
Using Jacobi Iterations and Blocking for Solving Sparse
Triangular Systems in Incomplete Factorization

Preconditioning

Edmond Chowa,∗, Hartwig Anztb,c, Jennifer Scottd, Jack Dongarrac,e,f

aSchool of Computational Science and Engineering, Georgia Institute of Technology, USA
bSteinbuch Centre for Computing, Karlsruhe Institute of Technology, Germany

cInnovative Computing Laboratory, University of Tennessee, USA
dScientific Computing Department, STFC Rutherford Appleton Laboratory, UK

eSchool of Mathematics and School of Computer Science, University of Manchester, UK
fOak Ridge National Laboratory, USA

Abstract

When using incomplete factorization preconditioners with an iterative method to solve
large sparse linear systems, each application of the preconditioner involves solving two
sparse triangular systems. These triangular systems are challenging to solve efficiently
on computers with high levels of concurrency. On such computers, it has recently been
proposed to use Jacobi iterations, which are highly parallel, to approximately solve the
triangular systems from incomplete factorizations. The effectiveness of this approach,
however, is problem-dependent: the Jacobi iterations may not always converge quickly
enough for all problems. Thus, as a necessary and important step to evaluate this
approach, we experimentally test the approach on a large number of realistic symmetric
positive definite problems. We also show that by using block Jacobi iterations, we can
extend the range of problems for which such an approach can be effective. For block
Jacobi iterations, it is essential for the blocking to be cognizant of the matrix structure.

Keywords: sparse linear systems, triangular solves, iterative solvers, preconditioning.

1. Introduction

As computers increasingly rely on various forms of parallelism to obtain high
performance, the design and performance optimization of large-scale numerical algo-
rithms must focus on the efficient exploitation of parallel architectures. Unfortunately,
simple algorithms frequently become remarkably complex when implemented in par-5

allel and the most efficient parallel algorithm may not be the one that is most intuitive.
In this paper, we investigate a non-intuitive approach to solving the sparse trian-

gular systems that arise when using incomplete factorization preconditioners with an

∗Corresponding author
Email addresses: echow@cc.gatech.edu (Edmond Chow), hanzt@icl.utk.edu (Hartwig Anzt),

jennifer.scott@stfc.ac.uk (Jennifer Scott), dongarra@icl.utk.edu (Jack Dongarra)

Preprint submitted to Journal of Parallel and Distributed Computing February 12, 2018

iterative method for solving sparse linear systems. The conventional method of solving
triangular systems is to use forward or backward substitution and this can be paral-10

lelized using level scheduling [1, 2, 3, 4, 5]. Here we investigate using an iterative
method—in particular, Jacobi relaxation. The use of an iterative method is feasible
when an approximate solution is acceptable, as in the case of preconditioning. The
approach is less applicable to the case of solving with factors from a direct (not incom-
plete) factorization where the factors are much less sparse and typically an exact solve15

is desired.
In recent previous work, this approach demonstrated significant reductions in total

solution time for the preconditioned conjugate gradient (PCG) method on highly par-
allel architectures such as Intel Xeon Phi co-processors and graphics processing units
(GPUs) [6, 7], even though additional PCG iterations may be required to achieve the20

requested accuracy. The improved speed for each triangular solve is because, for some
problems, particularly with high levels of fill in the triangular factors, level scheduling
is unable to reveal sufficient parallelism to fully exploit the GPU hardware. On the
other hand, Jacobi relaxation, which primarily relies on the sparse matrix vector prod-
uct (SpMV) operation to compute a residual vector, is highly parallel and can exploit25

the substantial efforts that have been invested in optimizing SpMV on various parallel
architectures.

Although the iterative triangular solve approach can result in significant speedups
on highly parallel architectures, the approach does not work on all problems. It is pos-
sible for the iterations on the triangular systems to converge too slowly and thus be30

uncompetitive with the conventional level-scheduled approach. The goal of this paper
is to investigate the range of applicability of using iterative triangular solves for incom-
plete factorization preconditioning by testing it with a large set of sparse symmetric
positive definite linear systems. Further, we introduce the idea of using block Jacobi
iterations,1 which improves the robustness of the iterative approach. Our hypothesis is35

that for matrices that model many types of physical systems, especially partial differ-
ential equations, an iterative approach to solving the systems involving its triangular
factors can be effective. In particular, although these matrices may not be diagonally
dominant and may be ill-conditioned, many have relatively large diagonal entries com-
pared to the off-diagonal entries. If the incomplete factorizations of these matrices40

are stable, they are also likely to have relatively large diagonal entries. Systems with
such matrices can typically be solved efficiently by iterative methods. If convergence
is poor, a block diagonal scaling can improve diagonal dominance.

Alternatives to sparse triangular solves for incomplete factorization precondition-
ing have been proposed before. One major alternative is to compute and use sparse ap-45

proximate inverses of the incomplete factors, so that preconditioning reduces to SpMV
operations [8, 9]. Related to this is representing the inverse of a sparse triangular ma-
trix as the product of sparse triangular factors [10, 11]. Another possible approach is
to use Neumann series approximations to the inverse of the incomplete factors [8, 12].
Preconditioning is again reduced to a sequence of SpMV operations. This approach50

1Initial ideas were presented orally at the 2015 SIAM Conference on Computational Science and Engi-
neering.

2

was found to be potentially competitive with other techniques for nonsymmetric prob-
lems but it lacks robustness, while for symmetric problems a number of more efficient
alternatives are available [8]. The Neumann series technique is the same as the Jacobi
relaxation approach investigated here if a diagonal scaling is first applied to the system
in the former. Recently, based on the encouraging results in [7] for using Jacobi itera-55

tions to solve triangular systems, Huckle and coauthors [13] have suggested the use of
stationary iterations for solving sparse triangular systems based on sparse approximate
inverses.

In the symmetric case, the amount of parallelism in level-scheduled sparse triangu-
lar solves can be increased by using multicolor reordering of the rows and columns of60

the original matrix and computing the incomplete Cholesky factors of this reordered
matrix [14]. However, multicolor reorderings generally give poorer PCG convergence
results compared to other orderings such as the band reducing RCM ordering [15] or
profile reducing Sloan ordering [16] (see, for example, [17, 18, 19, 20, 21, 22]). For
some “easy” problems, the convergence rate may be degraded by as much as 60 to65

100% but this can be compensated for by the additional parallelism in the solves. For
harder problems, however, multicolor reorderings may result in no convergence.

The rest of this paper is organized as follows. In Section 2, we describe the use of
Jacobi and block Jacobi relaxation for the iterative solution of triangular systems. In
particular, various blocking strategies are reviewed. Section 3 presents our experimen-70

tal study and demonstrates the potential effectiveness of Jacobi and block Jacobi solves
using a large set of test problems. Concluding remarks are made in Section 4.

2. Background and Methodology

2.1. Jacobi and block Jacobi relaxation for triangular systems

Consider a triangular system of equations75

Ry = c, (1)

where R is either upper or lower triangular. In our application in which we want to solve
the system Ax = b, R is an incomplete factor of A and, in particular, in the symmetric
case, R = L or LT , where L is an incomplete Cholesky factor of A. The Jacobi iteration
for solving (1) is

yk+1 = yk + D−1(c − Ryk), (2)

where D is the diagonal of R. For the sparse triangular solves, we take the initial guess80

y0 = D−1c. (3)

We will refer to the number of Jacobi iterations performed as the number of Jacobi
sweeps. The iteration matrix

G = I − D−1R (4)

is strictly triangular with a zero diagonal. Thus the iteration is guaranteed to converge.
However, in practice, because G is triangular and thus non-normal, the iteration may di-
verge before converging. If this initial divergence stage is long and/or causes numerical85

3

overflow, then using Jacobi iterations will not be an effective method of solution. Thus
effectiveness will depend on the degree of non-normality of G. Non-normality can be
measured in different ways. For triangular matrices, having only small off-diagonal
entries results in a small departure from non-normality.

