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Abstract This paper compares the performance of different approaches
to tolerate failures using checkpoint/restart when executed on large-scale
failure-prone platforms. We study (i) RIGID applications, which use a
constant number of processors throughout execution; (ii) MOLDABLE ap-
plications, which can use a different number of processors after each
restart following a fail-stop error; and (ili) GRIDSHAPED applications,
which are moldable applications restricted to use rectangular processor
grids (such as many dense linear algebra kernels). For each application
type, we compute the optimal number of failures to tolerate before relin-
quishing the current allocation and waiting until a new resource can be
allocated, and we determine the optimal yield that can be achieved. We
instantiate our performance model with a realistic applicative scenario
and make it publicly available for further usage.

1 Introduction

Consider a long-running job that requests N processors from the batch sched-
uler. Resilience to fail-stop errors® is provided by a Checkpoint/Restart (CR)
mechanism, which is the de-facto standard approach for High-Performance Com-
puting (HPC) applications. After each failure, the application restarts from the
last checkpoint but the number of available processors decreases, assuming the
application can continue execution after a failure (e.g., using ULFM [3]). Until
which point should the execution proceed before requesting a new allocation
with N fresh resources from the batch scheduler?

The answer depends upon the nature of the application. For a RIGID applica-
tion, the number of processors must remain constant throughout the execution.
The question is then to decide the number F of processors (out of the N available
initially) that will be used as spares. With F' spares, the application can tolerate
F failures. The application always executes with N — F' processors: after each

5 We use the terms fail-stop error and failure indifferently.



failure, then it restarts from the last checkpoint and continues executing with
N — F processors, the faulty processor having been replaced by a spare. After F’
failures, the application stops when the (F 4+ 1)st failure strikes, and relinquishes
the current allocation. It then asks for a new allocation with NV processors, which
takes a wait time, D, to start (as other applications are most likely using the
platform concurrently). The optimal value of F' obviously depends on the value
of D, in addition to the application and resilience parameters. The wait time typ-
ically ranges from several hours to several days if the platform is over-subscribed
(up to 10 days for large applications on the K-computer [24]). The metric to
optimize here is the (expected) application yield, which is the fraction of useful
work per second, averaged over the N resources, and computed in steady-state
mode (expected value for multiple batch allocations of N resources).

For a MOLDABLE application, the problem is different: here we assume that
the application can use a different number of processors after each restart. The
application starts executing with N processors; after the first failure, the ap-
plication recovers from the last checkpoint and is able to continue with only
N —1 processors, albeit with a slowdown factor % After how many failures F’
should the application decide to stop® and accept to produce no progress during
D, in order to request a new allocation? Again, the metric to optimize is the
application yield.

Finally, consider an application which must have a given shape (or a set of
given shapes) in terms of processor layout. Typically, these shapes are dictated
by the algorithm. In this paper, we use the example of a GRIDSHAPED appli-
cation, which is required to execute on a rectangular processor grid whose size
can dynamically be chosen. Most dense linear algebra kernels (matrix multipli-
cation, LU, Cholesky and QR factorizations) are GRIDSHAPED applications, and
perform more efficiently on square processor grids than on elongated rectangle
ones. The application starts with a square p x p grid of N = p? processors. After
the first failure, execution continues on a p x (p — 1) rectangular grid, keeping
p — 1 processors as spares for the next p — 1 failures. After p failures, the grid
is shrunk again to a (p — 1) x (p — 1) square grid, and so on. We address the
same question: after how many failures F' should the application stop working
on a smaller processor grid and request a new allocation, in order to optimize
the application yield?

The major contribution of this paper is to present a detailed performance
model and to provide analytical formulas for the expected yield of each applica-
tion type. Due to lack of space, we instantiate the model for a single applicative
scenarios, for which we draw comparisons across application types. Our model
is publicly available [21] so that more scenarios can be explored. Notably, the
paper qualifies the optimal number of spares for the optimal yield, and the op-
timal length of a period between two full restarts; it also qualifies how much the

5 Another limit is induced by the total application memory Memq,;. There must remain
at least /£ live processors such that Memi,: < £ X Mem;,q , where Mem;,q is the
memory of each processor. We ignore this contraint in the paper but it would be
straightforward to take it into account.



yield and total work done within a period are improved by deploying MOLDABLE
applications w.r.t. RIGID applications.

