
Research Technical Report ICL-UT-18-03

Data Movement interfaces to support dataflow

runtimes

Aurelien Bouteiller George Bosilca Thomas Herault
Jack J. Dongarra

Innovative Computing Laboratory
The University of Tennessee, Knoxville, USA

May 29, 2018

Abstract

This document presents the design study and reports on the imple-
mentation of a portable hosted accelerator device support in the PaRSEC
Dataflow Tasking at Exascale runtime, undertaken as part of the ECP
contract 17-SC-20-SC. The document discusses different technological ap-
proaches to transfer data to/from hosted accelerators, issues recommen-
dations for technology providers, and presents the design of an OpenMP
based accelerator support in PaRSEC.

1 Introduction

Dataflow runtimes are an emerging abstraction that has demonstrated impres-
sive scalability and performance on distributed systems composed of hybrid/many-
core nodes. Research prototypes and current state of the practice rely on ad-hoc
implementations of data movement on top of long established technologies, typi-
cally CUDA and MPI. These early prototypes however indicate that supporting
the dataflow on top of legacy data movement technologies is facing two different
main issues: on one hand these abstractions have been designed around the idea
that most programs are heavily structured with control-flow and supporting the
naturally asynchronous execution of the dataflow model results in bending the
two sided semantic to the limit; on the other hand, technologies that are more
amenable to supporting dataflow data movement are not enjoying the same con-
sensus that the MPI support enjoys, and one has to deal with a large ecosystem
of competing technologies.

The goal of this report is to identify the challenges that data movement in
dataflow runtimes brings. We discuss the data movement between node as well
as between non-coherent memory (i.e. between GPU and host, or between mul-
tiple GPUs, on the same host or not). The goal is to provide recommendations

1

to drive the efforts of emerging unification of execution support (i.e. UCX,
OpenMP, Hihat, etc.) so that their new standardized constructs are adequate
to support dataflow systems, and to provide recommendations as to which tech-
nologies the PaRSEC runtime should be implemented on top of, considering the
existing features, the solidity of the standardization process and the size of the
users’ community, the portability provided by the solution, and the opportunity
to impact the standardization process when needed.

2 Background

2.1 Legacy PaRSEC data movement architecture

The current implementation of the accelerator data movement engine in PaR-
SEC supports NVidia accelerators. When the PaRSEC scheduler encounters
a task that elects for execution on an accelerator, one of the PaRSEC execu-
tion unit (i.e. an host thread) switches into accelerator support mode. As long
as an accelerator is active (it has tasks scheduled onto it) that execution unit
keeps organizing the execution of tasks on the accelerators. An execution unit
may monitor and manage multiple devices, and will generally manage multiple
streams on each device (to improve device occupancy). Two streams per de-
vices are reserved for data transfer operations (one host-to-device stream, one
device-to-host stream) while a variable number of streams are dedicated to the
execution of compute kernels. Data transfers are issued using the cuda runtime
API with asynchronous calls. Stream ordering and the respect of read-write
ordering are enforced by using the cuda Event facility. Events are inserted in
the data transfer stream to track data movement completion, force delay de-
pendent kernel executions upon the completion of the data transfer, and delay
host write operations to source memory asynchronously being transferred to an
accelerator. The memory of the accelerator is managed with an LRU buffer
that caches as much host memory on the accelerator as possible while evicting
(i.e. updating the host copy if needed, then overwriting the content on the
accelerator) least used data to make room for actual dependencies. All remote
communications (i.e. toward a node across the network) from a task executing
on an accelerator are first updating the host-copy of the data, which is then
sent from the host memory. Similarly, all receptions from remote nodes are first
allocated on the host and then copied to an accelerator if needed.

Xeon Phi accelerators are not supported by the data management engine. In-
stead, Xeon Phi accelerators are supported in two different modes: 1) a full PaR-
SEC rank is running on the accelerator, appearing as a full compute node to the
PaRSEC hierarchy; each Phi core is allocated a PaRSEC execution unit which
executes the PaRSEC scheduler, and a remote communication engine is started
on the accelerator to issue MPI operations to communicate with both the host
PaRSEC (viewed as a different PaRSEC rank) and remote nodes/accelerators.
In this mode, load balancing can be challenging and has to be tweaked by hand.
2) In the “offload mode”, the accelerator is not managed by PaRSEC, instead,

2

data transfer are implicit upon calls to the computational kernel (i.e. the MKL
library transfers data upon entering the routine and back when leaving the rou-
tine.) Performance in this mode is severely limited by redundant data transfer.