Block Jacobi relaxation or, equivalently, block scaling of R, can reduce non-normality.90

If a block structure is imposed on R then it can be trivially written as the sum

R = R̃ + D, (5)

where R̃ is strictly block triangular and D is now block diagonal with i-th block Dii.
The iteration is the same as in (2), where the i-th block row of the iteration matrix (4)
now has off-diagonal blocks Gi j = D−1

ii Ri j (j , i). If the norm of D−1
ii is small, then

the norm of the off-diagonal blocks will be small, as desired. As a proxy, we will seek95

to maximize the size of the entries in the diagonal blocks of A. This blocking for A is
then imposed on the lower and upper triangular incomplete factors.

Observe that, in general, we seek a blocking in which the block size is small com-
pared to the order n of A so as to limit the cost of applying block Jacobi. With small
blocks, the cost of block Jacobi is not significantly greater than for scalar Jacobi be-100

cause the main cost in both is the computation of the residual c−Ryk. For small blocks,
one possibility to assist with efficiency is to store the inverses D−1

ii explicitly. We also
note that the matrix D−1R is not formed, as this may require more storage than storing
D−1 and R separately.

2.2. Blocking vs. reordering105

The most general form of blocking involves two steps: (1) identifying rows (or
columns) of a matrix that should be grouped together into a “block,” and then (2) re-
ordering the matrix such that the rows within each block are numbered consecutively.
(We use the term “block” to mean either a group of rows or columns (or their indices),
or a submatrix of a matrix; the meaning should be clear from the context.) For symmet-110

ric matrices, the rows and columns are reordered the same way. It is known, however,
that reordering a matrix affects the quality of its incomplete factorization, and that some
orderings, such as RCM, are better than others when these factorizations are used as
preconditioners. Arbitrary blockings (and thus reorderings) of a matrix can lead to a
failure of the incomplete factorization [23].115

Blocking, however, may not require the first reordering step, and these cases should
be distinguished from the general case. For a matrix that already has a desired order-
ing, it is possible to group consecutively numbered rows (and columns) together. The
simplest way to impose such a blocking is to divide the rows into the requested number
of blocks such that each block contains (approximately) the same number of rows. A120

locality-preserving band or profile reducing ordering, such as RCM or Sloan, permutes
nonzero entries of the matrix close to the diagonal of the matrix, and thus these entries
are likely to lie in the block diagonal part of the reordered matrix.

In this paper, we use a simple blocking technique that we call supervariable amal-
gamation, which is described in the next subsection. For completeness, we also briefly125

mention other blocking techniques.

4

2.3. Supervariable blocking and supervariable amalgamation

The set of variables that correspond to a set of matrix columns with the same spar-
sity pattern is called a supervariable. Supervariables occur frequently as a result of
each node or element of a partial differential equation (PDE) discretization having mul-130

tiple variables or degrees of freedom associated with it. These variables are typically
tightly coupled, leading to dense diagonal blocks with large norm.

If a matrix has a supervariable structure, then it is natural to associate each super-
variable with a block. Assuming that the variables in a supervariable are numbered
consecutively, then this blocking does not require reordering the matrix. If blocks135

larger than the size of the supervariables are desired, then larger blocks can be formed
by amalgamating supervariables.

When amalgamating adjacent supervariables, it is important that these supervari-
ables represent adjacent or nearby nodes or elements in the PDE mesh. This is because
there is no advantage in grouping variables together that are not coupled within the140

block. To help ensure that adjacent supervariables are coupled, the matrix should be
ordered so that variables that are close in the ordering are nearby in the PDE mesh.
This can be accomplished by applying a locality-preserving ordering to the supervari-
able structure (called the condensed graph) before the supervariables are amalgamated.
Fortunately, as already observed, locality-preserving orderings such as RCM are also145

beneficial for incomplete factorization preconditioners.
In this paper, instead of identifying a supervariable structure and then applying

RCM ordering to that structure, we simply apply RCM ordering to the original rows
and columns of the matrix before identifying supervariables. RCM ordering tends to
preserve any existing supervariable structure because variables belonging to a super-150

variable will tend to stay numbered together.
The input to the supervariable amalgamation algorithm is the sparsity pattern of

a matrix that has been reordered using RCM. The supervariable structure is found by
comparing the sparsity patterns of adjacent matrix columns. Supervariables are then
amalgamated into blocks with a given maximum block size m by merging adjacent su-155

pervariables. The algorithm does not alter the ordering of the matrix and only outputs
the grouping of consecutive rows and columns into blocks. We note that when identify-
ing supervariables, if there are supervariable blocks that are larger than the maximum
allowed block size, then these blocks are recursively divided until the block size limit
is satisfied.160

When identifying supervariables, techniques based on hashing are available to
rapidly determine if the structure of two columns differ [24, 25] (further discussion
of efficient algorithms for identifying supervariables is given in [26]). In some cases,
two columns may be associated to different variables at the same PDE grid point, but
may not have identical structure because of numerical zero values in the columns. In165

this case, approximate matching of column structures can be useful, and the “cosine”
between the structure of two columns can be checked [25]. In this paper, however, we
use exact matching to identify supervariables. (In general, the cosine technique can
be used to identify variables that are “near” one another; however, we use the simpler
RCM algorithm for this.)170

5

2.4. Other blocking techniques
Many blocking techniques can be interpreted as graph partitioning. A sparse matrix

can be associated with a graph, where the matrix rows or columns (in the symmetric
case) are identified with graph nodes, and nonzeros are identified with graph edges.
Graph-based approaches can be used to find a blocking of a sparse matrix, where each175

block corresponds to a partition of the graph nodes. Usually, the partitions of the
graph are contiguous, and thus the nodes in the same partition are nearby in the graph.
Graph partitioning techniques minimize the number of edges shared between partitions,
which corresponds to minimizing the number of nonzeros that fall outside the diagonal
block structure being created. This is in contrast to supervariable amalgamation, where180

the number of nonzero entries outside the diagonal block structure is not explicitly
minimized.

Graph-based approaches generally block together matrix rows and columns that are
not necessarily numbered together; therefore, reordering the matrix is necessary. How-
ever, the ordering of the blocks is not specified by a graph partitioning. If an ordering185

to produce an accurate incomplete factorization is desired, then it can be effective to
order the block structure (the condensed graph) using RCM or the Sloan algorithm,
especially if the block sizes are small. The ordering of the variables within blocks is
also flexible; one choice is to order the variables within a block in ascending order of
their original numbering.190

Graph partitioning approaches, e.g., the package METIS [27], typically partition a
coarse version of the graph, and then uncoarsen and refine the partitioning over several
stages called levels. When large numbers of small partitions are desired (as in our
case where the partitions are often so small that the corresponding diagonal blocks are
almost dense) then the original graph cannot be coarsened too far, and the quality of195

the result depends highly on the quality of the partitioning of the coarsest version of
the graph.

A different graph-based blocking approach is used by PABLO (parametrized block
ordering) [28, 29], which is designed for block Jacobi and block Gauss–Seidel pre-
conditioning. Here, blocks are constructed one-by-one. A block initially consists of a200

single node. Additional nodes are added to the block if they satisfy a “fullness” cri-
terion (maximizing the number of connections between nodes in the same block) or a
“connectivity” criterion (minimizing the number of connections between blocks) until
a maximum block size is reached.

