
STMS 11-34 & 35

Solver Interface & Performance on Cori

alphabetically PEEKS team

University of Tennessee, Knoxville, Tennessee, U.S.A.
Sandia National Laboratories1, Albuquerque, New Mexico, U.S.A.

June 28, 2018

1 Sandia National Labs is a multimission laboratorymanaged and operated byNational Technology and Engineer-
ing Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department
of Energy’s National Nuclear Security Administration under contract DE-NA-0003525.

Contents

1 Introduction v

2 Solver Interface vi

3 Experimental Setups ix

4 Performance Results x

5 Conclusion xiv

ii

List of Tables

2.1 Names of the new Krylov solvers. vi

iii

List of Figures

2.1 Interface to the new Krylov solvers through Belos:SolverManager class. vii
2.2 Interface to the new Krylov solvers through Belos:CustomSolverFactory class. . . vii
2.3 Integration of the new Krylov solvers into Nalu. viii
2.4 Interface to the new Krylov solvers using the base Krylov class. viii

4.1 Performance of CG on Haswell nodes of Cori. xi
4.2 Performance of CG on KNL nodes of Cori. xii
4.3 Performance of GMRES on KNL nodes of Cori. xiii

iv

CHAPTER 1

Introduction

One of the main objectives of ECP PEEKS project is to improve the parallel scalability of Krylov
linear solvers in the Trilinos scienti�c computing library [5]. For the milestone STMS 11-33, we
have developed the following solvers within Trilinos so�ware framework:

1. Single-reduce and pipelined variants [3] of the Conjugate Gradient (CG) method [6] for
solving a symmetric positive de�nite (SPD) linear system of equations, and

2. Single-reduce and pipelined [4], and s-step [7] variants of the Generalized Minimum
Residual (GMRES) method [9] for solving a general nonsymmetric linear system of equa-
tions.

The single-reduce and s-step variants aim to reduce some of the required communication,
while the pipelined variant aims to hide the communication that can be the performance
bottleneck on the large-scale supercomputer. Currently, CG and GMRES are used by ECP
application projects like EXAALT (molecular dynamics at exascale) and ExaWind (exascale
predictive wind plant �ow physics). They also have users in non-ECP application codes funded
by the US Department of Energy and other US government entities.

This report is for the two milestones STMS 11-34 and STMS 11-35. First, for STMS 11-34, we
document the current interfaces to the new PEEKS Krylov solvers (Chapter 2). We have veri�ed
that we can use this interface to integrate our new solvers into the Nalu code [1] that is used in
the ECP ExaWind project. Then, for STMS 11-35, we report the current solver performance on
Cori Supercomputer at NERSC (Chapters 3 and 4). We also list our current e�orts (Chapter 5).

v

CHAPTER 2

Solver Interface

Within Trilinos so�ware, the Krylov solvers are contained in Belos package [2]. To ease the use
of our new Krylov solvers for the current Belos users, we designed our solver interfaces such
that our new solvers are accessible through Belos::SolverManager or Belos::SolverFactory
class. As shown in Figure 2.1 or 2.2, the user requires a minimum change to the existing codes.
To verify if our prototype solvers can be integrated into an ECP application code, we used
the Belos::SolverFactory interface to integrate our solvers into the Nalu code [1] that is used
in the ECP ExaWind project. In Figure 2.3, Lines 5 through 10 show the current required
changes to the code. We are improving the Belos::SolverFactory interface such that the
current Belos::SolverFactory users can use the new solver without making any change to
their code by simply specifying the new solver name from the command-line. The currently-
supported solver names are shown in Figure 2.1. To get the feedbacks from the community, we
have presented our new interface at the SIAM conference on parallel processing for scienti�c
computing [8].

type name
Standard method “PeeksGmres” and “PeeksCg”
Pipelined variant “PeeksGmresPipeline” and “PeeksCgPipeline”
Single-reduce variant “PeeksGmresSingleReduce” and “PeeksCgSingleReduce”
s-step variant “PeeksGmresSstep”

Table 2.1: Names of the new Krylov solvers.

Our solvers are also accessible without using Belos::SolverManager or Belos::SolverFactory
class. Namely, all of our new Krylov solvers inherit the base class called Krylov, and hence, an
object of a di�erent class can be instantiated at run time as shown in Figure 2.4.

vi

CHAPTER 2. SOLVER INTERFACE

1
2 typedef Belos:: LinearProblem <SC, mv_type , op_type > belos_problem_type;
3 typedef Belos:: SolverManager <SC, mv_type , op_type > solver_manager_type;
4
5 // //
6 // Create KrylovManager
7 solver_manager_type *solverManager;
8 solverManager = new KrylovManager <> (args.solverName);
9
10 // Set parameters
11 solverManager ->setParameters (params);
12
13 // Setup Belos:: LinearProblem.
14 RCP < belos_problem_type > lp =
15 rcp (new belos_problem_type (rcpFromRef (*A), rcpFromRef (X), rcpFromRef (B)));
16 lp ->setProblem ();
17 solverManager ->setProblem (lp);
18
19 // Solve the system.
20 Belos :: ReturnType belosResult;
21 belosResult = solverManager ->solve ();

Figure 2.1: Interface to the new Krylov solvers through Belos:SolverManager class.