In summary, the CUDA engine of PaRSEC is very efficient and achieves a
very high fraction of GPU peak performance, insures appropriate and dynamic
load balancing between host and accelerator, and can monitor multiple GPUs
and streams per GPU thereby reducing the loss of host computational power.
However, being heavily reliant on CUDA, it lacks portability and as a conse-
quence support for other types of accelerators may be limited and/or requires
significant engineering effort for each new type of accelerator appearing on the
market.

3 Survey of GPU-Host data movement technolo-
gies

3.1 MPSS/Scif

MPSS/Scif is a low-level communication library that permits exchanging data
between the host and an Intel Xeon Phi accelerator (or between Xeon Phi across
multiple hosts). The Scif infrastructure provides three different programing in-
terfaces. On one hand it emulates an Infiniband device, programmable through
verbs. Although Verbs is a common network technology, its direct program-
ming is low-level and challenging; indeed most users prefer employing higher
level communication abstractions that mask most of the complexity inherent to
Verbs (i.e. MPI). Not coincidentally, one of the main motivation for the Scif
support is to permit the execution of MPI codes spanning multiple Xeon Phi
(with host-device, and device to device and device to remote communication
possible).

The second interface provided by Scif is a send-recv connected packet inter-
face that permits sending and receiving packets. The protocol is simplistic with
no matching or reordering and is best suited for sending small messages.

The third interface permits mapping the memory of a remote Scif endpoint.
Then, RMA operations are provided to get and put data into the target mem-
ory location. Overall the Scif interface is rather low-level and does not provide
advanced features like datatypes or events upon transfer completion. Instead
one has to implement a synchronization protocol to signal message completion
and flush outstanding operations. While these primitives are sufficient to per-
form data movement efficiently, in the context of GPU data movement within
a dataflow engine, Scif’s complexity entails a major engineering expenditure,
while at the same time it does not offer great portability prospects, as the only
type of accelerators employing it are Intel Xeon Phi.

3

3.2 CUDA

CUDA has long been the de-facto technology for computing on GPU accel-
erators. The CUDA toolkit seats at an intermediate level in the software
stack, proposing a close-to-the-metal programming abstraction, with explicit
data movement routines, explicit management of asynchrony, explicit manage-
ment of execution streams, etc. A CUDA specific compiler produces the kernel
code executing on the accelerator itself, and a runtime API permits managing
the data movement and manage the GPU execution from the host. In recent
iterations, CUDA has added simplified features for data movements with the
Unified Virtual Memory (UVM) technology. In this model, data pointers can
be used interchangeably on the host and accelerators, and the CUDA runtime
takes care of rendering the target memory available at the place of access. This
flexibility comes at the cost of relying on the provided page-faulting mechanism,
with its black-box prefetching and caching policy. Although many workloads can
enjoy acceptable performance for a decrease in complexity, a dataflow runtime
has to track where the data are available in order to drive efficient scheduling
decisions, meanwhile the software expense of explicit management of data move-
ments in the dataflow runtime is amortized across multiple users and a range of
applications, making the not insignificant performance boost a favorable trade-
off. CUDA is extremely efficient, and provides all the necessary features to
support a dataflow runtime; for example, it is one of the only models providing
some support for datatypes (in its companion cuBLAS library, although limited
to strided vectors and matrices with leading dimensions). The major drawback
of CUDA comes in the form of its lack of portability, as only NVidia accelerators
support CUDA.

3.3 OpenCL

OpenCL was an early attempt at standardizing accelerator kernel code writing.
OpenCL is in many respect similar to CUDA; both share a common position in
the software stack, and provide the same type of features (explicit data move-
ments, kernel compiler, etc.) Some of the design choices in OpenCL however
result in OpenCL performance generally trailing the performance of CUDA,
while at the same time being slightly more complex to program. Another issue
is that, despite being portable to a large range of devices, OpenCL performance
is unpredictable when porting a code from device to device, and often a sig-
nificant, device specific optimization phase is necessary for simply obtaining
acceptable performance. As a consequence of these limitations, it appears that
OpenCL has failed to gather a dominant adoption, and is a technology that is
loosing traction. On one hand, CUDA provides a similar programing model with
better and more predictable performance across supported devices, on the other
hand, new entrants like OpenACC or OpenMP provide a significantly simpler
programming model, deliver very competitive performance, and promise equal
or better portability.