All the algorithms we have described so far utilize only the structure of the sparse205

matrix, and not its values. More effective methods may be constructed if values are also
considered, explicitly placing large entries in the block diagonal portion of the blocked
matrix. METIS can partition graphs with weighted edges by minimizing weighted
edge cuts. Edge weights may be defined as being proportional to the absolute values of
the corresponding off-diagonal matrix entries. PABLO has been extended to TPABLO210

(threshold PABLO) and the family of PABLO algorithms is implemented as the pack-
age XPABLO [28]. TPABLO uses a threshold on the magnitude of the nonzeros in
a matrix when applying its fullness and connectivity criteria. All nonzeros above the
threshold are treated equally, while those below the threshold are discounted. A possi-
ble disadvantage of TPABLO is that it does not prioritize a large nonzero over a smaller215

nonzero if they are both above or below the threshold.

6

A blocking algorithm sensitive to matrix values that does not use a threshold is
the HDPRE algorithm of Duff and Kaya [30]. A block diagonal structure is gener-
ated by considering the nonzero values in decreasing order of their size. The HDPRE
algorithm is designed for matrices with nonsymmetric structure and utilizes the idea220

of partitioning a graph such that each subcomponent is strongly connected [31]. For
our symmetric positive definite test problems, we use a much simpler version of the
algorithm, which we call priority blocking that we describe next.

2.5. Priority blocking algorithms
In priority blocking, a block is identified by a set of graph nodes. Initially, each225

graph node corresponds to a block or set of size 1. Each nonzero or graph edge con-
sidered creates a new diagonal block, to which the nonzero will belong, by merging
two existing blocks, unless the resulting block exceeds a prescribed maximum size. By
considering nonzeros in decreasing order of their size, large nonzeros are effectively
placed into the diagonal block structure before small nonzeros.230

The priority blocking algorithm is specified as Algorithm 1. For efficiency, a pri-
ority queue, implemented as a heap, is used to select the nonzeros in order of decreas-
ing size. The algorithm provides a blocking but does not specify an ordering. As for
other graph-based blocking approaches, RCM ordering can be applied to the condensed
graph.235

The priority blocking algorithm with dynamic edge weights is specified in Algo-
rithm 2. This algorithm attempts to improve the priority blocking algorithm by ad-
justing the edge weights (absolute value of the corresponding nonzero element) when
blocks are merged. Consider edge (i, j) where node i belongs to set S li and node j
belongs to set S l j . Also assume that there exists a node k such that edges (i, k) and240

(j, k) exist in the graph but have yet to be considered by the priority blocking algo-
rithm. When sets S li and S l j are merged, then the edges (i, k) and (j, k) collapse into a
single edge between node k and the newly created block. The new edge replaces the
collapsed edges and has weight equal to the sum of the weights of the edges it replaces.
This technique is analogous to graph coarsening (see, for example, [27]).245

Again, a priority queue, implemented as a heap, is used to store and extract the
edges in the graph. When a new edge replaces two or more collapsed edges, one of
these edges has its weight increased and the other edges are removed. This entails
updating the heap data structure. Although increasing the priority of an item in a heap
can be done efficiently, in time proportional to log2 of the number of elements in the250

heap, not all priority queues implement this operation. In this case, we can simply add
the edge with the updated weight to the heap. The extra edges (with smaller weights)
will be removed from the heap in turn, but will have no effect on the result of the
algorithm. The least scalable component of the priority blocking algorithms is choosing
the edge with the largest weight. This cost is O(nz log2 nz) when a heap is used, where255

nz is the number of nonzeros in the matrix.

3. Results and Discussion

Our goal in this paper is to test the use of iterative methods for approximately
solving the triangular systems that arise when an incomplete Cholesky factorization is

7

Algorithm 1 Priority blocking. The input to the algorithm is a symmetric positive
definite matrix A = {ai j} and a maximum block size m. The output is a set of blocks,
where each block is a set of graph nodes (i.e., row or column indices). Each node is
always in exactly one block. A label li maps a node i to a block index. We use |S | to
denote the number of elements in set S .

Initialize blocks: S i = {i}, 1 ≤ i ≤ n
Initialize labels: li = i, 1 ≤ i ≤ n
Initialize heap: for all ai j , 0, i < j, add (i, j) to heap H with priority |ai j |/

√aiia j j
while H is not empty do

(i, j) = remove largest(H)
if |S li | + |S l j | ≤ m then

lk = i for all k ∈ S l j
S li = merge(S li , S l j)
S l j = ∅

end if
end while
print S i for all |S i | > 0

used as a preconditioner in PCG. We are interested in assessing the overall effectiveness260

of both scalar Jacobi and block Jacobi methods. For the latter, we briefly examine the
use of alternative blocking strategies.

In our numerical experiments, we use symmetric positive definite matrices from
the SuiteSparse Matrix Collection [32]. For the results reported in this paper, RCM
ordering is used unless indicated otherwise. Each test matrix A is scaled on the left and265

right by a diagonal matrix whose j-th diagonal entry is the reciprocal square root of the
2-norm of column j of A. We use IC(k) (k = 0, 1) to denote an incomplete Cholesky
factorization of level k; IC(k)-PCG denotes PCG with IC(k) preconditioning. For each
matrix, we use IC(k)-PCG to solve a system of equations where the right-hand side
vector is the vector of all ones. The initial approximation to the solution is the zero270

vector. IC(k)-PCG is considered to have converged when the residual 2-norm relative
to the initial residual 2-norm is less than 10−6.

Timings (all reported in seconds) are collected using an NVIDIA Tesla K40 GPU,
using double precision arithmetic. This GPU consists of 15 Streaming Multiprocessors,
each containing 64 double precision (DP) units. For both the scalar and block Jacobi275

triangular solves, we map matrix rows to threads. Theoretically, this strategy fills the
DP units for matrices with at least 960 rows. However, for efficient processing it is
essential to oversubscribe the processing units and switch between contexts to hide
main memory latency. In our experiments, we consider matrices with 1000 to 1.5
million rows. The small problems are too small to efficiently utilize the hardware, but280

we expect that the GPU easily hides the memory latency for the large problems.
The algorithms are implemented using the MAGMA-sparse software package, part

of the MAGMA open source software library [33]. MAGMA-sparse uses libraries and
compilers from CUDA version 8.0. In particular, exact triangular solves using paral-
lel level-scheduled forward/backward substitution (trsm) use the code implemented in285

the NVIDIA cuSPARSE library. For the block Jacobi solves, the diagonal blocks are
inverted using a batched Gauss-Jordan elimination GPU kernel [34]. We note that we
store the inverse of a block diagonal matrix, D−1, as a sparse matrix. For higher effi-

8

Algorithm 2 Priority blocking with dynamic edge weights. The inputs and outputs
are identical to those of Algorithm 1.

