structures are a poor match to
imperative, bulk-synchronous parallel programming style due to
the dynamic nature of the problem and to the lack of clear
domain decomposition to guarantee a fair load-balance. TESSE
runtime and the associated programming model aim to sup-
port performance-portable composition of applications involving
irregular and dynamically changing data. In this paper we
report an implementation of irregular dense tensor contraction
in a paradigmatic electronic structure application based on the
TESSE extension of PaRSEC, a distributed hybrid task runtime
system, and analyze the resulting performance on a distributed-
memory cluster of multi-GPU nodes. Unprecedented strong
scaling and promising efficiency indicate a viable future for task-
based programming of complete production-quality reduced-
scaling models of electronic structure.

Index Terms—

I. INTRODUCTION

As the future of high performance computing is transition-
ing towards increasingly hybrid hardware, with deep memory
hierarchies and a growing number of computational resources
(CPU cores or different types of accelerators), it becomes
unquestionable that for this transition to be successful it needs
to be supported by a similar transition in the way these
resources are managed and used. Future applications will not
thrive due to core peak performance or physical frequency
increases but by exposing a larger and more varied degree of
parallelism from our applications and relying on the hardware
and software infrastructure to maximize its performance. There
will be no single path to success but a clever combination
of techniques, with few common demands: an increase in
asynchrony and a finer granularity of parallelism. As long as
we don’t have the tools to automatically extract these from
sequential source code, the burden to expose the intrinsic
algorithmic parallelism remains on software developers. In
a traditional programming environment, software developers

NSF #1450300, #1450344, #1450262 and Exascale Computing Project (17-
SC-20-SC)

Chong Peng
Department of Chemistry, Virginia Tech
Blacksburg, VA, USA

Stony Brook, NY, USA Knoxville, TN, USA

Edward F. Valeev

Department of Chemistry, Virginia Tech
Blacksburg, VA, USA

are required in addition of exposing parallelism from the
algorithms, to manage the resources and also to decompose
and express their. computations in a way that is portable
among shared and distributed memory machines with widely
varying configurations. To address the challenges of effi-
ciently utilizing this type of heterogeneous resources we need
programming paradigms that provide the ability to express
parallelism in more flexible and productive manners. MPI and
OpenMP are two of the most popular programming models
for parallel applications, and their impact on the computa-
tional science is undeniable. However, they both encourage a
practice of parallel programming for hero-programmers, where
the ~developers perform multiple jobs: express parallelism,
manage the computational resources and communications, and
programmatically provide the mapping between these two.
These burdens become heavier with the increase in core and
node count, in heterogeneity of computational resources and
application size.

At the opposite of the spectrum, task based runtime systems
have become popular in tackling such challenges and making
it easier to write parallel HPC applications. Runtimes relieve
the users from managing low-level resources and give them
the opportunity to focus on writing parallel applications by
describing the potential parallelism in a way that is com-
prehensible and exploitable by them. A task-based runtime
expects the users to express their computations and the data
on which the computations will be performed in a way where
computations become entities (aka. kernels or tasks) and the
data flowing among them are the dependencies. Runtimes then
create a complete, or in some cases partial, Directed Acyclic
Graph (DAG) of tasks based on these dependencies, and will
map these tasks on the available resources to achieve a correct,
and possibly efficient execution. Thus, the major challenge of
using a runtime is not only on the capabilities of the runtime,
but also on the expressivity of the language or API the runtime
provides for expressing the graph of tasks, and on providing
the needed parallelism to maximize resource occupancy.

As advanced science applications seek to expand the scale
and fidelity of systems being simulated, they must reduce
algorithmic/computational complexity while controlling or

even improving accuracy and robustness. In computational
chemistry and material science these goals are achieved by
exploiting dynamic (i.e., discovered during the course of com-
putation) sparsity and low-rank structures that together com-
bine to greatly increase both the complexity of the software
and the irregularity of the computation, while also reducing
the granularity of computation. There is thus a fundamental
tension between adopting advanced algorithms and realizing
high-performance on current supercomputer systems, such as
hybrid systems accelerated with multiple GPUS that represent
a path to exascale simulation.

In the TESSE (Task-based Environment for Scientific
Simulation at Extreme ScalE) project we have employed
application-driven design to create a general-purpose software
framework that attacks the twin challenges of programmer
productivity and portable performance for advanced scientific
applications on massively-parallel, hybrid, many-core systems.
TESSE (1) extends the successful PaRSEC runtime and execu-
tion model [1] to support more irregular and dynamic applica-
tions, (2) defines a new programming model for composing
sparse algorithms in modern C++ that leverages concepts
of general flow-based programming and more specifically
the PaRSEC parameterized task graph [2] for dense linear
algebra [3], and (3) develops a new generation of science
applications that builds upon these tools. Crucial to success
is the appropriate partitioning of responsibilities between the
runtime, the parallel-programming model, and the application.

In this paper, we focus upon the TESSE runtime and
demonstrate, for the first time, key components of a many-
body chemistry application executing on a distributed-memory
computer with fully distributed data and utilizing multiple
GPUs per node. We describe and demonstrate progress towards
an extension to the PaRSEC runtime for irregular applications
executing on distributed memory, hybrid architectures. In
particular, contractions of 4-index block-distributed (and even-
tually block-sparse) tensors are mapped to matrix-multiply
operations with irregular tiles. Key challenges overcome and
features demonstrated are

o obtaining high-performance with matrix operations on
strongly non-square matrices,

« a model based approach starting from single node multi-
GPU benchmark data,

« an intelligent runtime for irregularly-tiled data that load
balances and routes work to CPU/GPU appropriately
based upon size/shape,

« the use of futures to integrate the new component on the
TESSE runtime into the existing application that uses the
MADNESS parallel runtime,

o experiments that demonstrate and analyze the application
performance on up to 16 nodes with multiple GPUs/node.

II. MOTIVATING SCIENCE APPLICATION

Although the objectives of TESSE runtime are domain-
neutral, a particular key science application — namely, accurate
simulation of the electronic structure of molecules and solids
— was chosen to drive the development of TESSE. Predictive

simulation of electronic structure involves first-principles solu-
tion of the quantum mechanical equation of motion for many
(potentially, an infinite number of) electrons; exact solutions
are not known for even 2 electrons (outside of few models)
and even for a finite discretization the problem is NP-hard.
Robust approximate methods exist, such as coupled-cluster [4]
and many-body Green’s function approaches, but they are
expensive, i.e. they have high-order polynomial operation
and space complexity; for the foundational Coupled Cluster
Singles and Doubles method (CCSD) these are N and N4,
respectively. The high complexity limits the applicability of
conventional (naive) formulations of predictive methods to
systems with a few (5-10) atoms on a single workstation, and
a few dozen (50-100) atoms on a supercomputer [5]. However,
recent emergence of robust fast/reduced-scaling formulations
has greatly extended the applicability of such methods to hun-
dreds of atoms on a single workstation [6]. Such formulations
replace the usual dense tensors with block-sparse and/or block-
rank-sparse tensors, generally referred to as data-sparse. Thus
one of the concrete goals of TESSE was to allow high-level
composition of performant data-sparse tensor algebra required
by the reduced-scaling electronic structure methods on modern
distributed-memory heterogeneous computer platforms.