4

3.4 OpenACC

OpenACC is a directive based compiler extension that permit expressing par-
allelism with the aim of offloading the computation to an accelerator. Early
version of OpenACC provided exclusively OpenMP-style loop directives, but
as of version 2.0 of the specification (which is widely available in compilers at
this time, including gcc, the Cray compiler, PGI), the OpenACC specification
also feature data movement directives, and exposes as well the runtime data
movement capabilities through a standardized function API. The API permits
defining persistent data on the GPU memory. One limitation is that data move-
ments are synchronous in the 2.0 API. The 2.5 API does provide asynchronous
data movement routines that interact neatly with multiple computation streams
on the accelerator; however, the support for the 2.5 API is preliminary or ab-
sent in most compilers at this time. For example. gcc 6.3 features almost all of
the 2.0 API, but the 2.5 API is supported (partially) only in not-yet released
gcc 7.x. OpenACC support for the Xeon Phi is partial at this point and not
ready for production in any of the major compilers. OpenACC in version 2.5
would however provide a standardized interface that could be swapped in place
of CUDA with minor code rework. One unknown is the level of support that
Intel is ready to invest in OpenACC. At this point, Intel compilers do not sup-
port OpenACC, and NVidia provides a much stronger support for supporting
OpenACC over NVidia GPUs in open-source tools like gcc. Meanwhile, Intel is
pushing toward OpenMP for its Xeon Phi accelerators.

3.5 OpenMP

OpenMP has adopted in specification 4.0, and further in specification 4.5, a
number of features for supporting GPU accelerators. In a large part, most of
the features present in OpenACC 2.0 have been imported to OpenMP (some-
times in a slightly different form, or under a different nomenclature, e.g. target,
teams, tasks versus device, gang, async in OpenMP and OpenACC respectively).
One of the salient differences between OpenMP and OpenACC is that the for-
mer does not provide explicit data movement functions in the runtime interface.
Explicit data movement and management is possible, but is entirely managed
through compiler directives (e.g. !omp target [enter] data map). As a conse-
quence, the rewriting effort to employ directives instead of explicit calls to move
data is higher, and the performance impact of having the OpenMP runtime exe-
cuting task depend clauses (which are the main way of ordering data movement
tasks and dependent computation tasks) alongside the dataflow runtime core
engine is uncertain. Another concern is when compiling complex applications
with multiple compilers using different OpenMP backends, using simple calls to
the online OpenMP runtime is expected to result in less side effects than relying
on the generated code from directives running on an OpenMP runtime provided
by another compiler/linker chain. An extension [?] proposed for OpenMP 5.0
may add runtime functions for explicit memory copies, however, full support for
OpenMP 4.5 is still several month ahead of us, and it is expected that OpenMP

5

OpenACC OpenMP
Spec 2.0 2.5 4.0 4.5 5.0
Release Q2 2013 Q4 2015 Q2 2013 Q4 2015 TBA

Async directives only yes yes (tasks) yes yes
RT API yes (not async) yes no no yes

gcc 6.3 yes (Cuda) no yes yes no
icc 17 no no yes (Phi) yes (Phi) no
cce 8.5.7 (cray) no no yes (Phi) yes (Phi) no
PGI 16.10 yes (Cuda) yes (Cuda) yes (Cuda) yes (Cuda) no

Table 1: Support for accelerator data movement technologies in compilers avail-
able on OLCF Titan

5.0 would not appear in compilers for several years. One advantage of OpenMP
however is its strong position in the community, which promises better perspec-
tive in terms of portability and possibly better outlook for long term support
of the technology compared to alternatives.

3.6 UCX

Unified Communication X (UCX) is a communication substrate intended to
unify the variety of communication hardware and their driver/access libraries
(i.e. GNI, Verbs, etc.) under a single flexible, standardized API. In the context
of accelerator data movement, one of the interesting feature of UCX is that it can
target accelerator memory as an endpoint. UCX provides one sided operations,
registration and atomic operations that can be employed to efficiently transfer
memory from the host to a device. In the current implementation, UCX provides
a Verbs transport (i.e. for Infiniband networks and Scif Xeon Phi hosted cards).
The UCX implementors plan on providing a Cuda transport (i.e. for Nvidia
cards access). Open UCX, the open source implementation of UCX, is strongly
supported by vendors from both the networking and accelerator communities
(Mellanox, Nvidia, IBM, etc.) Although the engineering complexity of using
UCX is similar to using Scif, the portability of Open UCX is excellent, and its
design facilitates accelerator to accelerator on a single host transfers, as well as
remote host (or remote accelerator) access in a natural way (the communication
primitives are similar).