Initialize blocks: S i = {i}, 1 ≤ i ≤ n
Initialize labels: li = i, 1 ≤ i ≤ n
Initialize heap: for all ai j , 0, i < j, add (i, j) to heap H with priority |ai j |/

√aiia j j
Initialize adjacency lists: Ni = {(j, |ai j |/

√aiia j j), ai j , 0}, 1 ≤ i ≤ n
while H is not empty do

(i, j) = remove largest(H)
if |S li | + |S l j | ≤ m then

Nli = merge adjacency lists Nli and Nl j
Nl j = ∅

if (k, v) ∈ Nli is the result of combining two or more adjacencies then
Add (li, k) to heap H with priority v

end if
lk = i for all k ∈ S l j
S li = merge(S li , S l j)
S l j = ∅

end if
end while
print S i for all |S i | > 0

ciency, D−1 could be stored using a specialized data structure as a sequence of dense
matrices corresponding to its diagonal blocks.290

3.1. Examples

In Figure 1 we present a detailed analysis for the matrix Hook 1498. Figure 1a
shows the residual norm history (relative to the norm of the right-hand side) for a
single solve with the lower triangular IC(0) factor of the matrix using the scalar Jacobi
method. We use a random right-hand side vector, and zero sweeps corresponds to295

using the initial guess (3). For solving a system of equations with the Hook 1498
matrix, Figure 1b reports the number of IC(0)-PCG iterations required for convergence
when up to 6 Jacobi sweeps are used for each triangular solve with the IC(0) factors.
As the number of Jacobi sweeps increases, the number of iterations approaches 1338,
which is the number required if exact triangular solves are used, corresponding to the300

conventional approach.
A single scalar Jacobi sweep on an IC(0) factor takes 6.5 milliseconds for this

problem, which is more than 33× faster than the cuSPARSE triangular solve, taking
216.7 milliseconds. As we see in Figure 1b, a single Jacobi sweep does not provide
sufficient accuracy, and also few sweeps degrade the preconditioner quality making305

additional PCG iterations necessary. In terms of the PCG run time, the optimal number
of Jacobi sweeps for this problem is 3, see Figure 1c. With 3 sweeps, the residual norm
for a triangular solve is reduced by less than one order of magnitude (see Figure 1a).

Overall, IC(0)-PCG using exact level-scheduled triangular solves implemented by
cuSPARSE requires 660 seconds compared to 165 seconds when 3 Jacobi sweeps are310

used, a speedup of a factor of 4. We note that this runtime does not include the precon-
ditioner setup time, which can be large for the exact triangular solves as generating the
level scheduling data structures is generally a sequential process.

9

Figure 2 shows the corresponding results for the matrix Geo 1438. The behavior
here is different from that observed for the previous example. In particular, the IC(0)-315

PCG iteration run time (Figure 2c) is not convex. In terms of run time, the optimal
number of Jacobi sweeps for this problem is 3 (although the times are very similar for
4 and 5 sweeps), giving a run time speedup of a factor of 3.3.

We observed the behaviors illustrated by these two examples for other matrices,
but other behaviors are also possible. For example, as the number of Jacobi sweeps320

increases, the PCG iteration run time can initially increase and then decrease (possi-
bly below its initial value) before increasing again. Moreover, the residual norm may
initially diverge before converging, and a large number of sweeps may be needed to
achieve PCG convergence. This is the case for the test matrix bcsstk24. Although this
example is relatively small (of order 3562), it is challenging to solve: the matrix has325

large off-diagonal entries (even after scaling), both diagonal preconditioning and sym-
metric Gauss-Seidel preconditioning fail to give convergence within a number of steps
equal to the dimension of the matrix, and the IC(0) factorization breaks down (that is, a
zero or negative pivot is encountered during the factorization). However, the IC(1) fac-
torization exists and provides a good preconditioner, with convergence of IC(1)-PCG330

in 56 iterations using exact triangular solves. Thus we use IC(1) preconditioning for
this matrix.

Figure 3 (left) shows the residual norm for solving with the lower triangular in-
complete Cholesky factor of bcsstk24 using the Jacobi method. As the iteration matrix
for this factor is highly non-normal, we observe a large increase in the residual norm335

before convergence sets in. Using fewer than 150 Jacobi sweeps with IC(1) does not
give a useful preconditioner. Figure 3 (right) shows the residual norm if block Jacobi
is used, using supervariable amalgamation and maximum block sizes m = 6, 12, and
24. (Note that bcsstk24 essentially has a supervariable structure with a block size 6.)
Again there is an initial increase in the residual norm when the number of block Jacobi340

sweeps is small, but this increase is much less than for scalar Jacobi and the number of
sweeps for which it occurs is also much less.

Figure 4 shows IC(1)-PCG iteration counts and run times for different numbers

0 1 2 3 4 5 6

Jacobi sweeps (one tri. solve)

10
-2

10
-1

10
0

R
e
la

ti
v
e
 r

e
s
id

u
a
l
n
o
rm

(a) Scalar Jacobi triangular solve
convergence.

0 1 2 3 4 5 6

Jacobi sweeps

1200

1400

1600

1800

2000

2200

P
C

G
 i
te

ra
ti
o

n
s

(b) IC(0)-PCG convergence.

0 1 2 3 4 5 6

Jacobi sweeps

165

170

175

180

185

190

195

T
im

e
 (

s
)

(c) IC(0)-PCG run time.

Figure 1: For Hook 1498, the effects of increasing the number of scalar Jacobi sweeps. Using exact triangular
solves requires 1338 IC(0)-PCG iterations and 660 seconds.

10

0 5 10 15 20

Jacobi sweeps (one tri. solve)

10
-3

10
-2

10
-1

10
0

R
e

la
ti
v
e

 r
e

s
id

u
a

l
n

o
rm

(a) Scalar Jacobi triangular solve
convergence.

0 5 10 15 20

Jacobi sweeps

500

1000

1500

P
C

G
 i
te

ra
ti
o

n
s

(b) IC(0)-PCG convergence.

0 5 10 15 20

Jacobi sweeps

80

100

120

140

160

T
im

e
 (

s
)

(c) IC(0)-PCG run time.

Figure 2: For Geo 1438, the effects of increasing the number of scalar Jacobi sweeps. Using exact triangular
solves requires 533 IC(0)-PCG iterations and 320 seconds.

of block Jacobi sweeps. We observe that despite the difficulties using scalar Jacobi
sweeps, IC(1)-PCG converges rapidly using 15 block Jacobi sweeps. This example345

demonstrates the effectiveness of block Jacobi compared to scalar Jacobi iterations.

0 50 100 150 200

Jacobi sweeps for one triangular solve

10
-8

10
-4

10
0

10
4

10
8

10
12

10
16

R
e
la

ti
v
e
 r

e
s
id

u
a
l
n
o
rm

Jacobi sweeps for one triangular solve

0 10 20 30

R
e

la
ti
v
e

 r
e

s
id

u
a

l
n

o
rm

10
-4

10
-2

10
0

10
2

block size 6

block size 12

block size 24

Figure 3: For bcsstk24, the relative residual norm for a triangular solve with the lower triangular IC(1) factor
and a random right-hand side, without blocking (left) and with supervariable amalgamation (right).

3.2. Increasing the factorization accuracy
In Figure 5 we analyze the relation between the optimal number of scalar Jacobi

sweeps and the incomplete Cholesky preconditioner with different levels of fill-in for
the thermal 1 matrix. The PCG iteration counts in Figure 5a indicate that the number of350

Jacobi sweeps necessary to match using exact triangular solves (solid lines) increases
with the level of fill-in. Figure 5b reveals that PCG using scalar Jacobi sweeps for
the preconditioner application is faster in all cases than PCG based on exact triangular
solves. Figure 5c suggests that the optimal number of Jacobi sweeps (giving the lowest
PCG execution time) increases with the fill-in level of incomplete Cholesky. This is355

consistent with the idea that one should try to solve more accurately with a factorization
that is more accurate.

3.3. Comprehensive results for Jacobi and block Jacobi iterations
This section presents results for a large number of test problems. With a few excep-

tions, we chose all the real symmetric positive definite matrices from the SuiteSparse360

11

0 10 20 30

Jacobi sweeps

0

500

1000

1500

2000

P
C

G
 i
te

ra
ti
o

n
s

max bs 6

max bs 12

max bs 24

exact trsv

0 10 20 30

Jacobi sweeps

0

0.5

1

1.5

2

R
u

n
ti
m

e
 [

s
]

max bs 6

max bs 12

max bs 24

exact trsv

Figure 4: For bcsstk24, the effect of increasing the number of Jacobi sweeps on IC(1)-PCG iteration counts
(left) and run times (right). Different maximum block sizes are used (max bs). The result of using exact
triangular solves is also shown.