Since there are dozens of terms in the nonlinear algebraic
equations that define even the simplest target method, CCSD,
in a finite basis number, to understand application performance
it is sufficient to focus on the representative, and usually the
most expensive term (accounting routinely 90% or more),
in the CCSD equation,' often referred to colloquially as the
ABCD term:

Ry =Y TIGS+ ..., (1)
cd

where the elements of tensor 71" are the model parameters to
be determined iteratively (in typically 10-20 iterations) so that
tensor R vanishes. Tensor G is fixed (does not change between
iterations). Ranges of all indices are proportional to system
size N, hence each tensor has N* space complexity, and the
operation has N6 operation complexity.

The tensor contraction in Eq. (1) can be viewed as a
multiplication of matrix 7" (with fused indices ¢5 and cd
playing the role of row and column indices, respectively) with
square matrix G (with c¢d and ab row and column indices).
In practice the range of unoccupied indices (abcd) has rank
U that’s a factor of 5-20 larger than the corresponding rank
O of the occupied indices ij, hence transposes of matricized
tensors 7' and R are very tall and skinny matrices, with
aspect ratios of 25-400! Optimal formulation of dense matrix
multiplication on distributed-memory systems [7], including
for rectangular matrices [8], is relatively well understood.
However, translating these advances in dense linear algebra
to advances in electronic structure involves several hurdles:

IThe permutational symmetries of tensors 7', G and R, which are essential
for proper physics as well as optimal operation count, are neglected for
simplicity.

o A realistic implementation of Eq. (1) may violate the
assumption of regularity that lend to formally perfect load
balance of traditional algorithms, e.g. ranges abcd may be
irregularly tiled due to particular structure of the basis, as
in the so-called integral-driven formulation of the ABCD
term in which G is evaluated on the fly.

o An optimal formulation of Eq. (1) calls for exploiting the
data sparsity in 7', GG, and R that becomes apparent by an
appropriate choice of the basis in which to express these
tensors; this reduces the operation complexity from N6
to N [6].

« Data sparsity of tensors in electronic structure assume a
variety of forms, e.g. G is block sparse, whereas tensors
T and R have blocks that are rank and eventually (for
large enough systems) element sparse.

It is clear that high-performance computing with irregularly-
tiled and/or data-sparse tensorial data structures is a poor
match to imperative, bulk-synchronous parallel programming
style and execution models due to the irregular (and potentially
dynamic) structure of the data. The goal of this paper is to
demonstrate how modern task-based dataflow-style execution
can be used to achieve high performance on a distributed-
memory heterogeneous cluster with multi-GPU nodes; as a
first step towards fully data-sparse formulation, we consider
an irregularly-structured dense tensor contraction of the ABCD
term in Eq. (1), as implemented in the open-source Massively
Parallel Quantum Chemistry (MPQC) program.

III. BACKGROUND

This section describes the PaRSEC runtime and some of the
user-level APIs used to interact with the runtime. We briefly
describe the initial implementation of the integration of the
electronic structure program MPQC with PaRSEC, and then
delve further into some optimizations made to improve upon
the original implementation.

a) PaRSEC: [1] is a task-based runtime for distributed
heterogeneous architectures, capable of dynamically unfold-
ing a concise description of a graph of tasks on a set of
resources and satisfying all data dependencies by shepherding
data between memory spaces (including between nodes) and
scheduling tasks on heterogeneous resources. Instead of a
fixed API, PaRSEC facilitates the design of Domain Specific
Languages (DSL) that allow domain experts to focus on their
science rather than on the computer science. These DSLs rely
on a dataflow model to create dependencies between tasks, and
are expected to maximize the description of the parallelism
available at the algorithm level to allow the runtime to exploit
the available parallelism present in application. PaRSEC is
rich with many features aimed at helping developers express
their application to the runtime correctly and efficiently, and is
supported by a set of tools to debug, profile and optimize the
PaRSEC codes. In the context of this paper, we will focus on
the programmability of the runtime, and how domain scientists
describe their algorithm and interact with the runtime.

Certainly the most exposed DSL, PTG, allow users to use
a parameterized task graph (PTG) [2] known as Job Data

Flow (JDF) which handles the dependencies between tasks.
To enhance the productivity of the application developers,
PaRSEC implicitly infers all the communication from the
expression of the tasks, supporting one-to-many and many-
to-many types of communications. The runtime has been
designed to excel in heterogeneous distributed systems and has
been extensively tested for performance in different contexts.
From a performance standpoint, algorithms developed using
PTG are capable of delivering a significant peak performance
on many hybrid distributed machines, as highlighted in [2]
where DPLASMA, a dense linear algebra (DLA) library
using PaRSEC, yields superior performance compared with
the most widely used DLA. library, ScaLAPACK [9]; or
compared with state-of-the-art computational chemistry ap-
plications [10], [11]. Other DSLs, such as Dynamic Task
Discovery (DTD) [12], are less science domain oriented,
and provide alternative programming models, to satisfy more
generic needs by delivering an API that allows for sequential
task insertion into. the runtime. This programming model is
simple and straightforward, and has been shown to deliver
decent level of performance at regular scales, but it suffers
some drawbacks that limit its scalability as described in more
details in Section VI.

Multiple components constitute the PaRSEC runtime: pro-
gramming interfaces (DSL), schedulers, communication en-
gines and data interfaces. The runtime uses a modular com-
ponent architecture (MCA), allowing different modules or
instances to be dynamically selected during runtime, providing
a varied set of capabilities to different instances of the runtime
(such as scheduling policies, or support for heterogeneity). A
well-defined API for these modules transforms them into black
boxes, and allows interested developers or users to implement
their own, application specific, policies. The different DSL
share the same runtime, data representation, communication
engine, scheduler, cohabiting over the same set of hybrid
resources and seamlessly inter-operate in the context of the
same application.