3.7 Current level of support

Table 1 summarizes the level of support for OpenMP/OpenACC currently found
on a typical DOE environment, the OLCF Titan. The machine permits chang-
ing compilers and programming environment by swapping environment modules.
The only compiler currently supporting OpenACC 2.5 asynchronous data move-
ment functions is the PGI compiler. the GCC compiler version 7.1, soon to be

6

released will support OpenACC 2.5 for Nvidia devices. Most commonly avail-
able support for OpenACC at this point is specification 2.0, which does not
feature the asynchronous data movement runtime API functions. Support for
OpenMP, even modern features of OpenMP is a lot more common across com-
pilers. However, some compilers can generate CUDA specific code while some
other can generate Phi specific code. None of the OpenMP specifications avail-
able today supports runtime API functions for data movement (only directives).

4 Recommendations for the design of data move-
ment libraries

4.1 asynchrony

Providing asynchronous primitives is of crucial importance for achieving high
performance. The dataflow engine of PaRSEC needs to be able to overlap the
cost of communicating with the accelerator with 1) concurrent work on the ac-
celerator on independent data already staged in (i.e. multi-stream abstraction),
and 2) work and/or scheduling activities on the host processor. It is generally
undesirable that the host thread blocks when data transfer occur, because that
thread is also responsible for monitoring the progress of concurrent GPU tasks
in other streams and/or devices, reporting completion to CPU tasks and sched-
ule remote data transfers (i.e. toward distributed nodes across the network),
and scheduling followup tasks for completed GPU tasks on other streams.

Some of the programming models (e.g. OpenMP) provide asynchrony with-
out a fine control of termination events and in the form of directives only. It is
generally preferable that the interface provides a library call to issue data move-
ments as this eases issues with program scoping that are inherent to directives.

4.2 datatypes

Complex datatype support is inexistent or limited in almost all frameworks
that permit accelerator-host data movement. In the best case, rudimentary
datatypes like strided vectors are supported. This entails that in most cases the
data movement of complex data layout must pass through a stage-in area on
the host memory, where it gets packed, or the host must issue multiple (poten-
tially numerous) data movement orders to transfer individual small contiguous
blocks. Better datatype support, with an interface to express complex compos-
ite datatypes (like in MPI) could be of interest. At a minimum, support for
triangular and trapezoidal 2D matrices is very beneficial.

4.3 accelerator issued communication

In many cases, upon completion of a tasks updating a data on an accelerator, the
host is not executing tasks directly dependent on the updated data. It is there-
fore important to have the capability of updating the copy on other accelerators

7

without passing through host staging (which reduces the available bandwidth
and may miss on the opportunity of using special channels like NVlinks connect-
ing two accelerators). CUDA has a good track record of providing accelerator-
to-accelerator data transfer, but the case for directive based frameworks is less
clear as there is no special operation to issue such a transfer (one has to as-
sume that the underlying runtime can detect that type of data transfer and
use the appropriate transfer method). Similarly, remote hosts and accelerators
should be able to be targeted directly from the accelerator in order to avoid
doubling the amount of data transiting on the bus. This is a feature that is
available in hardware centric data movement systems (i.e. Scif, UCX, Cuda
with GPUDirect) but is absent directive based systems.

5 Recommendations for the future design of PaR-
SEC

We recommend thrust in two complimentary directions. One direction is to
substitute OpenMP/OpenACC to CUDA, with the expectation that this will
improve portability without incurring a significant performance penalty. Ope-
nACC substitution is simpler than OpenMP substitution (because OpenACC
has a streaming asynchronous model which is very similar to the CUDA stream
abstraction currently in use), but arguably OpenMP is poised to enjoy a larger
market penetration, thereby a better claim for portability (to different acceler-
ators and using a wider variety of compilers). In both cases, the initial evalua-
tion with a simplistic proxy-app representing the PaRSEC runtime have pointed
that achieving asynchronous data transfer in a non-scoped context (i.e. when
the target tasks are not enclosed in the data regions) is non-trivial and requires
additional mechanisms to delegate the transfers and/or to track their comple-
tion.