0 5 10 15 20

Jacobi sweeps

100

200

300

400

600

900

P
C

G
 i
te

ra
ti
o

n
s

IC(0)

IC(1)

IC(2)

IC(3)

IC(4)

(a) PCG iterations using IC pre-
conditioning with different levels
of fill.

0 5 10 15 20

Jacobi sweeps

0.2

0.4

0.6

1

2

4

6

T
im

e
 (

s
)

IC(0)

IC(1)

IC(2)

IC(3)

IC(4)

(b) PCG run time.

0 5 10 15 20

Jacobi sweeps

1

1.5

2

2.5

3

3.5

N
o

rm
a

liz
e

d
 t

im
e

IC(0)

IC(1)

IC(2)

IC(3)

IC(4)

(c) PCG run time, normalized by
the fastest run time for each IC
level.

Figure 5: For thermal 1, the effects of increasing the number of scalar Jacobi sweeps.

Matrix Collection that are of order at least 1000 and that are not diagonal. Three
matrices from the af shell set were discarded because of their similarity to af shell7,
which was retained. The Andrews matrix was removed because it uses an integer data
type for matrix values. The audikw 1 and Flan 1565 matrices were also removed as
the IC(1) preconditioner for these matrices, even after RCM ordering, could not fit in365

GPU memory. We also discarded three matrices, bloweybq, LFAT5000, and LF10000,
whose condition numbers reported at the SuiteSparse Matrix Collection website exceed
1017. This gives us a set of 161 matrices. From this set, we chose two subsets: those
that can be solved by IC(0)-PCG (using exact triangular solves) within 3000 iterations
and those that can be solved in the same way using IC(1)-PCG. This resulted in a set of370

69 matrices for IC(0)-PCG and a set of 78 matrices for IC(1)-PCG. We list the matrices
of the two sets along with some key characteristics in the Appendix.

Our goal is to find what fraction of these test sets can be solved using IC(k)-PCG
when the exact triangular solves are replaced by Jacobi and block Jacobi iterations.
We allow up to 20 Jacobi or block Jacobi sweeps for each triangular solve. For block375

Jacobi, we use supervariable amalgamation with a maximum block size of m = 12.
This was chosen because many PDE systems have 3, 4, or 6 degrees of freedom per
node.

12

Table 1 summarizes our findings. In the case of IC(0), 84% of the problems that
can be solved by IC(0)-PCG can also be solved when the exact triangular solves are380

replaced by Jacobi iterations. The fraction increases to 92% when block Jacobi is used.
For IC(1), the fractions are 74% and 94%, respectively. These results show that for a
significant proportion of our test problems, the exact triangular solves can be replaced
by iterative solves. We note, however, that level-based incomplete Cholesky factoriza-
tions may not provide the best preconditioner among all possible preconditioners for all385

of the test problems; our results only show the potential efficacy of iterative triangular
solves if a level-based incomplete Cholesky factorizations is used as the preconditioner.

Table 1: Number of problems that can be solved when exact triangular solves in IC(k)-PCG (k = 0, 1) are
replaced by Jacobi and block Jacobi triangular solves.

IC(0) IC(1)

Num. solved using exact triangular solves 69 78
Num. solved using Jacobi triangular solves 58 (84%) 58 (74%)
Num. solved using block Jacobi triangular solves 65 (92%) 73 (94%)

For the problems that are successfully solved using Jacobi and block Jacobi, Fig-
ure 6 shows how many Jacobi and block Jacobi sweeps, respectively, are needed to
minimize the IC(k)-PCG iteration run time. The figures are histograms showing the390

frequency of the number of sweeps. In all cases, there is a clustering of the opti-
mal number of sweeps around 3, and for most of the problems the optimal number of
sweeps is fewer than 10.

Figure 7 shows the speedup of the PCG run iteration time when using Jacobi and
block Jacobi triangular solves (using the best number of sweeps for each problem)395

compared to using exact level-scheduled triangular solves implemented within cuS-
PARSE. The plots show that the speedup can exceed 10× and that only a small number
of problems suffer a slow down. The results also show that compared to scalar Jacobi,
block Jacobi results in fewer problems experiencing a slow down.

We observe from Table 1 that using Jacobi iterations for IC(1)-PCG solves results in400

a smaller percentage of problems being solved compared to using Jacobi iterations for
IC(0)-PCG. This suggests that the IC(1) incomplete factors are less diagonally dom-
inant than the IC(0) factors. On the other hand, we found a similar percentage of
problems that were solved when block Jacobi iterations are used for IC(0)-PCG and
for IC(1)-PCG.405

To investigate these issues, we compute the off-diagonal dominance of the IC(0)
and IC(1) incomplete factors. We define the off-diagonal dominance of an n× n matrix
A as

1
n

n∑
i

n∑
j,i

|ai j|

|aii|
.

Likewise, we define block off-diagonal dominance of a matrix A with k×k blocking by

1
k

k∑
i

k∑
j,i

‖Ai j‖

‖A−1
ii ‖
−1
,

13

0 5 10 15 20

Jacobi sweeps

0

5

10

15

20

25

N
u
m

b
e
r

o
f
p
ro

b
le

m
s

(a) IC(0) + scalar Jacobi.

0 5 10 15 20

Jacobi sweeps

0

5

10

15

20

25

N
u
m

b
e
r

o
f
p
ro

b
le

m
s

(b) IC(1) + scalar Jacobi.

0 5 10 15 20

Jacobi sweeps

0

5

10

15

20

25

N
u
m

b
e
r

o
f
p
ro

b
le

m
s

(c) IC(0) + block Jacobi.

0 5 10 15 20

Jacobi sweeps

0

5

10

15

20

25

N
u
m

b
e
r

o
f
p
ro

b
le

m
s

(d) IC(1) + block Jacobi.

Figure 6: Optimal number of sweeps to minimize PCG iteration run time. The block Jacobi results (bottom
row) use supervariable amalgamation and a maximum block size of 12.

where Ai j denotes (i, j)-th block of the matrix. This definition follows the definition of410

block diagonal dominance of Feingold and Varga [35]. For convenience, we use the
Frobenius norm in the above definition.

Figure 8 plots these two quantities for the 65 matrices in our test set that have both
IC(0) and IC(1) factors. The results show that for nearly every matrix, the (block)
off-diagonal dominance of the IC(1) factor is either the same or higher than for the415

IC(0) factor. This suggests that Jacobi iterations will become less effective as more
accurate incomplete factorizations are used. However, the numerical results we have
already presented indicate that using block Jacobi with IC(1) we are able to solve a
large fraction of the test problems where IC(1) was successful with exact solves.