Traditionally, application developers have a propensity to
write sequential code. PaRSEC, with the help of a pre-
compiler, transforms some form of sequential code to PTG,
with the limitation that the sequential code must be affine [13].
However, neither the runtime, nor the PTG language itself are
bound by the same constraints, providing a way to overcome
the loop-affine limitations.

b) MADNESS: started as an environment for fast and ac-
curate numerical simulation in chemistry [14], [15], but rapidly
expanded to include applications in nuclear physics [16],
boundary value problems [17], solid state physics. Com-
putations beyond 3D include time evolution in an intense
laser pulse in 4D [18], and in 6D the first ever numerical
computation of the MP2 energy of a nonlinear molecule [19].
A prototype high-level DSL [15] demonstrates the feasibility
of elevating programs to a very high level. To guarantee
precision, every function (and there may be thousands of these
in a large electronic structure calculation) has an independent
and dynamically refined “mesh,” and composing functions or

applying operators can change the mesh refinement. These
meshes are represented as 24_trees, where d is the dimension-
ality of the problem. These trees are typically poorly balanced
and change dynamically.

Other projects such as TiledArray, over which MPQC was
originally implemented, also employ the MADNESS parallel
runtime. The MADNESS runtime has evolved into a powerful
environment for the composition of a wide range of parallel
algorithms on many distributed data structures including trees
in MADNESS and the sparse tensors in TiledArray. The central
elements of the parallel runtime are a) futures for hiding
latency and managing dependencies, b) global namespaces
with one-sided access, ¢) remote method invocation in ob-
jects in global namespaces, and d) dynamic load balancing
and data redistribution. An SPMD model is provided with
a single logical main thread per process, a thread pool to
execute tasks, and a thread dedicated to serving remote active
messages. MADNESS can be configured to use its own thread
pool implementation, or to use Intel TBB or PaRSEC. An
application in the MADNESS runtime can be viewed as a
dynamically constructed DAG, with futures as edges. One of
the goals of TESSE is then to complement the MADNESS
runtime by enabling much more powerful ways to specify and
schedule the DAG, much better resource management, and a
robust path to exploiting hybrid computer architectures.

c) TiledArray: is a modern C++ framework for parallel
tensor algebra [20]. The original motivation for TiledArray was
to support the development of reduced-scaling electronic struc-
ture methods in MPQC and other platforms, and to explore
the potential of task-based computation style for data-sparse
tensor algebra. TiledArray is implemented on top of task-based
parallel runtime of MADNESS. Not only does the task-based
formulation make it possible to design scalable algorithms
for data-sparse tensor computation [21], but has advantages
even for dense tensor algebra by overlapping communication
and computation [21], TiledArray is the foundation for high-
performance implementation of coupled-cluster methods in the
latest reengineering of the MPQC program, with demonstrated
utilization of 128,000 cores of IBM BlueGene/Q for the
largest-to-date canonical coupled-cluster singles and doubles
computation with essentially exact numerics [5].

The current form of TiledArray, already useful in practice,
is limited by the relatively low-level explicit task composition
style of the MADNESS runtime. This makes formulation of
even simple data flows like that involved in SUMMA [7],
a general matrix multiplication algorithm used to implement
tensor contraction in ZiledArray, involves relatively complex
manual composition of DAG of tasks, with programmer fully
responsible for computation placement and resource man-
agement. For example, to manage for finite bandwidth the
parallelism is throttled manually by inserting artificial task
dependencies in the SUMMA DAG [21]. Another issue is the
lack of native support in MADNESS for heterogeneous execu-
tion (although as part of this and other [22] recent efforts we
demonstrated how it is possible to extend MADNESS directly
for efficient execution on GPUs) The TESSE runtime and

programming model promise numerous benefits to TiledArray,
including 1) improved performance for dense and block-sparse
tensor algebra, 2) improved resource management, 3) robust
support for computation on CPU/accelerator platforms (this
is the topic of this paper), and 4) easier implementation of
unstructured data and computation flow patterns characteristic
of data-sparse tensor algebra.

IV. INTEGRATION OF PaRSEC, MADNESS AND TiledArray

Porting large applications, like MPQC, over a new runtime
system is a complex task that requires significant developer
involvement, and may prevent adoption. For this reason, in
this paper we focused on porting the critical part of the CCSD
chemistry application to the new runtime, namely the ABCD
contraction in Eq. (1), and analyzing its performance. This
already posed a substantial technical challenge of extending
the tensor framework 7iledArray to seamlessly integrate with
multiple task runtimes: the default MADNESS task runtime and
the PaRSEC runtime. This section outlines how the integration
was accomplished.

TiledArray represents tiled tensors as distributed hash tables
of MADNESS futures to tiles. The use of futures allows to
fully decouple scheduling and execution of tensor operations
as well as support a variety of data-sparse operations naturally.
There are 2 ways that PaRSEC runtime has been integrated
into TiledArray: (1) by seamless offload of MADNESS tasks
to PaRSEC runtime, and (2) by replacing entire native im-
plementations of 7iledArray tensor algebra operations by their
PaRSEC-based counterparts. In this paper we are using the lat-
ter route, i.e. TiledArray implementation of tensor contraction
(based on task-based formulation SUMMA [21]) was replaced
by the PaRSEC-based variant. This required orchestrating
transfer of {in,out}put (futures to) data between MADNESS
and PaRSEC. The PaRSEC implementation of SUMMA for
TiledArray exposes the MADNESS futures that represent each
tile of input and output tensors as PaRSEC tasks that are not
ready at the beginning of the execution, and registers a call-
back with each future to schedule a corresponding input task
in PaRSEC. As the futures are set by MADNESS during the
execution, these tasks become executable. They are selected
for execution by the PaRSEC runtime, and when executed, they
broadcast their data (coming directly from the memory set by
the future) to the successor tasks in the distributed GEMM
operation written in PaRSEC.

From this point, the data flows within the PaRSEC runtime
and is untouched by the MADNESS runtime or the TiledArray
application, until the data is used by all tasks in the PaRSEC
operation. The last use of each data (in read or read-write
mode) triggers a final output for PaRSEC, in which we set
corresponding MADNESS futures. This triggers the rest of the
operation, back at the MADNESS runtime level.

Both runtimes progress simultaneously: as the integration
is done at the lowest level of granularity, it is possible that
MADNESS operations are required to release futures that
are waiting to make PaRSEC operations progress, and vice-
versa. The integration does not require strong synchronization,

neither between the nodes of a distributed run or between the
threads of a single node. As a consequence, both runtimes
need to use threads simultaneously.

Instead of oversubscribing the cores with duplicate threads,
risking a high level of involuntary context switches, or space
sharing the computing resources by dedicating some cores to
PaRSEC threads and others to MADNESS threads, we provide
a PaRSEC backend runtime for MADNESS: MADNESS uses
PaRSEC to schedule tasks on different cores, and we used the
state machine of PaRSEC tasks to trigger the different steps
of a task progress in the MADNESS runtime. All computing
resource are under the control of a single runtime, that provide
computing capabilities to the other runtime system.