The second direction is to further investigate the use of OpenUCX as an host-
accelerator communication mechanism. One of the enticing effects would be to
bring uniformity to all types of communication in the PaRSEC engine, as the
MPI engine is also being transitioned to UCX simultaneously. An impediment
to this strategy is the current unavailability of the CUDA channel in the release
of OpenUCX.

6 OpenMP device design and implementation
in PaRSEC

Based on these recommendations, we have designed an OpenMP target device
in the PaRSEC runtime 1. The goal of the design is to enable the execu-
tion of OpenMP target tasks, declared in PaRSEC task bodies (similarly to

1https://bitbucket.org/icldistcomp/parsec/pull-requests/199/

add-an-open-mp-target-device

8

https://bitbucket.org/icldistcomp/parsec/pull-requests/199/add-an-open-mp-target-device
https://bitbucket.org/icldistcomp/parsec/pull-requests/199/add-an-open-mp-target-device

the CUDA device), with implicit (from the users’ perspective) data movement
back and forth the hosted accelerator. Thus, in order to avoid duplicate data
movement, the PaRSEC device pre-position and tracks the access mode of data
on the hosted accelerator. The end-user is simply responsible for declaring an
”OPENMP” body for the task class, that body executes on the host and sub-
mits asynchronous OpenMP target tasks (typically with pragma omp target

async directives). No further tracking of data availability is required from the
end-user, as when the OPENMP task body executes, the data is already prepo-
sitioned on the accelerator.

When the PaRSEC scheduler schedules a task to the hosted accelerator,
the necessary data are verified for availability in the target device memory.
The same infrastructure is shared between the CUDA and OpenMP devices to
track the access mode of the data and their status with respect to the host
copy (shared, exclusive, owned, invalid). If the data is not available (or obso-
leted by a more recent version), data transfer are scheduled. In order to retain
the asynchronous nature of data transfer between the host and the device, the
OpenMP device instantiates virtual streams, represented by OpenMP threads
in a team. Each transfer is then carried by the OpenMP API memcpy to/from
the device which is delegated to one of the team’s thread by issuing an enclosing
asynchronous OpenMP task. The progress of each stream is tracked by a per-
stream variable on which OpenMP depend clauses are inserted by the PaRSEC
runtime. When all necessary transfers are complete, the computational, user
provided task is inserted by the PaRSEC runtime, and similarly, the completion
of the target region is tracked by a depend clause on the per-stream variable.

This general design permits reusing a large portion of the CUDA code, as
the overall task lifecycle is thus very similar, and retains the capability of exe-
cuting data transfer asynchronously with respect to task execution on the target
devices.

7 Conclusion

Accelerators are an important part of the HPC ecosystem. Although a trend
toward self-hosted accelerators is picking traction, notably with later iterations
of the Xeon Phi, in the foreseeable future, some accelerators will continue to
employ the host-accelerator model. Some processors (like the ShenWei proces-
sor) have some SOC host-accelerator features that can benefit from a careful
examination of the memory movement.

Historically, CUDA has provided very efficient data movement for host-
accelerator transfers, but has lacked portability. Mature, standardized pro-
graming abstractions like OpenMP, OpenACC start to feature the necessary
constructs to support efficiently data transfer in a portable way. However, at
this point, implementation and availability of these emerging features is still
spotty and incomplete, which diminishes the abstract claim of portability. It is
however our assessment that the strong community behind these programming
models entails that these features will receive satisfactory support in the future.

9

Based on this initial technological assessment, we were able to design and
implement an OpenMP device for the PaRSEC runtime that carries the transfer
of data to-from an OpenMP target device. Hence, the PaRSEC runtime is capa-
ble of executing OpenMP target tasks on hosted accelerators without imparting
a large performance penalty for duplicate data transfer, and without imparting
a cumbersome manual management of memory from the end-user task code.

Acknowledgements

This research was supported by the Exascale Computing Project (17-SC-20-SC),
a collaborative effort of two U.S. Department of Energy organizations (Office
of Science and the National Nuclear Security Administration) responsible for
the planning and preparation of a capable exascale ecosystem, including soft-
ware, applications, hardware, advanced system engineering and early testbed
platforms, in support of the nation’s exascale computing imperative.