1
2 typedef Belos:: LinearProblem <SC, mv_type , op_type > belos_problem_type;
3 typedef Belos:: CustomSolverFactory <SC, mv_type , op_type > custom_factory_type;
4
5 // //
6 // Create KrylovFactor
7 RCP <custom_factory_type > solverFactory
8 = rcp (static_cast <custom_factory_type*> (new KrylovFactory <> ()));
9
10 // Add KrylovFactory
11 Belos :: SolverFactory <SC, mv_type , op_type > factory;
12 factory.addFactory (solverFactory);
13
14 // Create KrylovManager
15 RCP <solver_manager_type > solverManager;
16 solverManager = factory.create (args.solverName , params);
17
18 // Setup Belos:: LinearProblem.
19 RCP < belos_problem_type > lp
20 = rcp (new belos_problem_type (rcpFromRef (*A), rcpFromRef (X), rcpFromRef (B)));
21 solverManager ->setProblem (lp);
22
23 // Solve the system.
24 belosResult = solverManager ->solve ();

Figure 2.2: Interface to the new Krylov solvers through Belos:CustomSolverFactory class.

vii

CHAPTER 2. SOLVER INTERFACE

1
2 // create the solver , e.g., gmres , cg, tfqmr , bicgstab
3 LinSys :: SolverFactory sFactory;
4
5 // Create a new factory
6 Teuchos ::RCP <custom_factory_type > solverFactory
7 = Teuchos ::rcp (static_cast <custom_factory_type*>
8 (new KrylovFactory <SC, LO, GO, NO, MV, OP> ()));
9 // Add the new solver factory
10 sFactory.addFactory (solverFactory);
11
12 // Create a new solver
13 solver_ = sFactory.create(method , params_);
14
15 solver_ ->setProblem(problem_);
16
17 ...
18
19 problem_ ->setProblem ();
20 solver_ ->solve ();

Figure 2.3: Integration of the new Krylov solvers into Nalu.

1 OperatorCrsMatrix <SC, LO, GO, NT> *A;
2
3 Tpetra :: MultiVector <> X (A->getDomainMap (), 1);
4 Tpetra :: MultiVector <> B (A->getDomainMap (), 1);
5
6 // Setup Krylov solver
7 Krylov <> *solver;
8 // Pipeline
9 if (args.solverName == "PeeksGmresPipeline") {
10 solver = new GmresPipeline <> (rcpFromRef (*A));
11 } else if (args.solverName == "PeeksCgPipeline") {
12 solver = new CgPipeline <> (rcpFromRef (*A));
13 // Single -reduce
14 } else if (args.solverName == "PeeksGmresSingleReduce") {
15 solver = new GmresSingleReduce <> (rcpFromRef (*A));
16 } else if (args.solverName == "PeeksCgSingleReduce") {
17 solver = new CgSingleReduce <> (rcpFromRef (*A));
18 // s-step
19 } else if (args.solverName == "PeeksGmresSstep") {
20 solver = new GmresSstep <> (rcpFromRef (*A));
21 // Standard
22 } else if (args.solverName == "PeeksGmres") {
23 solver = new Gmres <> (rcpFromRef (*A));
24 } else {
25 solver = new Cg<> (rcpFromRef (*A));
26 }
27
28 // Set problem
29 RCP <Teuchos :: ParameterList > params = rcp(new Teuchos :: ParameterList ());
30 solver ->setParameters (* params);
31
32 // Solve the system
33 solver ->solve (X, B);

Figure 2.4: Interface to the new Krylov solvers using the base Krylov class.

viii

CHAPTER 3

Experimental Setups

To study the solver performance on a candidate exascale architecture, we conducted our per-
formance studies on the Haswell and Knights Landing (KNL) nodes of the Cori supercomputer
at NERSC. Each of the Haswell nodes has two 16-core Intel Xeon E5-2698 v3 Haswell CPUs and
128 GB of main memory, while each of the KNL nodes has 68-core Intel Xeon Phi 7250 KNL
CPUs on a single socket, and 16 GB of MCDRAM and 96 GB of DDR4 memories. These nodes
are connected through the Cray Aries interconnect with Dragon�y topology.

We compiled Trilinos and our solver using the default Intel compiler (version 18.0.1 20171018)
on Cori using the Cray compiler wrapper CC. On Haswell nodes, we launched one process per
socket, while we launched one process per node on KNL nodes.

For this milestone, we decided to focus on 5-point 2D Laplace problems for which we have
using for the previous studies. We are extending the current studies to include the matrices
from the ECP applications.

ix

CHAPTER 4

Performance Results

Figures 4.1 and 4.2 compare the performance of various CG solvers on the Haswell and KNL
nodes of Cori, respectively. The single-reduce or pipelined variant of CG was able to obtain the
speedups of up to 1.3× over the standard CG. To improve the performance of the pipelined
variant, we are currently testing di�erent implementations of MPI with di�erent environment
variables to ensure the progress of the MPI communication behind the local computation or
other MPI communication. We are planning to collaborate with ECP OMPI-X project.