3.4. Results with priority blocking420

The blocking technique used may have a large influence on the results of block Ja-
cobi iteration. For simplicity, we used supervariable amalgamation in our experiments.
In this section, however, we briefly show that more delicate blocking techniques may

14

10 20 30 40 50 60
10

-1

10
0

10
1

10
2

10
3

S
p
e
e
d
u
p

Jacobi (scalar)

Jacobi max block size 12

10 20 30 40 50 60 70
10

-1

10
0

10
1

10
2

S
p
e
e
d
u
p

Jacobi (scalar)

Jacobi max block size 12

Figure 7: Speedup of the PCG iteration run time when using Jacobi and block Jacobi triangular solves
compared to using exact triangular solves. Top: IC(0). Bottom: IC(1). Matrix problems on the x-axis are
sorted by speedup, and are not the same for the different curves. Note that the curves have different lengths
because different numbers of problems can be solved for each preconditioner configuration (block size and
IC level). These speedups are for the same runs shown in the previous histograms.

be effective. Our motivation is not to advocate a single blocking method, but to empha-
size that a user should carefully select or design a blocking method that is suitable for425

the problem.
From the results for IC(0)-PCG in Table 1, there are four test examples that could

not be solved when using block Jacobi solves with supervariable amalgamation but
were solved using direct triangular solves. These examples are problems cfd1, crankseg 1,
crankseg 2, and Emilia 923. We now show that these can be solved using the two pri-430

ority blocking methods mentioned earlier. Note that detailed results for crankseg 2 are
not shown, because of its similarity to crankseg 1.

Recall that once the blocks are identified by a priority blocking algorithm, an RCM
ordering is applied to the condensed graph to determine the final ordering of the matrix.
This ordering generally differs from an RCM ordering of the original matrix. We refer435

to the orderings resulting from the priority blocking and priority blocking with dynamic
edge weight algorithms as PB and PBD orderings, respectively. We first compare the
effect of the RCM, PB, and PBD orderings on convergence and parallel performance
using IC(0)-PCG with exact triangular solves. For the PB and PBD orderings, the
blockings are determined using a maximum block size of 12, the same value as was440

used earlier for supervariable amalgamation. Results are given in Table 2. In addition
to the IC(0)-PCG iteration counts and the iteration run time, the number of levels in
the level scheduling for the exact triangular solves is reported because this affects how

15

Matrix test problem
0.1

0.5

1

5

O
ff

-d
ia

g
o

n
a

l
d

o
m

in
a

n
c
e

IC(0)

IC(1)

Matrix test problem
0.1

0.5

1

5

B
lo

c
k
 o

ff
-d

ia
g

o
n

a
l
d

o
m

in
a

n
c
e

IC(0)

IC(1)

Figure 8: Off-diagonal dominance (top) and block off-diagonal dominance (bottom) for 65 test matrices,
with matrices sorted by the value for the IC(0) factor. Smaller values means a matrix is more diagonally
dominant.

Table 2: For IC(0), results using exact triangular solves (cuSPARSE) for problems using three different
orderings: RCM, PB, and PBD. The table shows the number of IC(0)-PCG iterations, the iteration run time,
and the number of levels in the level scheduling.

IC(0)-PCG iterations Run time Number of levels
RCM PB PBD RCM PB PBD RCM PB PBD

cfd1 445 496 537 24.8 15.7 32.4 2831 1249 2903
crankseg 1 88 190 163 23.3 99.8 96.7 6841 13594 16086
Emilia 923 305 604 1346 226.1 99.7 269.8 33495 3749 4938

efficiently the exact triangular solves are parallelized. We observe that for our three test
matrices, the PB and PBD orderings generally lead to increased iteration counts, con-445

firming that RCM is a good ordering for incomplete Cholesky factorizations. However,
we also observe the anomaly that the PB and PBD orderings can reduce the run times.
Because of the locations of large nonzeros in the matrix, PB and PBD can (but not
always) result in an ordering that reduces the number of levels, meaning that the level-
scheduled triangular solves can be more efficiently parallelized, leading to a decrease450

in the iteration run time.
We next use the PB and PBD orderings for IC(0)-PCG with block Jacobi solves.

We also test orderings generated from METIS partitionings of the matrices using edge
weights (with average block size 12). As with the PB and PBD orderings, the METIS
ordering is obtained by applying RCM to a condensed graph. In Figure 9 (bottom455

row) we present results for the METIS ordering for problems cfd1 and crankseg 1; the

16

IC(0) factorization broke down for problem Emilia 923 with the METIS ordering so is
omitted. Note that we also tested TPABLO on these matrices using a maximum block
size of 12 and a range of parameter values, including the default. However, the block
Jacobi solves converged slowly and did not provide effective preconditioners.460

cfd1

Jacobi sweeps

5 10 15

P
C

G
 i
te

ra
ta

io
n

s

200

400

600

800

1000

1200

1400
PB

PBD

METIS

Jacobi sweeps

5 10 15

T
im

e
 (

s
)

3

4

5

6

7

8
PB

PBD

METIS

crankseg 1

Jacobi sweeps

5 10 15 20 25

P
C

G
 i
te

ra
ta

io
n

s

100

150

200

250

300

350

400
PB

PBD

METIS

Jacobi sweeps

5 10 15 20 25

T
im

e
 (

s
)

2

4

6

8

10

PB

PBD

METIS

Emilia 923

Jacobi sweeps

2 4 6 8

P
C

G
 i
te

ra
ta

io
n

s

0

1000

2000

3000

4000
PB
PBD

Jacobi sweeps

2 4 6 8

T
im

e
 (

s
)

50

100

150

200

250

300
PB

PBD

Figure 9: IC(0)-PCG iterations and iteration run time as a function of the number of block Jacobi sweeps,
using the PB, PBD, and METIS orderings.

Figure 9 shows the IC(0)-PCG iteration counts (left column) and the iteration run
time (right column) as the number of block Jacobi sweeps is varied. Although the block
Jacobi triangular solves were not effective when supervariable amalgamation was used
for these matrices, we observe that after only a small number of block Jacobi sweeps
(fewer than 10), the number of IC(0)-PCG iterations is almost the same as for exact465

triangular solves. The METIS orderings give IC(0)-PCG iteration run times that are
worse than those for the PB and PBD orderings.

Table 3 shows the optimal number of block Jacobi sweeps for the PB and PBD
orderings to minimize the iteration run time. The corresponding number of PCG itera-
tions and the run time are also reported. The timings in this table can be compared to470

those in Table 2. We observe that for each system, the best run times for block Jacobi

17

Table 3: The optimal number of block Jacobi sweeps and the corresponding number of IC(0)-PCG iterations
and iteration time for the PB and PBD orderings.

PB PBD
sweeps iters time sweeps iters time

cfd1 1 1298 4.0 4 651 3.3
crankseg 1 6 209 4.4 7 171 3.9
Emilia 923 7 625 72.8 5 1392 139.2

sweeps are always faster than using exact triangular solves. If we compare block Ja-
cobi solves using the PB ordering to exact triangular solves using RCM, the run time
speedups are 6.2, 5.3, and 3.1 for our three test matrices.

From the results for IC(1) in Table 1, there are five problems that could not be475

solved when using block Jacobi with supervariable amalgamation. These problems are
nd3k, crankseg 1, crankseg 2, m t1, and Emilia 923. Once again, we try to solve these
problems with the two priority blocking methods. In this case, we are able to solve
all the problems except m t1. Tables 4 and 5 report results for IC(1)-PCG analogous
to those for IC(0)-PCG shown in Tables 2 and 3, respectively. (Again, we only show480

results for crankseg 1 and not for crankseg 2.) We see that IC(1)-PCG with iterative
triangular solves is faster than using exact triangular solves.

Table 4: For IC(1), results using exact triangular solves (cuSPARSE) for problems using three different
orderings: RCM, PB, and PBD. The table shows the number of IC(1)-PCG iterations, the iteration run time,
and the number of levels in the level scheduling.

PCG iterations Time Num. levels
RCM PB PBD RCM PB PBD RCM PB PBD

nd3k 51 63 58 38.1 50.4 44.7 7716 7564 7052
crankseg 1 40 59 49 39.2 177.9 142.6 15856 33357 32864
Emilia 923 102 496 1121 149.3 359.8 1220.8 60264 17913 31071

Table 5: The optimal number of block Jacobi sweeps and the corresponding number of IC(1)-PCG iterations
and iteration time for PB and PBD ordering.