A Appendices

This appendix presents the “PaRSEC runtime mockup” code employed to eval-
uate the matching between OpenMP, OpenACC features and the operating
modes of the PaRSEC runtime. The code employs directive and API based
access to OpenMP and OpenACC data movement routines and mimics the task
synchronization behavior of the PaRSEC runtime in a smaller setting.

The real implementation of the OpenMP PaRSEC device can be found in
the public pull request 199 2

A.1 CUDA to OpenACC and OpenMP substitution in a
“PaRSEC engine” proxy-app

1 /*

2 * Copyright (c) 2017-2018 The University of Tennessee and The University

3 * of Tennessee Research Foundation. All rights

4 * reserved.

5 */

6

7

8 #include <stdlib.h>

9 #include <stdio.h>

10 #include <assert.h>

11 #include <omp.h>

12 #include <openacc.h>

13 #include <cuda.h>

2https://bitbucket.org/icldistcomp/parsec/pull-requests/199/

add-an-open-mp-target-device

10

https://bitbucket.org/icldistcomp/parsec/pull-requests/199/add-an-open-mp-target-device
https://bitbucket.org/icldistcomp/parsec/pull-requests/199/add-an-open-mp-target-device

14 #include <cuda_runtime_api.h>

15 #include <cublas_v2.h>

16

17 typedef enum { copy_cublas, copy_acc, copy_omp, copy_none } copy_transport_t;

18 static char* pcopy_transport[] = { "cublas", "acc", "omp", "none" };

19 typedef union { cudaStream_t cuda; int acc; int omp; } copy_stream_t;

20 typedef union { cudaEvent_t cuda; int acc; int omp; } copy_sync_t;

21

22 int main(void) {

23 int cuda_version;

24 double start, cpy, end;

25 double *A=NULL,

26 *B=NULL,

27 *C=NULL,

28 *dA=NULL,

29 *dB=NULL,

30 *dC=NULL;

31 int m=2000,

32 n=2000,

33 k=2000,

34 i, j, r;

35 copy_transport_t copy_transport = copy_cublas;

36 copy_stream_t copy_stream;

37 copy_sync_t copy_sync;

38

39

40 // always using cublas to run the compute, so this init unconditional

41 cublasStatus_t st;

42 cublasHandle_t handle;

43 cudaError_t ce;

44 st = cublasCreate(&handle);

45 assert(CUBLAS_STATUS_SUCCESS == st);

46

47 // get the cublas stream to post synchronizes

48 cudaStream_t cublas_stream;

49 st = cublasGetStream(handle, &cublas_stream);

50 assert(CUBLAS_STATUS_SUCCESS == st /* cublasGetStream */);

51

52 st = cudaRuntimeGetVersion(&cuda_version);

53 assert(cudaSuccess == st /* cudaRuntimeGetVersion */);

54 printf("OpenACC version %d ~~ CUDA version %d\n\n", _OPENACC, cuda_version);

55

56 // host allocation and filling

57 A = malloc(sizeof(double)*m*k);

58 B = malloc(sizeof(double)*k*n);

59 C = malloc(sizeof(double)*m*n);

11

60

61 for(i = 0; i < m; i++) for(j = 0; j < k; j++)

62 A[i+j*m] = (i+j)/(m+n+1.);

63 for(i = 0; i < k; i++) for(j = 0; j < n; j++)

64 B[i+j*m] = (i+j)/(m+n+1.);

65 for(i = 0; i < m; i++) for(j = 0; j < n; j++)

66 C[i+j*m] = (i+j)/(m+n+1.);

67

68 for(copy_transport = copy_cublas; copy_transport != copy_none; copy_transport++) for(r = 0; r < 10; r++) {

69 printf("Starting a %s copy to feed a cuBLAS...\n", pcopy_transport[copy_transport]);

70 start = omp_get_wtime();

71 // device allocation

72 switch(copy_transport) {

73 case copy_cublas:

74 ce = cudaStreamCreate(©_stream.cuda);

75 assert(cudaSuccess == ce /* cudaStreamCreate */);

76 ce = cudaMalloc(&dA, sizeof(double)*m*k);

77 assert(cudaSuccess == ce /* cudaMalloc */);

78 ce = cudaMalloc(&dB, sizeof(double)*k*n);

79 assert(cudaSuccess == ce /* cudaMalloc */);