The rest of the paper is organized as follows. Section 2 provides an overview
of related work. Section 3 is devoted to formally defining the performance model.
Section 4 provides formulas for the yield of R1GID, MOLDABLE and GRIDSHAPED
applications. These formulas are instantiated through the applicative scenario
in Section 5, to compare the different results. Finally, Section 6 provides final
remarks and hints for future work.

2 Related work

We first survey related work on checkpoint-restart. Then we discuss previous
contributions on MOLDABLE applications.

Checkpoint-restart. Checkpoint/restart (CR) is the most common strategy
employed to protect applications from underlying faults and failures on HPC
platforms. Generally, CR periodically outputs snapshots (i.e., checkpoints) of
the application global, distributed state to some stable storage device. When
a failure occurs, the last stored checkpoint is retrieved and used to restart the
application.

A widely-used approach for HPC applications is to use a fixed checkpoint
period (typically one or a few hours), but it is sub-optimal. Instead, application-
specific metrics can (and should) be used to determine the optimal checkpoint
period. The well-known Young/Daly formula [25,8] yields an application optimal
checkpoint period, v/2uC seconds, where C is the time to commit a checkpoint
and p the application Mean Time Between Failures (MTBF) on the platform. We
have = #24 where N is the number of processors enrolled by the application
and fi;nq is the MTBF of an individual processor [17].

The Young/Daly formula minimizes platform waste, defined as the fraction
of job execution time that does not contribute to its progress. The two sources
of waste are the time spent taking checkpoints (which motivates longer check-
point periods) and the time needed to recover and re-execute after each failure
(which motivates shorter checkpoint periods). The Young/Daly period achieves
the optimal trade-off between these sources to minimize the total waste.

For RIGID applications, both [18,26] report some experimental study to de-
termine the optimal number of processors and of spares that should be used.
Furthermore, the optimal number of resources for a perfectly parallel job is
computed via an iterative relaxation procedure in [18] and through analytical
formulas in [5].

Moldable and GridShaped applications RiGID and MOLDABLE applica-
tions have been studied for long in the context of scientific applications. A de-
tailed survey on various application types (RIGID, MOLDABLE, malleable) was
conducted in [10]. Resizing application to improve performance has been inves-
tigated by many authors, including [19,6,23,22] among others. A related recent



study is the design of a MPI prototype for enabling tolerance in MOLDABLE
MapReduce applications [13].

The TORQUE/Maui scheduler has been extended to support evolving, mal-
leable, and MOLDABLE parallel jobs [20]. In addition, the scheduler may have
system-wide spare nodes to replace failed nodes. In contrast, our scheme does
not assume a change of behavior from the batch schedulers and resource allo-
cators, but utilizes job-wide spare nodes: a node set including potential spare
nodes is allocated and dedicated to a job at the time of scheduling, that can be
used by the application to restart within the same job after a failure.

An experimental validation of the feasibility of shrinking application on the
fly is provided in [2]. In this paper, the authors used an iterative solver applica-
tion to compare two recovery strategies, shrinking and spare node substitution.
They use ULFM, the fault-tolerant extension of MPI that offers the possibiliity of
dynamically resizing the execution after a failure. In [11,15], the authors studied
MoLDABLE and GRIDSHAPED applications that continue executing after some
failures. They focus on the performance degradation incurred after shrinking or
spare node substitution, due to less efficient communications (in particular col-
lective communications). A major difference with our work is that these studies
focus on recovery overhead and do not address overall performance nor yield.

3 Performance model

This section reviews the key parameters of the performance model. Some as-
sumptions are made to simplify the computation of the yield. We discuss possible
extensions in Section 6.

Application/platform framework. We consider perfectly parallel applica-
tions that execute on homogeneous parallel platforms. Without loss of general-
ity, we assume that each processor has unit speed: we only need to know that
the total amount of work done by p processors within 1" seconds requires %T
seconds with ¢ processors.