PB PBD
sweeps iters time sweeps iters time

nd3k 22 69 1.8 23 60 1.4
crankseg 1 9 61 3.0 9 54 2.6
Emilia 923 8 496 99.0 5 1181 167.3

The system with matrix m t1 could not be solved with IC(1)-PCG using either
Jacobi or block Jacobi sweeps. We note that m t1 has large off-diagonal entries, essen-
tially as large as the diagonal values themselves. When a matrix has a full subdiagonal485

18

of large nonzero values, for example, there is no blocking that can prevent some of
these large entries from being outside a block diagonal structure.

4. Conclusions

The main goal of this paper is to understand the applicability of Jacobi and block
Jacobi iterations for solving the sparse triangular systems arising from incomplete490

Cholesky preconditioning. As always, artificial problems can be constructed to de-
feat the Jacobi approach. However, we find that for a diverse set of realistic symmetric
positive definite test problems using IC(0)-PCG and IC(1)-PCG, Jacobi iterations are
effective for a large proportion of the problems. We also showed that by using block
Jacobi, robustness could be enhanced. Even better results for some problems could be495

obtained by using blocking techniques that use matrix values (e.g., priority blocking).
We note that these results do depend on the parallelism of the computing architec-

ture. The use of (block) Jacobi is targeted for high parallelism cases, like GPUs and
manycore CPUs. With lower amounts of parallelism, there are two main effects: (1) the
advantage of using (block) Jacobi over exact solves inside PCG is smaller or may not500

be effective, and (2) it is possible that the PCG solve time as a function of the number
of sweeps might only increase and not decrease, i.e., more sweeps always increases
the PCG solve time because the (block) Jacobi triangular solves are not computed fast
enough for there to be an advantage to using multiple sweeps.

This paper did not address how to choose the optimal number of Jacobi sweeps to505

use in the PCG solver. A fixed number of sweeps is desirable, as the preconditioner is
then a fixed operator and a “flexible” solver is not needed. However, in practice, the
number of sweeps could be adjusted dynamically and the iterations restarted based on
the convergence of PCG. If a flexible solver is available, e.g, FGMRES [36] or flexible
conjugate gradients [37, 38], then a different number of Jacobi sweeps based on the510

residual norm reduction for each approximate triangular solve could be used.
A caveat when reading the results of this paper is that no preconditioner is best for

all problems, as the choice of preconditioner must be matched to the difficulty (e.g.,
conditioning) of the problem. Thus in this paper we do not imply that incomplete
factorization preconditioning combined with Jacobi iterative triangular solves is the515

best method to use for all problems. Instead, if incomplete factorization is deemed to
be effective for a given problem compared to other preconditioners, then it is likely
that Jacobi triangular solves will yield a speedup over traditional triangular solves on
highly parallel computer architectures.

Acknowledgments520

This research was supported by the Department of Energy, Office of Science, Of-
fice of Advanced Scientific Computing Research, Applied Mathematics program under
Award Numbers DE-SC-0016564 and DE-SC-0016513. This research was also sup-
ported by EPSRC grant EP/I013067/1. H. Anzt was partially supported by the “Impuls
und Vernetzungsfond of the Helmholtz Association” under grant VH-NG-1241.525

19

References

[1] E. C. Anderson, Y. Saad, Solving sparse triangular systems on parallel computers,
International J. of High Speed Computing 1 (1989) 73–96.

[2] S. W. Hammond, R. Schreiber, Efficient ICCG on a shared memory multiproces-
sor, International J. High Speed Computing 4 (1992) 1–21.530

[3] J. H. Saltz, Aggregation methods for solving sparse triangular systems on multi-
processors, SIAM J. on Scientific and Statistical Computing 11 (1) (1990) 123–
144.

[4] M. M. Wolf, M. A. Heroux, E. G. Boman, Factors impacting performance of
multithreaded sparse triangular solve, High Performance Computing for Compu-535

tational Science – VECPAR 2010 6449 (2010) 32–44.

[5] R. Li, Y. Saad, GPU-accelerated preconditioned iterative linear solvers, The Jour-
nal of Supercomputing 63 (2) (2013) 443–466.

[6] H. Anzt, E. Chow, J. Dongarra, Iterative sparse triangular solves for precondition-
ing, Lecture Notes in Computer Science 9233 (2015) 650–661.540

[7] E. Chow, A. Patel, Fine-grained parallel incomplete LU factorization, SIAM J.
on Scientific Computing 37 (2) (2015) C169–C193.

[8] M. Benzi, M. Tůma, A comparative study of sparse approximate inverse precon-
ditioners, Applied Numerical Mathematics 30 (1999) 305–340.

[9] A. C. N. van Duin, Scalable parallel preconditioning with the sparse approxi-545

mate inverse of triangular matrices, SIAM J. on Matrix Analysis and Applications
20 (4) (1999) 987–1006.

[10] F. L. Alvarado, R. Schreiber, Optimal parallel solution of sparse triangular sys-
tems, SIAM J. on Scientific Computing 14 (2) (1993) 446–460.

[11] A. Pothen, F. L. Alvarado, A fast reordering algorithm for parallel sparse triangu-550

lar solution, SIAM J. on Scientific Computing 13 (2) (1992) 645–653.

[12] H. A. Van der Vorst, A vectorizable variant of some ICCG methods, SIAM J. on
Scientific Computing 3 (1982) 350–356.

[13] H. Anzt, T. K. Huckle, J. Bräckle, J. Dongarra, Incomplete sparse approximate in-
verses for parallel preconditioning, Parallel Computing 71 (Supplement C) (2018)555

1 – 22.

[14] M. T. Jones, P. E. Plassmann, Scalable iterative solution of sparse linear-systems,
Parallel Computing 20 (5) (1994) 753–773.

[15] E. H. Cuthill, J. McKee, Reducing the bandwidth of sparse symmetric matrices,
in: Proceedings 24th National Conference of the ACM, ACM Press, 1969, pp.560

157–172.

20

[16] S. W. Sloan, An algorithm for profile and wavefront reduction of sparse matrices,
International J. of Numerical Methods in Engineering 23 (1986) 239–251.

[17] M. Benzi, W. D. Joubert, G. Mateescu, Numerical experiments with parallel or-
derings for ILU preconditioners, Electronic Transactions on Numerical Analysis565

8 (1999) 88–114.

[18] S. Doi, On parallelism and convergence of incomplete LU factorizations, Applied
Numerical Mathematics 7 (5) (1991) 417–436.

[19] S. Doi, T. Washio, Ordering strategies and related techniques to overcome the
trade-off between parallelism and convergence in incomplete factorizations, Par-570

allel Computing 25 (13-14) (1999) 1995–2014.

[20] I. S. Duff, G. A. Meurant, The effect of ordering on preconditioned conjugate
gradients, BIT Numerical Mathematics 29 (4) (1989) 635–657.

[21] H. C. Elman, E. Agrón, Ordering techniques for the preconditioned conjugate-
gradient method on parallel computers, Computer Physics Communications575

53 (1-3) (1989) 253–269.

[22] E. L. Poole, J. M. Ortega, Multicolor ICCG methods for vector computers, SIAM
J. on Numerical Analysis 24 (6) (1987) 1394–1417.