N

ky

o= 0}

ks

ky

K

\4

ny Ny ng N4 N3
> <>

ml¢

N
M A ma (L
m,3¢

Fig. 1. Example of a Irregular Tiled GEMM operation

V. RUNTIME AND ALGORITHM OPTIMIZATIONS
A. Optimized Matrix Multiply Algorithm

The ABCD operation is implemented in TiledArray as a
distributed-memory matrix multiplication (GEMM) [23] on
matrices with irregular tiles. GEMM computes ¢/ = A X
B + C, where A is a matrix of size M x K, B is a matrix
of size K x N, and C is a matrix of size M x N. A, B,
and C are tiled — they are divided into submatrices such
that A;;,1 < ¢ < m,1 < j < k are submatrices of A of
size M; x K;, S0 My = M, "% | K; = K. We define
similarly B;; and Cj; as the tiles of B-and C, of size K; x N;
and M; x N; respectively. (M;, N;, K},) defines a cartesian
tiling of A, B, C such that the tiles remain compatible for the
GEMM operation: C’{j = Cy + Zle Ay x Byj,1 <4 <
m,1 < 7 < n. Figure 1 illustrates this irregular tiling for 3
matrices.

As described in Section II, the shape of the input matrices
is a consequence of the specific problem context: in typical
runs, K = N >> M. As a consequence, the traditional
version of SUMMA that rotates A and B over the blocks of
C in a coordinated manner becomes communication intensive:
an approach that moves the data of A and C above the
location of B is much more efficient. Another challenge is
that the chemistry context determines the tilings of A, B,

and C. Irregularity of the tiling creates additional scheduling
challenges for the runtime system, as each task has a different
load.

The SUMMA operation is implemented over the PTG
Domain Specific Language of PaRSEC. In PTG, there are
multiple levels of parallelism: between nodes, tasks are bound
to data, and will execute where specific data are located. This
binding is static, and decided by the developer. Inside a node,
the distribution of tasks between the cores and the accelerators
is decided dynamically by the runtime. Multiple strategies
are operating simultaneously: when tasks can be scheduled
on accelerators (like the GEMM update operation, for which
we provided a MKL-based for the CPU and a cuBLAS-based
for the GPUs), the scheduler computes the current load of
the CPUs and GPUs, and distributes ready-tasks based on the
corresponding number of floating point operations required,
the computing capability of the device, and the location of the
data. Once some data starts to be modified by an accelerator,
it remains hosted by the accelerator until the next update
requires a CPU execution, binding all subsequent local GEMM
operations on this GPU. Tasks assigned to CPUs, on the other
hand, may be executed by any computing thread bound to any
core, using a job-stealing approach. The dynamic schedulers
of PaRSEC aim at optimizing cache reuse by sorting tasks in
local queues as a function of the recent use of data by tasks,
and job stealing follows a hierarchical strategy that maps the
hardware memory hierarchy. However, these constraints are
only heuristics, and tasks assigned to CPUs may be executed
by any core.

The algorithm used for the integrated software aims at
minimizing communications and exposing the highest degree
of parallelism. As the order in which the updates of each tile
of C' does not impact the quality of the result for the targeted
application, we explore the data distribution of A, B, and C'
at initialization time, and build an execution plan that defines
where each GEM M kernel is going to be executed, and in
what relative order.

Input : A, matrix of M x K, tiled on M,,, K},
Input : B, matrix of K x N, tiled on Ky, N,
Input/Output: C, matrix of M x N, tiled on M,,, N,
Parallel for 1 <i <m {
Parallel for 1 < j <n {
Let Chains; ; be a partition of [1,...,k];
Parallel for c € Chains; ; {

Let C, be an empty matrix of size m; X n;;

For each [€ ¢ {

| Compute C. = C. + A; X By

}

}

Reduce the sum of C., c € Chains; ; into Cy;

}

Algorithm 1: Tiled Matrix Multiply Algorithm

A generic tiled matrix multiply algorithm is presented in

Algorithm 1. It consists in a collection of parallel chains
of tasks that compute a partial sum of GEM M updates,
followed by a chain reduction that sum these partial results
to the corresponding tile of C. The execution plan defines
these chains, and the order of the reduction. For MPQC, as
noted above, B is significantly larger than A and C'. Thus, the
execution plan considers the location of each contribution of
tiles of B, and chains them together, to execute on the same
process. The partial result is then sent to the next rank hosting
any contribution to that sum, completing the reduction at the
location of the final target tile in C.

As each GEM M task defines the data it requires, the run-
time automatically broadcasts the tiles of A that are required to
execute the different operations. We did not insert control flow
between the different independent chains, so executions can
degenerate by requiring all tiles of A on all ranks, effectively
triggering a replication of the matrix A on all ranks. However,
since A is M/K << 1 only a small fraction of B, this
memory overhead is typically negligible for MPQC (e.g., in
our experimental section, some application runs require A and
C' to be 5GB, while B is 260GB). The data distributions in
MPQC for A, B, and C is a block distribution (each matrix
is seen as a single contiguous memory block, and each node
gets the same number of contiguous tiles). The GEMM update
tasks are distributed following the distribution of B, to reduce
communications.

B. Scheduling Out-of-GPU-Memory Operations

Another challenge raised by the MPQC application comes
from the size of the B matrix. Even when distributed, the B
matrix might not fit in the accumulated accelerators memory:
it is necessary for the runtime to schedule tasks and data
movements on the GPUs in a way that tolerates this fact and
that aims at high data reuse to increase efficiency.

PaRSEC GPU scheduling is an opportunistic process: when
a task can be executed on the GPU, a first load balancing
algorithm decides on which resource it should be sent (the
cores, or one of the available GPUs). A model-based function
provides the number of floating point operations issued by
the task to schedule, and hardware capability read at run time
is used to balance the load between the different computing
resources. If the task selected is targeted toward a GPU, and
this GPU is not managed by PaRSEC at the time, the calling
thread enters GPU management, and will remain in this mode
until all tasks sent to this GPU are completed. As long as the
GPU manager is in use, all tasks sent to that GPU from any
thread are delegated to this GPU manager.

The GPU manager uses multiple CUDA streams: two are
dedicated to data movement (one for movements from host to
device, the other for movements from device to host), and there
is a variable number of streams dedicated to the execution of
tasks. An internal finite state machine is used to track the
completion of each operation on each stream and progress
to the next part of the operation: first, data that needs to be
pushed down to the device is scheduled on the input stream,
then the task execution is scheduled on one of the execution

stream, last, if needed the output data can be copied back in
main memory using the output stream.

To cope with out-of-GPU-memory operations, it is neces-
sary to evict data that was copied onto the GPU back into
the main memory. This is done during the first phase of a
task execution on the GPU: while looking to pull data from
main memory to the GPU, the GPU manager can detect
that no memory is available on the GPU. It then iterates
over two Least Recently Used queues: the read LRU and
the modified LRU. In the read LRU are stored (in order of
usage) all the data elements that reside on the GPU, but are
not required by scheduled tasks neither in read or write mode,
and that have not been modified. In the write LRU are stored
(in order of usage) the data elements that are not in use,
but have been modified by the execution of previous tasks.
PaRSEC prioritizes modified data to read-only data: if, a data
is available in the read-LRU, it will be evicted first. Only if
the read-LRU is empty will a write-LRU data be evicted.