80 ce = cudaMalloc(&dC, sizeof(double)*m*n);

81 assert(cudaSuccess == ce /* cudaMalloc */);

82 break;

83 case copy_acc:

84 #if _OPENACC > 0

85 dA = acc_malloc(sizeof(double)*m*k);

86 dB = acc_malloc(sizeof(double)*k*n);

87 dC = acc_malloc(sizeof(double)*m*n);

88 #endif

89 assert(NULL != dA);

90 assert(NULL != dB);

91 assert(NULL != dC);

92 break;

93 #if USE_OMP_DIRECTIVES

94 case copy_omp: {

95 #pragma omp target enter data map(alloc: A[:m*k], B[:k*n], C[m*n])

96 break; }

97 #else

98 case copy_omp:

99 dA = omp_target_alloc(sizeof(double)*m*l);

100 dB = omp_target_alloc(sizeof(double)*k*n);

101 dC = omp_target_alloc(sizeof(double)*m*n);

102 assert(NULL != dA);

103 assert(NULL != dB);

104 assert(NULL != dC);

105 break;

12

106 #endif /*USE_OMP_DIRECTIVES*/

107 default:

108 assert(0 /* invalid transport */);

109 }

110

111 // copy A to dA

112 switch(copy_transport) {

113 case copy_cublas:

114 cublasSetMatrixAsync(m, k, sizeof(*A), A, m, dA, m, copy_stream.cuda);

115 cublasSetMatrixAsync(k, n, sizeof(*B), B, k, dA, k, copy_stream.cuda);

116 cublasSetMatrixAsync(m, n, sizeof(*C), C, m, dC, m, copy_stream.cuda);

117 ce = cudaEventCreate(©_sync.cuda);

118 assert(cudaSuccess == ce /* cudaEventCreate */);

119 ce = cudaEventRecord(copy_sync.cuda, copy_stream.cuda);

120 assert(cudaSuccess == ce /* cudaRecordEvent */);

121 break;

122 case copy_acc:

123 copy_stream.acc = 1;

124 #if _OPENACC >= 201510

125 acc_memcpy_to_device_async(dA, A, sizeof(*A)*m*k, copy_stream.acc);

126 acc_memcpy_to_device_async(dB, B, sizeof(*A)*k*n, copy_stream.acc);

127 acc_memcpy_to_device_async(dC, C, sizeof(*A)*m*n, copy_stream.acc);

128 #else

129 #warning "acc_memcpy_to_device_async is not available"

130 acc_memcpy_to_device(dA, A, sizeof(*A)*m*k);

131 acc_memcpy_to_device(dA, B, sizeof(*A)*k*n);

132 acc_memcpy_to_device(dC, C, sizeof(*C)*m*n);

133 #endif

134 break;

135 #if USE_OMP_DIRECTIVES

136 case copy_omp: {

137 #pragma omp target update to(A[:m*k], B[k*n], C[m*n]) nowait depend(out:A, B, C)

138 break; }

139 #else

140 case copy_omp:

141 copy_stream.omp = 0;

142 #pragma omp task shared(copy_stream.omp)

143 {

144 omp_target_memcpy(dA, A, sizeof(*A)*m*k);

145 omp_target_memcpy(dA, B, sizeof(*A)*k*n);

146 omp_target_memcpy(dC, C, sizeof(*C)*m*n);

147 #pragma omp atomic

148 copy_stream.omp = 1;

149 }

150 break;

151 #endif /*USE_OMP_DIRECTIVES*/

13

152 default:

153 assert(0 /* invalid transport */);

154 }

155

156 progress_loop:

157 // compute on host - run the parsec event loop, etc

158

159 // wait for copy to dA to finish

160 switch(copy_transport) {

161 case copy_cublas:

162 ce = cudaStreamWaitEvent(cublas_stream, copy_sync.cuda, 0);

163 assert(cudaSuccess == ce /* cudaStreamWaitEvent */);

164 break;

165 case copy_acc:

166 // Still need to know the final kernel is Cuda based if we want to

167 // transfer dependency resolution to the device. Note we do not do

168 // what the cublas code above shows, in PaRSEC: we do something

169 // similar to that acc code here.

170 // One may use acc_cuda_get_stream and friends to transmit the event

171 // to cublas, if one knows that the kernel will execute on the cublas

172 // stream.