Mean Time Between Failures (MTBF). Each processor is subject to fail-
ures which are IID (independent and identically distributed) random variables
following an Exponential probability distribution of mean 4, the individual
processor MTBF. Then the MTBF of a section of the platform comprised of i
processors is given by p; = #rd [17].

Checkpoints. Processors checkpoint periodically, using the optimal Young/Daly
period [25,8]: for an application using i processors, this period is v/2C;u;, where
C; is the time to checkpoint with ¢ processors’. We consider two cases to define

" In [8], the optimal checkpoitning period is /2C;p; 4+ C;, but we use /2C;u; as
derived in [17]. Note that both formulas are only first-order approximations and
collapse when C; is small in front of the MTBF ;. The exact formula for the
optimal checkpointing period is given in [17].



C;. In both cases, the overall application memory footprint is considered con-
stant at Memyq, so the size of individual checkpoints is inversely linear with the
number of participating/surviving processors. In the first case, the I/O band-
width is the bottleneck (which is often the case in HPC platforms — it takes only
a few processors to saturate the I/O bandwidth); then the checkpoint cost is
constant and given by C; = %, where 74, is the aggregated I/O bandwidth.
In the second case, the processlco)r network card is the bottleneck (which is the
case for in-memory checkpointing, or checkpointing to NVRAM), and the check-

point cost is inversely proportional to number of active processors: C; = <o

Tenet X1

where T,y is the available network bandwidth, and % the checkpoint size.
We denote the recovery time with ¢ processors as R;. For all simulations we
use R; = C};, assuming that the read and write bandwidths are identical.

Objective. We consider a long-lasting application that requests a resource al-
location with N processors. We aim at deriving the optimal number of failures
F that should be tolerated before paying the wait time and requesting a new
allocation. We aim at maximizing the yield ) of the application, defined as the
fraction of time during the allocation length and wait time where the N resources
perform useful work. Of course a spare does not perform useful work when idle,
and no processor is active during wait time, which explains that the yield will
always be smaller than 1. We will derive the value of F' that maximizes ) fro
the three application types.

4 Expected yield

This section is the core of the paper. We compute the expected yield for each
application type, RIGID, MOLDABLE and GRIDSHAPED.

4.1 Rigid application

We first consider a RIGID application that can be parallelized at compile-time
to use any number of processors but cannot change this number until it reaches
termination. There are N processors allocated to the application. We use N — F'
for execution and keep F' as spares. The execution is protected from failures by
checkpoints of duration Cy_p. Each failure striking the application will incur an
in-place restart of duration Ry_p, using a spare processor to replace the faulty
one. However, when the (F' + 1)%¢ failure strikes, the job will have to stop and
perform a full restart, waiting for a new allocation of N processors to be granted
by the job scheduler.

We define Tg as the expected duration of an execution period until the ap-
plication is ready to continue after the (F + 1)%! failure strikes. We compute Tg
using several first-order approximations. In particular, we ignore scenarios where
failures strike during checkpoint, recovery or re-execution, thereby neglecting the
probability of two failures within a short time window. Also, we approximate the



time lost after a failure as half the checkpointing period. Finally, we assume an
integer number of checkpointing periods in between failures. The first failure is
expected to strike after pupy seconds, the second failure pn_1 seconds after the
first one, and so on. Without any overhead, the length of a period would be
Ef\st ;. Except for the last failure, each failure incurs some overhead only if
it strikes the application. This happens with probability g, where i is the
current number of live processors. In that case, the failure requires a restart and
some re-execution, namely half the checkpoint period in average. The applica-
tion always uses N — F' processors, hence the checkpoint period remains equal
to \/2CN_run—_r. On the contrary, if the failure strikes a spare, there is no
overhead. The last failure always requires a wait time, and then a restart and
re-execution. Therefore, we derive:
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During the duration 7g of the period, in the absence of failures and pro-
tection, the application could have used all N processors to compute. Thus the
effective yield with protection for the application during Tg is reduced to Vg:

Wr
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Yr =

4.2 Moldable Application

We now consider a MOLDABLE application that can use a different number of
processors after each restart. The application starts executing with N processors;
after the first failure, the application recovers from the last checkpoint and is
able to continue with only N — 1 processors after paying the restart cost Ry_1,
albeit with a slowdown factor % of the parallel work per time unit.