This can lead to tasks sent to be executed on the GPU,
but whose data are currently being evicted, or for which no
data can be allocated because too many tasks execute on
the GPU. These tasks will wait first-in first-out that enough
tasks complete (or their data transfer completes) to acquire
the memory necessary to their input data and initiate the data
movement required for their execution.

V1. RELATED WORK

a) Runtimes: With the increase in hierarchy and com-
plexity of the underlying hardware, maintaining a potential
for high performance while abstracting the hardware to a
simpler expression became critical. The literature is not short
of proposals addressing this problem, including many evo-
lutionary solutions that seek to extend the capabilities of
current message passing paradigms with intra-node features
(MPI+X). A different, more revolutionary, solution explores
dataflow task-based runtime systems as a substitute to both
local and distributed data dependencies management. The
ideas behind this are similar to the concepts put forward
in workflow, parallelizing an algorithm over a heterogeneous
set of distributed resources, by dividing it in sets of de-
pendent tasks and organizing the data transfers to maximize
the occupancy of most resources. But the scale, in terms
of number and heterogeneity of resources, and the duration
of the potential tasks set the new programming model well
apart from workflows. Numerous efforts to provide such an
abstraction via a fine-grain task-based dataflow programming
exists, adding to those that have transitioned from a grid-
based workflow toward a task-based environment. Some of
the recent task-based runtimes like Legion [24], StarPU [25],
QUeuing And Runtime for Kernels (QUARK) [26], HPX [27],
Open Community Runtime (OCR) [28], OmpSS [29], Super-
Matrix [30], and PaRSEC [1] abstract the available resources
to isolate application developers from the underlying hardware
complexity and simplify the process of writing massively
parallel scientific applications.

T T T T T T
4500 - 4700 - P100 GPU Theoritical Peak B
@ 4000 g
& 3500 -
% 3000 | CPU only ——
b 1 Stream +—>*—
§ 2500 2 Streams
IS4 | 3 Streams
£ 2000 4 Streams
g 1500 -
& 1000 |- 736 - CPU Theoritical Peak
500 [, —A4—t—"" +
Il Il Il |
o N O O ©)) N S S
& P S F S RS
S U N S CHRNS SRS N2
© SRR R &3 N \qu

Tile Size/Matrix Size (25 tiles per dimension)

Fig. 2. Performance of double precision GEMM on P100 according to the
number of submission streams and the tile size for a fixed number of tiles per
dimension (25). CPU (Haswell) performance is according to MKL. The peak
of the respective device (CPU, P100are also represented as a dashed line).

The most straightforward approach is to provide a task
insertion application programming interface (API) and dy-
namically build the dependency graph between the developer
inserted tasks by tracking the type of usage made with the
tasks parameters. QUARK, OmpSS, and StarPU provide such a
task insertion API, supported by different methods to facilitate
the scheduling and help with the profiling and debugging. To
interact with the runtime, the developer expresses his algorithm
as a set of elementary tasks, and inserts the tasks in the
runtime. The main advantage of this approach is the ease of
porting applications to the task-based runtime, but the easiness
comes with drawbacks on distributed environments, as it forces
all participating processes to discover the entire set of tasks (in
order to identify data movements between processes), before
reducing to the set of locally executed tasks, and neighbor
tasks that deliver or acquire input or output for the local tasks.
This pruning phase limits potential scalability [12]. QUARK
has no implicit support for heterogeneous nor distributed ar-
chitectures. StarPU provides support for heterogeneous archi-
tectures, and covers distributed execution via the insertion of
explicit communication tasks [31], which places the burden of
organizing communication back on the application developer
and on the communication library. OmpSS follows a master-
slave model allowing nesting of tasks in individual nodes to
relieve the master; however the master-slave model may suffer
from scalability issues on large scale distributed systems.

Recent versions of the OpenMP specification [32] introduce
the task and depend clauses which can be employed to express
dataflow graphs. OpenMP is widely used and supports homo-
geneous, shared memory systems, and its farget extension to
support accelerators is quickly gaining traction. A limitation of
the OpenMP model is that distributed memory and internode
communication needs to be explicitly described and performed
with the use of an external communication library.

OCR, still in early development stages, only supports ho-
mogeneous architectures and have some nascent capabilities
for dealing with distributed environments. Legion describes

logical regions of data and uses those regions to express the
dataflow and dependencies between tasks, and defers to its
underlying runtime, REALM [33], the scheduling of tasks,
and data movement across distributed heterogeneous nodes.

Thus far, generic dataflow runtimes have been used to
either investigate irregular algorithms on shared memory
(occasionally with accelerators), or, alternatively, to deploy
dense, regular algorithms on distributed systems. This research
provide a tangible base to address sparse irregular applications
that have so far been out of reach.

b) Chemistry: Distributed-memory algorithms for
coupled-cluster and other many-body electronic structure
methods have been in development since late 1980s and
are now available in several packages (see Ref. [5] for a
recent review of CCSD implementations), most notably in
NWChem (a flagship distributed-memory quantum chemistry
code), ACESII, and GAMESS. Unfortunately very little
of this capability can be executed on distributed-memory
heterogeneous platforms. NWChem has a CUDA-based
implementation of perturbative triples correction to CCSD,
also known as (T), that has been demonstrated on a
GPU-equipped distributed-memory platform and can take
advantage of multiple GPUs and multiple CPU cores on
each node (however, the CCSD code is CPU only) [34].
Very recently some of us demonstrated a distributed memory
implementation of (T).in MPQC that can take advantage of
multiple GPUs per node [22]. GAMESS has demonstrated a
GPU-capable implementation of select terms in the CCSD
code on 1 node with 1 GPU [35].

VII. EXPERIMENTAL RESULTS
A. Single Node Experiments

Figure 2 presents a benchmark of the GPU engine designed
to help understanding the performance impact of using the
cuBLAS library with multiple streams, executed on a recent
NVIDIA accelerator (P100). This benchmark consists of a tiled
general matrix multiply in double precision. As described in
Section V-B, the PaRSEC GPU manager users one or more
streams to execute kernels. When using a single execution
stream, the CUDA engine serializes the kernels calls, thus, the
call overhead has little opportunity for overlap, decreasing the
SM occupancy and negatively impacting the performance. As
the tile size grows, the performance asymptotically reaches
the peak, but larger tiles are rare for the target application
(MPQC). The interesting point is that as soon as the engine
uses two execution streams, the cost of calling a kernel mostly
overlaps with the execution of a kernel on another stream,
and the performance increases up to a sizable percentage of
the peak performance. After a given tile size, increasing the
number of streams have no measurable benefits for the GEMM
operation. In conclusion, in order to extract a reasonable
amount of performance (more than 80%) from the use of
accelerators via cuBLAS we need tiles of at least 384x384
with at a minimum of 3 submission streams. On the Haswell
E5-2650 v3, the MKL library reaches 80% of the theoretical
peak for tile size of around 96x96.

