
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Production Implementations of
Pipelined & Communication-

Avoiding Iterative Linear Solvers

Mark Hoemmen (SNL, UUR: SAND2018-2310 C)
& Ichitaro Yamazaki (UTK)

SIAM Parallel Processing, March 09, 2018

DOE’s ECP PEEKS

§ Pipelined & communication-avoiding Krylov solvers
§ Hide (overlap) or avoid (do less) communication (e.g., all-reduce)

§ May perform better, especially at large scales

§ We want to make these solvers available in Trilinos
§ Goal: perform “well” for ECP applications on exascale computers
§ Also should be useful for non-exascale Trilinos users

§ This talk
§ Is about resulting Trilinos software development challenges
§ Is NOT about algorithms or their performance

2/18

E. Boman & M. Hoemmen (SNL)
J. Dongarra, H. Anzt, S. Tomov, & I. Yamazaki (UTK)

What is Trilinos?

§ Parallel math libraries for science & engineering applications
§ Parallel programming models
§ Sparse linear algebra
§ Linear & nonlinear solvers
§ Optimization algorithms
§ Space & time discretizations

§ Mostly C++ with some C and Fortran
§ Many users inside & outside Sandia
§ Must work on many different platforms

§ CPUs: x86, KNL, POWER, ARM, …
§ GPUs: NVIDIA, later AMD
§ Future architectures (e.g., exascale)

§ github.com/trilinos/Trilinos 3/18

Trilinos’ linear solvers
§ Iterative (Krylov) solvers (Belos)

§ CG, GMRES, BiCGStab, TFQMR,
recycling methods

§ Linear algebra operations

§ Tpetra: Sparse graphs/matrices, dense
vectors, parallel solve kernels,
communication & redistribution

§ Teuchos: BLAS/LAPACK

4

§ Sparse direct solvers (Amesos2)

§ Direct+iterative solvers (ShyLU)

§ Algebraic iterative solvers (Ifpack2)

§ Jacobi, SOR, polynomial, incomplete factorizations, additive Schwarz

§ Algebraic multigrid (MueLu)

§ Segregated block solvers (Teko)

Goal: “Productionize” solvers

§ Make pipelined & communication-avoiding iterative linear
solvers available in Belos for Trilinos users
§ Must build & pass tests on all supported platforms

§ Available to users via run-time choice (input deck)
§ Users don’t need to change their code
§ Plugging solvers through a custom solver “factory”
§ Not just dumping a class or function into the code repository

5/18

Software challenges

1. Trilinos’ iterative linear solvers package makes it hard to add
new linear algebra operations

2. Trilinos must support many different build configurations
§ Older MPI versions may lack features needed for pipelined Krylov

solvers
§ Default MPI implementation settings may not make progress on

nonblocking collectives, thus taking away benefit of pipelined Krylov
methods

6/18

Trilinos’ Belos package

§ Trilinos’ iterative linear solvers live in the Belos package

§ Belos was written in the mid-2000’s, to support Anasazi
(iterative eigensolvers package)

§ Belos works for any linear algebra (LA) implementation
§ Belos defines a fixed set of ops on Vectors & Linear Operators

(matrices & preconditioners): e.g., dot, norm, axpy, apply(X,Y)

§ Fixed set of LA ops defined via (C++) traits classes

§ Belos’ solvers are templated on Vector & Linear Operator
& invoke LA ops by using traits classes

§ Belos provides specializations of traits for Trilinos’ native LA types
(e.g., Tpetra)

7/18

Belos solver interface

// Create a Belos::SolverManager for CG
// rcp / RCP are Trilinos’ std::shared_ptr (Belos only needs C++98)
auto belosSolver = rcp (new Belos::PseudoBlockCGSolMgr<Scalar, Vec, LinOp>);

// Create and Set problem
typedef Belos::LinearProblem<Scalar, Vec, LinOp> linear_problem_type;
RCP<linear_problem_type > lp (new linear_problem_type (A, X, B));

belosSolver->setProblem (lp);
belosSolver->setParameters (params); // e.g., iteration count, convergence tolerance

// Solve the system
Belos::ReturnType belosResult = belosSolver->solve ();

8/18

§ Same solver manager may be reused for multiple solves;
e.g., for different b or A.

§ A, b, x may be templated, e.g., with scalar, global/local ordinal, and node type

Belos solver implementation

typedef MultiVecTraits<Scalar, Vec> MVT;

RCP<Vec> P_;

RCP<Vec> AP_;

// Compute AP = A*P

lp_->applyOp(*P_, *AP_);

// Compute P^T * A P

MVT::MvTransMv(one, *P_, *R_, alpha);

9/18

§ If users want Belos to work for their own LA types,
they must write their own specializations of traits classes

Challenge 1: New LA operation breaks build

§ What if we need new LA ops?
§ Pipelined Krylov: Nonblocking dot product

§ Communication-avoiding Krylov: Matrix powers kernel, TSQR

§ Can’t add new LA ops to Belos without breaking build!
§ OK for Trilinos’ native LA

§ Belos just changes its traits class specializations

§ NOT OK for users’ own LA
§ Users have their own Belos traits specializations

§ They would need to change their code to add new LA ops

10/1
8

Run-time vs. compile-time

§ Mark: “Not a C++ problem, but a design problem”
§ Belos could have used run-time polymorphism (inheritance)