We define Tj; as the expected duration of an execution period until the
(F + 1)t failure strikes. Without any overhead, the length of a period would
be ZfV:;VF i, the same as for R1GID applications. But there are few differences.
First, each failure strikes the application, since it always uses all live processors.
Second, the checkpoint period increases after each failure, since the number
of live processors decreases. Third, the re-execution after a failure (except the



last one) incurs a slowdown factor because we move from i processors to i — 1
processors. Fourth and finally, the re-execution after the last failure is performed
faster, because there are more live processors. Altogether, we derive that

N—F  N-F+1 .
205 ;i N —F /2CN_ _
Tu=3 wt 3 (Riﬁ.l v “)+D+RN+ V2ON_FUN-F
i=N v

~1 2 N 2

i=N
To compute the total amount of work W), during a period, we proceed as
before and consider each sub-period. During the sub-period of length pu;, there
are \/2’8‘7“ checkpoints, each of length C;, and each processor works during
—H— seconds. And there are i processors at work during that sub-period.

e
Altogether:
N—F
i w
Wir= Y ix 2 and =
= Yt men M

where Y, is the yield of the MOLDABLE application.

4.3 GridShaped application

Finally, we consider a GRIDSHAPED application, defined as a moldable execution
which requires a rectangular processor grid. The application starts with a square
p x p grid of N = p? processors. After the first failure, execution continues on a
p X (p—1) rectangular grid, keeping p — 1 processors as spares for the next p—1
failures. After p failures, the grid is shrunk again to a (p—1) X (p—1) square grid,
and the execution continues on this reduced-size square grid. After how many
failures F' should the application stop, in order to maximize the application
yield? The derivation of the expected length of a period and of the total work
are more complicated for GRIDSHAPED than for RIGID and MOLDABLE. Due to
lack of space, we refer to the extended version [12] , as well as to the publicly
available software [21], for detailed formulas and an algorithm to to compute the
optimal value of F.

5 Applicative scenario

As an applicative scenario, we consider a platform with 22,250 nodes (150?%),
with a node MTBF of 20 years, and an application that would take 2 minutes
to checkpoint (at 22,250 nodes). In other words, we let N = 22,500, ;g = 20y
and C; = C' = 120s. These values are inspired from existing platforms: the Titan
supercomputer at OLCF [14], for example, holds 18,688 nodes, and experiences a
few node failures per day, implying a node MTBF between 18 and 25 years. The
filesystem has a bandwidth of 1.4TB/s, and nodes altogether aggregate 100TB of
memory, thus a checkpoint that would save 30% of that system should take in the
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Figure1: Optimal yield as function of the wait time, for the different types of
applications.

order of 2 minutes to complete. Further experiments varying N, ;.4 and with
several scenarios for checkpoint costs are available in the extended version [12].

Figure 1 shows the yield that can be expected if doing a full restart after
an optimal number of failures, as a function of the wait time, for the three kind
of applications considered (R1GID, MOLDABLE and GRIDSHAPED). We also plot
the expected yield when the application experiences a full restart after each
failure (NOSPARE). First, one sees that the three approaches that avoid paying
the cost of a wait time after every failure experience a comparable yield, while
the performance of the NOSPARE approach quickly degrades to a small efficiency
(30% when the wait time is around 14h).

The zoom box to differentiate the RIGID, MOLDABLE and GRIDSHAPED
yield shows that the MOLDABLE approach has a slightly higher yield than the
other ones, but only for a minimal fraction of the yield. This is expected, as
the MOLDABLE approach takes advantage of all living processors, while the
GRIDSHAPED and RIGID approaches sacrifice the computing power of the spare
nodes waiting for the next failure. However, the size of the gain is small to the
point of being negligible. The GRIDSHAPED approach experiences a yield that
changes in steps. Both these phenomenons are explained by the next figure.