2000 T

| PaRSEC —— |
1800 - " TESSE ——

++

1600
1400
1200 - 1
1000

Performance (Gflop/s)

800 - H % _
600 T - 1

400 : : :
#GPU

Fig. 3. Comparison of performance between the direct PaRSEC driver and
the TESSE runtime that integrates TiledArray, MADNESS, and PaRSEC, for
a large problem size, on a Haswell E5-2650 v3 with 20 cores and 64GB of
RAM, as a function of the number of accelerators

To evaluate the overhead due to the integration of the
software stack, we implemented the matrix multiply algorithm
directly above a PaRSEC driver: using PaRSEC, we initialize
3 matrices, with shapes similar to the matrices produced by
MPQC, and call the same algorithm implemented with PaR-
SEC as the one used in the MPQC integration. We measure the
performance, on an Intel Xeon E5-2650v3 with 20 cores, zero
to two NVIDIA P100, and 64GB of RAM, and for the largest
problem that fits in this environment. The parameter values
O =30,np = 1,U = 280,ny = 5 (see Section II), which
corresponds to a matrix multiply of a matrix A(900 x 78400)
by B(78400 x 78400) onto a matrix C'(900-x 78400), where
A, B, and C are tiled with tiles of size 900 x 3136. Figure 3
shows the distribution of performance for 20 runs, comparing
the performance obtained directly with the PaRSEC driver
and the performance obtained using the entire stack within
MPQC, as a function of the number of accelerators used. The
Tuckey box plots show the minimal value, the 1st and 3rd
quartiles, and the maximal values of the distributions, with
measurements further than twice the interquartile range shown
as additional points.

The software stack overhead is measurable with statistical
significance only for the CPU-only run where it remains well
below 1%. For the accelerator-supported runs, the variance
increases significantly, but for a different reason: the dy-
namic scheduling in PaRSEC introduces non-determinism in
the order of execution of kernels between executions. This
variance remains under 5%, but this is high enough to make
the overhead for the full integration non measurable.

Figure 4 presents the performance of PaRSEC executing
a tiled matrix multiply operation in double precision. This
experiment is run on a single Haswell (E5-2650v3 20 cores)
node with one NVIDIA Tesla P100 with 16GB of onboard
memory. The cutoff size beyond which the problem does not
fit in the GPU memory is depicted as a vertical line around
26k. Below that point, all three matrices will be transferred
once to the GPU for the duration of the operation. Beyond

5000 T T T T ‘
4700 - P100 GPU Theoritical Peak 1 1 2z -
@ 4000 | I ///,//’%f===?===';‘”fzi‘""ﬁ*“\\\~\\¢,
8. T N
T V"
G 3000 -
® |
g - E |2
g 2000 g g
8 Tile Size S B3
5 NB=768 —+— ala
& 1000 NB=1024 —>— 6|0
NB=1280 £ | =
o [NB=1536 ; L
3 o D YD & %
* % % %%% > %

Matrix Size

Fig. 4. Problem scaling performance of regular tile size GEMM operation
in double precision. Computations limited to NVIDIA GPU (P100). Problem
sizes on the right of the 26k cutoff line do not fit in the GPU physical memory
and require data movement strategies to minimize/optimize transfers.

that point, the engine is moving data back and forth on the
GPUs as tasks become ready.

The impact of the data transfers is also visible in Figures 4,
most notably after the cutoff point. As the matrix size grows,
the need for data reuse increases, adding to the pressure on the
heuristic of selecting the best candidate for replacement (see
Section V-B). An optimal reuse would guarantee a minimal
need for multiple back-and-forth between different memories
(CPU and GPU) for the same data, but optimal scheduling
decisions are intractable. From these results it is clear that
PaRSEC data transfer decisions are sub-optimal, and result in a
significant decrease in accelerator occupancy and performance.
Addressing this problem is outside the scope of this study, and
remains open for future work.

B. Distributed Application Experiments

Performance analysis of the PaRSEC-based matrix multipli-
cation algorithm on a distributed memory system utilized the
173-node Dell NewRiver cluster at the Virginia Tech Advanced
Research Computing. Each nodes in the GPU-enabled subset
of NewRiver is equipped with 2 14-core Intel Xeon E5-2680v4
CPUs (1075 GFlop/s peak in double precision) with 512 GB
RAM and two NVIDIA P100 GPUs (total of 9400 GFlop/s
peak in double precision), each with 12 GB HBM2 memory.
Both TiledArray, MADNESS, and PaRSEC on NewRiver were
compiled with GCC 8.1.0 and CUDA 9.0 with Intel MPI and
MKL 2018 libraries.

Tensor contraction in Eq. (1) was implemented in TiledAr-
ray using two variants of distributed-memory SUMMA, one
the native task-based implementation of SUMMA previously
described elsewhere [21] and extended to issue tasks to a
single CUDA-enabled GPU (no useful computational work
is being done by the CPU in this version), and second
the PaRSEC-based implementation described in Section V-A.
Strong scaling of the two variants of SUMMA was studied
for a representative model problem: a cluster of 12 water
molecules in aug-cc-pVDZ basis. This problem corresponds to
occupied and unoccupied ranges of size O = 60 and U = 432,

32000 [TESSE, 2xP100 ——
TESSE, 1xP100 ——
TiledArray, 1xP100 = < -
» 16000 | 4
a
o
[T
© 8000 | 4
[0)
[$]
C
£
S 4000 | J
©
[5)
o
2000 |- 1
1000 Il Il Il Il L

N L% X ® NN
of Nodes (2 x E5-2680v4 + 2 P100)

Fig. 5. Strong-scaling performance of the ABCD term in the coupled-cluster
doubles equation for (H20)12 in aug-cc-pVDZ basis set.

respectively, each split into np =
varying sizes.

Excellent strong scaling was demonstrated by the PaRSEC-
based SUMMA (Figure 5), both when using 1 GPU and 2
GPUs per node. A speedup of x12.8 was observed when the
node count increased from 1 to 16, which translates into 80%
parallel efficiency. Good strong scaling was attained by the
native SUMMA implementation in TiledArray: a speedup of
6.8 was observed when the node count increased from 1 to
12, which translates into 57% parallel efficiency. However the
current default implementation of SUMMA in TiledArray does
not permit to efficiently utilize more than 1 GPU per MPI rank
(with 2 GPUs per node a speedup of only 3.5 was observed
when the node count increased from 1 to 16 nodes). Thus
the new PaRSEC-based SUMMA implementation is a huge
improvement over the default TiledArray implementation, and
on 16 nodes it allows to reduce time to solution by more than
a factor of 3.5, due to its efficient parallel scalability and the
ability to efficiently utilize multiple P100 GPUs as well as the
CPU cores.