Figure 4.3 shows the performance of di�erent variants of GMRES solvers on the KNL nodes.
For s-step GMRES, there are several algorithms for orthogonalizing a set of vectors [7]. For
this milestone, we have decided to focus on Cholesky QR (CholQR) [10] that can orthogonalize
the vectors with the minimum communication cost. We see that if CholQR is stable and the
orthogonalization time is signi�cant in the iteration time, s-stepmethodmayobtain a signi�cant
speedup over the standard method even on a single process, and its performance bene�t can be
maintained on multiple processes.

x

CHAPTER 4. PERFORMANCE RESULTS

2x16 8x16 16x16 32x16 48x16

process x thread

0

5

10

15

20

25

30

S
p

e
e

d
u

p

0.8x

0.9x

0.9x

0.9x

1.3x

1.2x
1.3x

CgPipeline

CgSingleReduce

Cg

Figure 4.1: Performance of CG on Haswell nodes of Cori.

xi

CHAPTER 4. PERFORMANCE RESULTS

1x64 16x64 32x64 48x64 64x64 80x64 96x64

process x thread

0

10

20

30

40

50

60

70

80

S
p

e
e

d
u

p

1.0x

1.0x

1.0x

1.0x

1.1x

1.2x 1.0x

1.1x
1.3x

CgPipeline

CgSingleReduce

Cg

Figure 4.2: Performance of CG on KNL nodes of Cori.

xii

CHAPTER 4. PERFORMANCE RESULTS

1x64 8x64 16x64 32x64 48x64

process x thread

0

5

10

15

20

25

30

35

40

45

50

S
p

e
e

d
u

p

GmresSstep+CholQR

GmresSstep

GmresPipeline

GmresSingleReduce

Gmres

Figure 4.3: Performance of GMRES on KNL nodes of Cori.

xiii

CHAPTER 5

Conclusion

For this milestones, we have completed the development, testing, and documentation of the
new PEEKS Krylov solvers. We have also reported the performance of the new solvers on the
Cori supercomputer at NERSC using 2Dmodel problems. We are currently working to improve
the performance of the new solvers. In particular, we have already veri�ed that the new solvers
can be integrated into an ECP application and are testing the solver performance using the
matrices from the ECP applications.

xiv

Bibliography

[1] Nalu: a generalized unstructured massively parallel low mach �ow code. URL https:
//github.com/spdomin/Nalu.

[2] E. Bavier, M. Hoemmen, S. Rajamanickam, and H. Thornquist. Amesos2 and Belos: Direct
and iterative solvers for large sparse linear systems. Scienti�c Programming, 20(3):241–255,
2012.

[3] P. Ghysels and W. Vanroose. Hiding global synchronization latency in the preconditioned
conjugate gradient algorithm. Parallel Computing, 40(7):224 – 238, 2014. 7th Workshop on
Parallel Matrix Algorithms and Applications.

[4] P. Ghysels, T. J. Ashby, K. Meerbergen, and W. Vanroose. Hiding global communication
latency in the GMRES algorithm on massively parallel machines. SIAM Journal on Scienti�c
Computing, 35(1):C48–C71, 2013.

[5] M. Heroux, R. Bartlett, V. Howle, R. Hoekstra, J. Hu, T. Kolda, R. Lehoucq, K. Long,
R. Pawlowski, E. Phipps, A. Salinger, H. Thornquist, R. Tuminaro, J. Willenbring,
A. Williams, and K. Stanley. An overview of the trilinos project. ACM Trans. Math. So�w., 31
(3):397–423, 2005.

[6] Magnus R. Hestenes. The conjugate gradient method for solving linear systems. In Proc.
Symp. Appl. Math VI, American Mathematical Society, pages 83–102, New York, 1956. McGraw-
Hill.

[7] M. Hoemmen. Communication-avoiding Krylov subspace methods. PhD thesis, EECS Depart-
ment, University of California, Berkeley, 2010.

[8] Mark Hoemmen and Ichitaro Yamazaki. Production implementations of pipelined and
communication-avoiding iterative linear solvers. SIAM conference on parallel processing
for scienti�c computing, 2018.

xv

https://github.com/spdomin/Nalu
https://github.com/spdomin/Nalu

BIBLIOGRAPHY BIBLIOGRAPHY

[9] Y. Saad and M. Schultz. GMRES: A generalized minimal residual algorithm for solving
nonsymmetric linear systems. SIAM J. Sci. Stat. Comput., 7:856–869, 1986.

[10] A. Stathopoulos and K. Wu. A block orthogonalization procedure with constant synchro-
nization requirements. SIAM J. Sci. Comput., 23:2165–2182, 2002.

xvi

	Introduction
	Solver Interface
	Experimental Setups
	Performance Results
	Conclusion