Figure 2 shows the number of failures after which the application should do
a full restart, to obtain an optimal yield, as a function of the wait time, for the
three kind of applications considered. We observe that this optimal is quickly
reached: even with long wait times (e.g. 10h), 200 to 250 failures (depending on
the method) should be tolerated within the allocation before relinquishing it.
This is small compared to the number of nodes: less than 1% of the resource
should be dedicated as spares for the RIGID approach, and after losing 1% of
the resource, the MOLDABLE approach should request a new allocation.

This is remarkable, taking into account the poor yield obtained by the ap-
proach that does not tolerate failures within the allocation. Even with a small
wait time (assuming the platform would be capable of re-scheduling applica-
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Figure 2: Optimal number of failures tolerated between two full restarts, as func-
tion of the wait time, for the different types of applications.

tions that experience failures in less than 2h), Figure 1 shows that the yield
of the NOSPARE approach would decrease to 70%. This represents a waste of
30%, which is much higher than the recommended waste of 10% for resilience in
the current HPC platforms recommendations [7,4]. Comparatively, provisioning
only 1% of additional resources as spares within the allocations, would allow to
achieve a yield over 88%, for every approach considered, when the wait time
does not exceed 20 hours.

The GRIDSHAPED approach experiences steps that correspond to using all
the spares created when redeploying the application over a smaller grid before
relinquishing the allocation. As illustrated in Figure 1, the yield evolves in steps,
changing the slope of a linear approximation radically when redeploying over
a smaller grid. This has for consequence that the maximal yield is always at a
slope change point, thus at the frontier of a new grid size. It is still remarkable
that even with very small wait times, it is more beneficial to use spares (and
thus to lose a full row of processors) than to redeploy immediately.

Figure 3 shows the length of an allocation providing the optimal yield (best
value of F'). After such a duration, the job will have to fully restart in order
to maintain the optimal yield. This figure illustrates the real difference between
the RIGID and MOLDABLE approaches: although both approaches are capable of
extracting the same yield, the MOLDABLE approach can do so with significantly
longer periods between full restarts. This is important when considering real
life applications, because this means that the applications using a MOLDABLE
approach have a higher chance to complete before the first full restart, and overall
will always complete in a lower number of allocations than the R1GID approach.

Finally, Figure 4 shows an upper limit of the duration of the wait time in
order to guarantee a given yield for the three applications. In particular, we
see that to reach a yield of 90%, an application which would restart its job at
each fault would need that restart to be done in less than 6 minutes whereas
the R1GID and GRIDSHAPED approaches need a full restart in less than 3 hours
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Figure 3: Optimal length of allocations, for the different types of applications.

approximately. This bound goes up to 7 hours for the MOLDABLE approach.
In comparison, with a wait time of 1 hour, the yield obtained using NOSPARE
is only 80%. This shows that, using these parameters, it seems impossible to
guarantee the recommended waste of 10% without tolerating (a small) number
of failures before rescheduling the job.

6 Conclusion

In this paper, we have compared the performance of RiGID, MOLDABLE and
GRIDSHAPED applications when executed on large-scale failure-prone platforms.
For each application type, we have computed the optimal number of faults that
should be tolerated before requesting a new allocation, as a function of the
wait time. Through a realistic applicative scenario inspired by state-of-the-art
platforms, we have shown that the three application types experience an optimal
yield when requesting a new allocation after experiencing a number of failures
that represents a small percentage of the initial number of resources (hence
a small percentage of spares for RIGID applications), and this even for large
values of the wait time. On the contrary, the NOSPARE strategy, where a new
allocation is requested after each failure, sees its yield dramatically decrease when
the wait time increases. We also observed that MOLDABLE applications enjoy
much longer execution periods in between two re-allocations, thereby decreasing
the total execution time as compared to RIGID applications (and GRIDSHAPED
applications lying in between).

Future work will be devoted to exploring more applicative scenarios. We also
intend to extend the model in several directions. On the application side, we aim
at dealing with non-perfectly parallel applications but instead with applications
whose speedup profile obeys Amdahl’s law [1]. We will also introduce a more
refined speedup profile for GRIDSHAPED applications, with an execution speed
that depends on the grid shape (a square being usually faster than an elongated
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rectangle). On the resilience side, we will address forward-recovery schemes, such
as ABFT [16,9], in replacement of, or in combination with, checkpoint-restart
techniques.
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