173 //

174 // Also note that if the progress loop keeps queuing more work, we

175 // will try to check their completion as well, there are no event

176 // markers in acc to avoid this caveat. An option is to use multiple

177 // async to post transfers and test them to see if the dependent

178 // task can start. One may have to wait that an async becomes

179 // available from the limited pool of available async before

180 // enqueuing transfers, so that's a complication.

181 #if _OPENACC >= 201510

182 if(!acc_async_test(copy_stream.acc)) {

183 goto progress_loop;

184 }

185 #endif

186 break;

187 #if USE_OMP_DIRECTIVES

188 case copy_omp: {

189 // Delegate the resolution of dependencies to the target device with

190 // depend clauses on the actual input. This is not similar to the

191 // PaRSEC runtime behavior as this will trigger the issue of

192 // accelerator tasks before their input data are available, while

193 // in PaRSEC a task is scheduled only when the data is pre-staged.

194 #pragma omp target nowait depend(in: A, B, C)

195 { /* just a sync */ }

196 break; }

197 #else

14

198 case copy_omp:

199 // Use pseudo-events (implemented with atomic ops on a control variable)

200 // to track memcpy to target completion

201 while(!copy_stream.omp) {

202 #pragma omp taskyield

203 }

204 break;

205 #endif /*USE_OMP_DIRECTIVES*/

206 default:

207 assert(0 /* invalid transport */);

208 }

209 cpy=omp_get_wtime();

210 printf(" Copy is done %s, took %g\n", pcopy_transport[copy_transport], cpy-start);

211 // run a cublas

212 double alpha=1.0,

213 beta=1.0;

214 //TODO: Do a LLT/QR so that results can be verified

215 cublasDgemm(handle, CUBLAS_OP_N, CUBLAS_OP_N, m, n, k, &alpha, dA, m, dB, k, &beta, dC, m);

216 cudaStreamSynchronize(cublas_stream);

217 end = omp_get_wtime();

218 printf(" Cublas executed (copy %s), took %g total, %g since copy\n", pcopy_transport[copy_transport], end-start, end-cpy);

219

220 // retreive dC->C when ready. Should look

221 // similar to above, except clearly one has to know what async to look in

222 // acc.

223 //

224 switch(copy_transport) {

225 case copy_cublas:

226 ce = cudaFree(dA); dA=NULL;

227 assert(cudaSuccess == ce /* cudaFree */);

228 ce = cudaFree(dB); dB=NULL;

229 assert(cudaSuccess == ce /* cudaFree */);

230 ce = cudaFree(dC); dC=NULL;

231 assert(cudaSuccess == ce /* cudaFree */);

232 ce = cudaStreamDestroy(copy_stream.cuda);

233 assert(cudaSuccess == ce /* cudaStreamDestroy */);

234 break;

235 case copy_acc:

236 #if _OPENACC > 0

237 acc_free(dA); dA=NULL;

238 acc_free(dB); dB=NULL;

239 acc_free(dC); dC=NULL;

240 #endif

241 break;

242 #if USE_OMP_DIRECTIVES

243 case copy_omp: {

15

244 #pragma omp target exit data map(delete: A[:m*k], B[:k*n], C[m*n])

245 break; }

246 #else

247 case copy_omp:

248 omp_target_free(dA); dA=NULL;

249 omp_target_free(dB); dB=NULL;

250 omp_target_free(dC); dC=NULL;

251 break;

252 #endif /*USE_OMP_DIRECTIVES*/

253 default:

254 assert(0 /* invalid transport */);

255 }

256 } /*for copy_transport*/

257

258 // cleanup

259 // todo: copy_stream and copy_sync cleanup

260 st = cublasDestroy(handle);

261 assert(CUBLAS_STATUS_SUCCESS == st);

262

263 return 0;

264 }

16

	Introduction
	Background
	Legacy PaRSEC data movement architecture

	Survey of GPU-Host data movement technologies
	MPSS/Scif
	CUDA
	OpenCL
	OpenACC
	OpenMP
	UCX
	Current level of support

	Recommendations for the design of data movement libraries
	asynchrony
	datatypes
	accelerator issued communication

	Recommendations for the future design of PaRSEC
	OpenMP device design and implementation in PaRSEC
	Conclusion
	Appendices
	CUDA to OpenACC and OpenMP substitution in a ``PaRSEC engine'' proxy-app