§ Adding new LA ops through “mix-in” classes without breaking
backwards compatibility for libraries that lack them

§ Belos chose compile-time polymorphism for historical reasons
§ Belos is in 1st generation of Trilinos packages using templates
§ Early C++ adopters for math codes worried about run-time overhead
§ C++ templates promised zero overhead

§ Trilinos developers have more experience w/ templates now
§ Tiny virtual method dispatch overhead vs. MPI communication

§ Goal: no code changes for Belos users who want to use our
new solvers 11/1

8

Traits classes too rigid here

§ One solver implementation for all LA ops,
and one traits class contains all LA ops; but
§ Some solvers need specialized ops
§ Users or third-party libraries may have optimized entire solvers for

specific LA; Belos users want to access them

§ Solution: extend Belos to support LA-specific solvers
§ Belos::SolverFactory already takes solver name at run time

& returns instance of the desired solver
§ NEW interface to inject a “custom solver factory” at run time

§ SolverFactory class templated on Vector & LinearOperator
è custom factory is specific to those types

§ custom solver needs to work for one LA
è they can code directly to that LA & use whatever ops they want

§ Solves a more general problem than pipelined & CA Krylov
12/1

8

Belos factory interface

// Create a Solver Manager
Belos::SolverFactory<Scalar, Vect, LinOp> factory;
RCP<solver_manager_type> solverManager = factory.create (args.solverName, params);

// Solve the system
Belos::ReturnType belosResult = solverManager->solve ();

Behind the scenes:

// Create a Custom Solver Factory
RCP<custom_factory_type> customFactory;
customFactory = rcp (static_cast<custom_factory_type*> (new PeeksKrylovFactory<> ()));

// Add the Custom Factory
factory.addFactory (customFactory);

13/1
8

Belos factory interface

// Create a Solver Manager
Belos::SolverFactory<Scalar, Vect, LinOp> factory;

RCP<solver_manager_type> solverManager = factory.create (args.solverName, params);

// Solve the system
Belos::ReturnType belosResult = solverManager->solve ();

Behind the scenes:

void createSolver (const std::string& solverName) {

if (solverName == "PeeksCgPipeline") {

this->solver_ = Teuchos::rcp(new CgPipeline<Scalar, LocalOrd, GlobalOrd, Node> ());

} else if (…

}

14/1

8

New Op for nonblocking all-reduce

§ Tpetra’s interface to this new specialized op:

§ auto request = idot(&result, x, y); // ç MUST NOT BLOCK

§ /* … do other stuff ... Then */

§ request->wait();

§ MPI-3 (2012) added support for nonblocking collectives

§ MPI_Iallreduce: nonblocking version of MPI_Allreduce

§ What if Trilinos was built with MPI < 3?

§ Capture (&result, x, y) in a closure (C++11 lambda)

that does blocking dot product; don’t invoke closure yet

§ request->wait() just invokes the closure as std::function

§ We write the solver once; & it works for all MPI versions
15/1

8

Challenge 2: nonblocking progress

§ “Nonblocking” è return immediately after being called

§ MPI could just defer all communication until MPI_Wait
§ MPI may only send/receive inside MPI functions

§ For asynchronous progress, must enable MPI_THREAD_MULTIPLE
support & possibly also “progress thread” options at MPI build time

§ Problems:
§ Users / sysadmins, not Trilinos, pick build MPI options

§ MPI_THREAD_MULTIPLE & progress thread incur overhead

§ Would we need to poll manually?
§ Paul Eller (UIUC): PETSc’s implementation of pipelined Krylov needed

manual MPI polling embedded inside the sparse matrix-vector multiply
kernel in order for MPI_Iallreduce to be effective (!)

16/1
8

MPI progress: “work in progress”

§ Not sure what to do about this, yet
§ Manual polling? Impossible on GPUs, invasive in code

§ Programming model mismatch
§ Pipelined Krylov methods really want a dataflow model

§ MPI historically resisted “active messages” (that run a function
asynchronously when I receive data from another process)

§ MPI_THREAD_MULTIPLE overhead
§ Trilinos’ sparse matrix-vector multiply uses 2-sided

§ Cost: message queue locking for MPI 2-sided (send, recv)

§ Vendors recommended switching to MPI 1-sided (MPI_Win), since
optimized implementations don’t use MPI message queues

§ Trilinos has plans to explore this, but not this year

17/1
8

Conclusions

§ We want to deploy pipelined & communication-avoiding
Krylov methods in Trilinos
§ Implementations exist now
§ We will put them in Trilinos this year

§ Software challenges, because we want it to work for
production users, instead of just hacking it in there

§ We addressed some Belos & MPI – related challenges
§ We need a better approach to asynchronous progress for

nonblocking MPI operations

Thank you!!
18/1

8

Thank you!!

§ ECP PEEKS: This research was supported by the Exascale Computing Project
(17-SC-20-SC), a collaborative effort of two U.S. Department of Energy
organizations (Office of Science and the National Nuclear Security Administration)
responsible for the planning and preparation of a capable exascale ecosystem,
including software, applications, hardware, advanced system engineering and
early testbed platforms, in support of the nations exascale computing imperative.

19/1
8