The excellent strong scalability notwithstanding, there is
still room for improvement. Specifically, the absolute per-
formance of 31.3 TFlop/s on 16 nodes corresponds to ap-
proximately 20% of the peak hardware performance. As the
data in Section VII-A suggests, PaRSEC-based GEMM im-
plementation is perfectly capable of reaching high percentage
of peak. To understand the origin of lower performance of
the distributed ABCD benchmark we used the same PaRSEC-
based SUMMA implementation to evaluate product of square
matrices of various sizes. The hypothesis in this experiment
was that the performance degradation could be traced to the
“stationary” matrix in SUMMA (i.e., matrix B) no longer
fitting into the high-bandwidth memory on the GPU. Indeed,
as the data in Figure 6 suggests, for smaller problem sizes
efficiency decreases monotonically with the number of nodes,
whereas for the largest problem sizes the efficiency actually
increases with the number of nodes when the number of
nodes is small; one square matrix of size N = 65,536 in
double precision requires ~34GB of space, which greatly

2 and ny = 12 tiles of

. 35 T T T 0.7 —
2 N=16384 —— 3
£ 30Ff N=25600 —— 4 06 £
< N=36864 3
\% o5 | N=65536 los <
° g
a 20 - 1 04 x
S 5
L

E 15 103 §
(0] <
8 =
S 10 102 ©
£ s
2 r - E=
£ 5 0.1 §
a [T

0 L I I I I 0

of Nodes (2 x E5-2680v4 + 2 P100)

Fig. 6. Strong-scaling performance of SUMMA for a square matrix mul-
tiplication as a function of problem size. Constant tile size 1024 is used
throughout.

exceeds 12GB of high-bandwidth memory on a single card.
Also note than on 1 node performance reaches peak for
N = 25,600 (5.2GB) at 5.3 TFlop/s (or > 50% of peak)
and then drops to ~ 2.1 TFlop/s for the largest problem size,
which is similar to the ABCD benchmark performance on 1
node. This suggests that incorporating resource awareness into
the PaRSEC-based SUMMA implementation should allow to
improve performance significantly.

VIII. CONCLUSION

In this paper, we present a new approach of increasing
applications efficiency on heterogeneous environments by the
means of an integrated software stack, supported by a task-
based runtime, PaRSEC. We depicted TESSE, the resulting
software infrastructure, as well as algorithmic modification and
runtime alterations necessary to improve the performance of
the target application MPQC, a quantum chemistry application.
The results show, for different matrix multiplication operations
(with both square and non-square matrices and regular and ir-
regular tiling), unprecedented levels of performance for tensor
product applications on a distributed heterogeneous environ-
ment, with a sustained efficiency and scalability significantly
higher that the state-of-the-art. As such it validates TESSE’s
application-driven design to create a general-purpose software
framework that attacks the twin challenges of programmer
productivity and portable performance for advanced scientific
applications on massively-parallel, hybrid, many-core systems.
This study also highlights the need to develop specialized
DSL to facilitate computational scientists interaction with
new programming concepts, and emphasize the capabilities
of the underlying runtime, PaRSEC, to efficiently handle
intricate and dynamic workloads on complex architectures
without making compromises regarding the performance of
the resulting applications. In same time this study exposed
technical issues with the current implementation that limit the
exposed parallelism and have a negative impact on perfor-
mance, limitations that will be addressed in the near future.

ACKNOWLEDGMENT

This research was supported partly by NSF awards
#1450300, #1450344 and #1450262, and by the Exascale
Computing Project (17-SC-20-SC), a collaborative effort of
the U.S. Department of Energy Office of Science and the Na-
tional Nuclear Security Administration. We also acknowledge
Advanced Research Computing at Virginia Tech (www.arc.
vt.edu) for providing computational resources and technical
support that have contributed to the results reported within
this paper.

[1

—

[3

=

[4

=

[5

[t}

[6

=

[10]

[11]

[12]

[13]

[14]

[15]

REFERENCES

G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, T. Herault, and J. Don-
garra, “PaRSEC: A programming paradigm exploiting heterogeneity for
enhancing scalability,” Comp in Sc. and Eng., vol. 99, p. 1, 2013.

A. Danalis, G. Bosilca, A. Bouteiller, T. Herault, and J. Dongarra, “PTG:
An abstraction for unhindered parallelism,” Proceedings of WOLFHPC
2014: 4th Intl Workshop on Domain-Specific Languages and High-Level
Frameworks for High Performance Computing, pp. 21-30, 2014.

G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, A. Haidar, T. Herault,
J. Kurzak, J. Langou, P. Lemarinier, H. Ltaief, and et al., “Flexible
Development of Dense Linear Algebra Algorithms on Massively Parallel
Architectures with DPLASMA,” 2011 IEEE International Symposium on
Parallel and Distributed Processing Workshops and Phd Forum, 2011.
I. Shavitt and R. Bartlett, Many-Body Methods in Chemistry and Physics:
MBPT and Coupled-Cluster Theory, ser. Cambridge Molecular Science.
Cambridge University Press, 2009.

C. Peng, J. A. Calvin, F. Pavosevi¢, J. Zhang, and E. F. Valeev,
“Massively Parallel Implementation of Explicitly Correlated Coupled-
Cluster Singles and Doubles Using TiledArray Framework,” J. Phys.
Chem. A, vol. 120, no. 51, pp. 10231-10244, Dec. 2016.

C. Riplinger, P. Pinski, U. Becker, E. F. Valeev, and F. Neese, “Sparse
maps—A systematic infrastructure for reduced-scaling electronic struc-
ture methods. II. Linear scaling domain based pair natural orbital
coupled cluster theory,” J Chem Phys, vol. 144, no. 2, Jan. 2016.

R. A. Van De Geijn and J. Watts, “SUMMA: scalable universal matrix
multiplication algorithm,” Concurrency: Practice and Experience, vol. 9,
no. 4, pp. 255-274, 1997.

J. Demmel, D. Eliahu, A. Fox, S. Kamil, B. Lipshitz, O. Schwartz, and
O. Spillinger, “Communication-Optimal Parallel Recursive Rectangular
Matrix Multiplication,” in 2013 IEEE International Symposium.on
Parallel & Distributed Processing (IPDPS). 1EEE, Jan. 2013.