[23] E. Chow, Y. Saad, Experimental study of ILU preconditioners for indefinite matri-
ces, Journal of Computational and Applied Mathematics 86 (2) (1997) 387–414.580

[24] C. Ashcraft, Compressed graphs and the minimum degree algorithm, SIAM Jour-
nal on Scientific Computing 16 (6) (1995) 1404–1411.

[25] Y. Saad, Finding exact and approximate block structures for ILU preconditioning,
SIAM Journal on Scientific Computing 24 (4) (2003) 1107–1123.

[26] J. D. Hogg, J. A. Scott, A modern analyse phase for sparse tree-based direct585

methods, Numerical Linear Algebra with Applications 20 (2013) 397–412.

[27] G. Karypis, V. Kumar, A fast and high quality multilevel scheme for partitioning
irregular graphs, SIAM Journal on Scientific Computing 20 (1) (1998) 359–392.

[28] D. Fritzsche, A. Frommer, D. B. Szyld, Extensions of certain graph-based algo-
rithms for preconditioning, SIAM J. on Scientific Computing 29 (2007) 2144–590

2161.

[29] J. ONeil, D. B. Szyld, A block ordering method for sparse matrices, SIAM Jour-
nal on Scientific and Statistical Computing 11 (5) (1990) 811–823.

[30] I. S. Duff, K. Kaya, Preconditioners based on strong subgraphs, Electronic Trans-
actions on Numerical Analysis 40 (2013) 225–248.595

[31] R. E. Tarjan, An improved algorithm for hierarchical clustering using strong com-
ponents, Information Processing Letters 17 (1) (1983) 37–41.

21

[32] T. A. Davis, Y. Hu, The University of Florida sparse matrix collection, ACM
Transactions on Mathematical Software 38, article 1, 25 pages.

[33] Innovative Computing Lab, Software distribution of MAGMA version 2.2.0,600

http://icl.cs.utk.edu/magma/ (2016).

[34] H. Anzt, J. Dongarra, G. Flegar, E. S. Quintana-Ortı́, Variable-size batched
Gauss–Jordan elimination for block-Jacobi preconditioning on graphics proces-
sors, Parallel Computing, 2018.

[35] D. G. Feingold, R. S. Varga, Block diagonally dominant matrices and generaliza-605

tions of the Gerschgorin circle theorem., Pacific Journal of Mathematics 12 (4)
(1962) 1241–1250.

[36] Y. Saad, A flexible inner-outer preconditioned GMRES algorithm, SIAM J. on
Scientific and Statistical Computing 14 (1993) 461–469.

[37] O. Axelsson, Iterative Solution Methods, Cambridge University Press, Cam-610

bridge, 1994.

[38] Y. Notay, Flexible conjugate gradients, SIAM Journal on Scientific Computing
22 (4) (2000) 1444–1460.

22

Appendix

A1: Problems for the IC(0) analysis615

Name #rows #nonzeros Name #rows #nonzeros
e1138 bus 1138 4054 wathen100 30401 471601
Chem97ZtZ 2541 7361 gridgena 48962 512084
bcsstk08 1074 12960 apache1 80800 542184
mhd3200b 3200 18316 wathen120 36441 565761
bcsstm12 1473 19659 thermal1 82654 574458
mhd4800b 4800 27520 crystm03 24696 583770
plbuckle 1282 30644 finan512 74752 596992
bcsstk27 1224 56126 thermomech TC 102158 711558
nasa2146 2146 72250 thermomech TK 102158 711558
fv1 9604 85264 Pres Poisson 14822 715804
fv2 9801 87025 G2 circuit 150102 726674
crystm01 4875 105339 bundle1 10581 770811
bodyy4 17546 121550 Dubcova2 65025 1030225
aft01 8205 125567 thermomech dM 204316 1423116
bodyy5 18589 128853 t2cubes sphere 101492 1647264
bodyy6 19366 134208 qa8fm 66127 1660579
ted B 10605 144579 cfd1 70656 1825580
ted B unscaled 10605 144579 Dubcova3 146689 3636643
Muu 7102 170134 parabolic fem 525825 3674625
t2dah e 11445 176117 offshore 259789 4242673
obstclae 40000 197608 pdb1HYS 36417 4344765
torsion1 40000 197608 apache2 715176 4817870
jnlbrng1 40000 199200 tmt sym 726713 5080961
minsurfo 40806 203622 G3 circuit 1585478 7660826
s1rmt3m1 5489 217651 thermal2 1228045 8580313
s2rmt3m1 5489 217681 crankseg 1 52804 10614210
Dubcova1 16129 253009 crankseg 2 63838 14148858
s1rmq4m1 5489 262411 af shell7 504855 17579155
s2rmq4m1 5489 263351 bundle adj 513351 20207907
bcsstk16 4884 290378 Emilia 923 923136 40373538
crystm02 13965 322905 Hook 1498 1498023 59374451
shallow water1 81920 327680 Geo 1438 1437960 60236322
shallow water2 81920 327680 Trefethen 2000 2000 41906
Kuu 7102 340200 Trefethen 20000 20000 554466
gyro m 17361 340431

Table 6: Table listing the matrices along with key characteristics that are included in the IC(0) tests.

23

A2: Problems for the IC(1) analysis

Name #rows #nonzeros Name #rows #nonzeros
e1138 bus 1138 4054 crystm02 13965 322905
Chem97ZtZ 2541 7361 shallow water1 81920 327680
bcsstk08 1074 12960 shallow water2 81920 327680
mhd3200b 3200 18316 Kuu 7102 340200
bcsstm12 1473 19659 gyro m 17361 340431
bcsstk10 1086 22070 wathen100 30401 471601
msc01050 1050 26198 gridgena 48962 512084
mhd4800b 4800 27520 apache1 80800 542184
plbuckle 1282 30644 wathen120 36441 565761
bcsstk27 1224 56126 thermal1 82654 574458
bcsstk14 1806 63454 crystm03 24696 583770
nasa2146 2146 72250 finan512 74752 596992
fv1 9604 85264 cbuckle 13681 676515
fv2 9801 87025 thermomech TC 102158 711558
msc04515 4515 97707 thermomech TK 102158 711558
crystm01 4875 105339 Pres Poisson 14822 715804
bcsstk15 3948 117816 G2 circuit 150102 726674
bodyy4 17546 121550 bundle1 10581 770811
aft01 8205 125567 Dubcova2 65025 1030225
bodyy5 18589 128853 thermomech dM 204316 1423116
bodyy6 19366 134208 t2cubes sphere 101492 1647264
ted B 10605 144579 qa8fm 66127 1660579
ted B unscaled 10605 144579 nd3k 9000 3279690
bcsstk24 3562 159910 Dubcova3 146689 3636643
Muu 7102 170134 parabolic fem 525825 3674625
t2dah e 11445 176117 cant 62451 4007383
obstclae 40000 197608 pdb1HYS 36417 4344765
torsion1 40000 197608 apache2 715176 4817870
jnlbrng1 40000 199200 ecology2 999999 4995991
minsurfo 40806 203622 tmt sym 726713 5080961
s3rmt3m3 5357 207123 G3 circuit 1585478 7660826
s1rmt3m1 5489 217651 thermal2 1228045 8580313
s3rmt3m1 5489 217669 m t1 97578 9753570
s2rmt3m1 5489 217681 crankseg 1 52804 10614210
Dubcova1 16129 253009 crankseg 2 63838 14148858
s1rmq4m1 5489 262411 af shell7 504855 17579155
s3rmq4m1 5489 262943 Emilia 923 923136 40373538
s2rmq4m1 5489 263351 Hook 1498 1498023 59374451
bcsstk16 4884 290378 Geo 1438 1437960 60236322

Table 7: Table listing the matrices along with key characteristics that are included in the IC(1) tests.

24