L. Blackford, J. Choi, A. Cleary, E. D’ Azevedo, J. Demmel, I. Dhillon,
J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker,
and R. Whaley, Scal APACK Users’ Guide. . Society for Industrial and
Applied Mathematics, 1997.

A. Danalis, H. Jagode, G. Bosilca, and J. Dongarra, “PaRSEC in Prac-
tice: Optimizing a Legacy Chemistry Application through Distributed
Task-Based Execution,” in 2015 IEEE International Conference on
Cluster Computing, Sept 2015, pp. 304-313.

H. Jagode, A. Danalis, G. Bosilca, and J. Dongarra, Accelerat-
ing NWChem Coupled Cluster Through Dataflow-Based Execution.
Springer International Publishing, 2016, pp. 366-376.

R. Hoque, T. Herault, G. Bosilca, and J. Dongarra, “Dynamic Task Dis-
covery in PaRSEC: A Data-flow Task-based Runtime,” in Proceedings
of ScalA’17, 2017, pp. 6:1-6:8.

G. Bosilca, A. Bouteiller, A. Danalis, T. Herault, and J. Dongarra, From
Serial Loops to Parallel Execution on Distributed Systems. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 246-257.

R. J. Harrison, G. I. Fann, T. Yanai, Z. Gan, and G. Beylkin, “Mul-
tiresolution quantum chemistry: Basic theory and initial applications,”
J. Chem. Phys., vol. 121, no. 23, pp. 11587-11598, Dec. 2004.

R. J. Harrison, G. Beylkin, F. A. Bischoff, J. A. Calvin, G. I. Fann,
J. Fosso-Tande, D. Galindo, J. R. Hammond, R. Hartman-Baker, J. C.
Hill, J. Jia, J. S. Kottmann, M. Y. Ou, L. E. Ratcliff, M. G. Reuter,
A. C. Richie-Halford, N. A. Romero, H. Sekino, W. A. Shelton,
B. E. Sundahl, W. S. Thornton, E. F. Valeev, A. Vazquez-Mayagoitia,
N. Vence, and Y. Yokoi, “MADNESS: A multiresolution, adaptive
numerical environment for scientific simulation,” SIAM J. Sci. Comput.,
vol. 38, no. 5, pp. S123-S142, 2016.

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

(32]
[33]

[34]

[35]

J. C. Pei, G. I. Fann, R. J. Harrison, W. Nazarewicz, J. Hill, D. Galindo,
and J. Jia, “Coordinate-Space Hartree-Fock-Bogoliubov for Superfluid
Fermi Systems in Large Boxes,” J. Phys. Conf. Ser., vol. 402, 2012.
M. G. Reuter, J. C. Hill, and R. J. Harrison, “Solving PDEs in
irregular geometries with multiresolution methods I: Embedded Dirichlet
boundary conditions,” Comput. Phys. Commun., vol. 183, no. 1, 2012.
N. Vence, R. Harrison, and P. Krsti¢, “Attosecond electron dynamics: A
multiresolution approach,” Phys. Rev. A, vol. 85, no. 3, Mar. 2012.

F. A. Bischoff and E. F. Valeev, “Computing molecular correlation
energies with guaranteed precision,” J. Chem. Phys., vol. 139, no. 11,
p. 114106, 2013.

J. Calvin and E. Valeev, “TiledArray: A massively-parallel, block-sparse
tensor framework written in C++,” https://github.com/ValeevGroup/
tiledarray, 2018.

J. A. Calvin, C. A. Lewis, and E. F. Valeev, “Scalable task-based
algorithm for multiplication of block-rank-sparse matrices,” in IA3 ’15.
ACM Press, 2015, pp. 1-8.

C. Peng, J. Calvin, and E. F. Valeev, “Coupled-cluster singles, doubles
and perturbative triples with density fitting approximation for massively
parallel heterogeneous platforms,” submitted to Int. J. Quant. Chem.,
2018.

A. Buttari, J. Langou, J. Kurzak, and J. Dongarra, “A class of parallel
tiled linear algebra algorithms for multicore architectures,” Parallel
Computing, vol. 35, no. 1, pp. 38 — 53, 2009.

M. Bauer, S. Treichler, E. Slaughter, and A. Aiken, “Legion: Express-
ing locality and independence with logical regions,” in International
Conference for High Performance Computing, Networking, Storage and
Analysis, SC, 2012.

C. Augonnet, S. Thibault, R. Namyst, and P. Wacrenier, “StarPU:
A unified platform for task scheduling on heterogeneous multicore
architectures,” Conc. Comp. Pract. Exper., vol. 23, pp. 187-198, 2011.
E. Agullo, J. Demmel, J. Dongarra, B. Hadri, J. Kurzak, J. Langou,
H. Ltaief, P. Luszczek, and S. Tomov, “Numerical Linear Algebra on
Emerging Architectures: The PLASMA and MAGMA Projects,” Journal
of Physics: Conference Series, vol. 180, 2009.

T. Heller, H. Kaiser, and K. Iglberger, “Application of the ParalleX exe-
cution model to stencil-based problems,” Computer Science - Research
and Development, vol. 28, no. 2-3, pp. 253-261, 2013.

J. Dokulil, M. Sandrieser, and S. Benkner, “Implementing the Open
Community Runtime for Shared-Memory and Distributed-Memory Sys-
tems,” Proceedings of PDP 2016, pp. 364-368, 2016.

A. Duran, R. Ferrer, E. Ayguade, R. M. Badia, and J. Labarta, “A
Proposal to Extend the OpenMP Tasking Model with Dependent Tasks,”
Intl. Journal of Parallel Programming, vol. 37, no. 3, pp. 292-305, 2009.
E. Chan, E. S. Quintana-Orti, G. Quintana-Orti, and R. van de Geijn,
“Supermatrix out-of-order scheduling of matrix operations for SMP and
multi-core architectures,” in Proc. of SPAA '07, 2007, pp. 116-125.

E. Agullo, O. Aumage, M. Faverge, N. Furmento, F. Pruvost, M. Sergent,
and S. Thibault, “Harnessing Supercomputers with a Sequential Task-
based Runtime System,” vol. 13, no. 9, pp. 1-14, 2014.

“OpenMP 4.0 Complete Specifications,” 2013. [Online]. Available:
http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf

S. J. Treichler, “Realm: Performance portability through composable
asynchrony,” Ph.D. dissertation, Stanford University, 2014.

W. Ma, S. Krishnamoorthy, O. Villa, K. Kowalski, and G. Agrawal, “Op-
timizing tensor contraction expressions for hybrid CPU-GPU execution,”
Clust. Comput, vol. 16, no. 1, pp. 131-155, 2013.

A. Asadchev and M. S. Gordon, “Fast and Flexible Coupled Cluster
Implementation,” J. Chem. Theory Comput., vol. 9, no. 8, pp. 3385-
3392, Jul. 2013.

