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Abstract. In this work, we present the use of compiler pragma directives for

parallelizing autotuning of specialized compute kernels for hardware accelerators.

A set of constructs, that include prallelizing a source code that prune a generated

search space with a large number of constraints for an autotunning infrastructure.

For a better performance we studied optimization aimed at minimization of the

run time. We also studied the behavior of the parallel load balance and the speedup

on four different machines: x86, Xeon Phi, ARMv8, and POWER8.

I. INTRODUCTION

Autotuning has been established as a way of achieving performance for a specific

situations often of interest in HPC. Various projects and frameworks provide autotuners

that allow users to target optimizations for specific computational kernels. The optimal

code is, as the name suggests, auto-generated and is not limited to portable constructs

but may also include non-portable syntax extensions. The optimization is done through

a serious of performance experiments often in model-less fashion but with a use of

efficient search heuristics.

BONSAI (Benchtesting OpeN Software Autotuning Infrastructure) is a software

project that optimizes the execution of computational kernels on different hardware

platforms. The kernels are generated from a user-defined template that is specified

in terms of a variety of parameters. The optimal implementation of the kernel is an

instantiation of that template and chosen based on fastest execution on the target hardware.

The parameter space to be searched for an optimal configuration is defined using the

LANAI (LANguage for Autotuning Infrastructure) language.

There are five major steps that lead to the optimal implementation of a kernel:

1. The user defines a template for the kernel that is parametrized with a set of parame-

ters.

2. The user defines the search space of possible parameter combinations and BONSAI

generates the code for exploring that space.

3. The code for search space exploration is executed and generates a list of kernels

eligible for execution on the accelerator.

⋆ This research was supported by NSF through grant 1642441.



4. The eligible kernels generated out of the template and benchmarked for performance

on the GPU accelerator.

5. Optionally, the performance data is analyzed and visualized based on the metrics

gathered during execution. These metrics include performance, energy, and/or hard-

ware counters. These results could inform the redesign of the original template to

improve the performance even further.

This article focuses on #3 that often is time consuming because it deals with the

input parameter space, which grows combinatorially with the number of parameters as

described in Section III. The problem we solve is described in Section V.

II. MOTIVATION

The main goal of LANAI is to allow the user to specify an exhaustive search space

for autotuning parameters, in order to find the kernel with the best performance in

terms of time (other metrics such as energy are also possible [1]). Instead of applying

arbitrary constraints, LANAI allows the user to base the constraints on the hardware

and algorithmic considerations and thus not worry about excluding kernels with optimal

performance. The experiment results that we present here explain the importance of

efficient exploration of the search space and application of the constraints. In addition

to using parallelism, load balancing the threads’ workload affects their performance in

practical cases of autotuning. We analyze the results based on comparison of multiple

directive-based parallelization methods and give a detailed account on how the threads’

relative performance.

III. FORMAL SEARCH SPACE DESCRIPTION THROUGH PARAMETER

RANGES AND CONSTRAINTS

The search space for autotuning optimization is multidimensional and heteroge-

neous5. It comprises different categories of parameters, namely:

– Bi binary type, for example: use either vector or scalar operations;

– O j ordinal/categorical/enumeration type, for example: use shared memory, texture

cache or Level 1 cache;

– Ik integer type, for example: a range of matrix blocking factors; and

– Cℓ continuous (represented as floating-point) type, for example: GPU occupancy

above 30%.

Theoretically, the entire search space Smay be represented by a Cartesian product of

these dimensions:

S= ∏
i

Bi ×∏
j

O j ×∏
k

Ik ×∏
ℓ

Cℓ (1)

5 In order to keep the discussion focused, we will mostly limit the examples to GPU accelerators

and their parameters but the concepts are easily translatable to other HPC platforms such as

x86 multicore CPUs, Intel Xeon Phi KNL, IBM POWER8 SMT.



Semantics LANAI syntax Generated C code

Iterator I1 = {1,3,5,7} I1 = range(1,8,2) for (int I1 = 1;I1 < 8;I1 += 1)

Constraint E1 = {i1 ≥ 3} E1 = I1 >= 3 if(! I1 >= 3) break;

Fig. 1. Sample syntax and semantics of LANAI code and the generated C code.

In practice, the search space is much less regular due to a number of software and

hardware constraints. the LANguage for Autotuning Infrastructure [1],

In this work, we use LANAI to specify a search space for a typical autotuning task

with parameters and constraints derived from a matrix multiplication on a GPU [2]. The

specification is written as a Python code. The space is a product of ranges of matrix

sizes, block dimensions, threads-per-block counts, and so on. The conditions include

maximum sizes per thread-block and the total number of threads etc. LANAI compiler

generates a C code, that is used to prune the search space to limit the number of kernel

candidates that have to be run on the GPU to assess their performance. The eligible

kernel configurations are exported as CSV (Comma-Separated Values) file that is used

by the benchtesting module, which is responsible for building and executing the kernels.

For completeness, we show in Figure 1 a quick overview of the syntax, semantics,

and the generated code for a simple iterator and a constraint. Full details of the LANAI

can be found elsewhere [1].

IV. RELATED WORK

Currently, there is a significant interest in batch matrix operations. Both NVIDIA

cuBLAS [3] and Intel MKL [4] include extensive sets of batch routines for basic linear

algebra tasks, and so does the MAGMA library from University of Tennessee [5].

Numerous papers have been published about the development and optimization of

batch routines [6,7,8,9,10]. This paper is a follow up to our previous work on the batch

Cholesky factorization for small matrices [11]. The direct motivation for this work came

from the Alternating Least Squares (ALS) algorithm for recommender systems [12]. In

our previous article, we looked into the development of batch routines for the canonical

column-wise data layout. Here we are investigating alternative layouts for batches of

extremely small matrices.

Our autotuning methodology is based on the autotuning approach that we pioneered

with ATLAS [13] and that now grew into a vibrant field of experimental performance

optimization guided by execution profiles. To name a few efforts, we could start with

Portable High Performance ANSI C (PHiPAC) [14] that generated code for superscalar

processors implementing dense linear algebra operations. Sparse matrix computations

were targetted by Optimized Sparse Kernel Interface (OSKI) [15] and FFT and similar

transforms were optimized by the Fastest Fourier Transform in the West (FFTW) [16]

and Spiral [17]. In fact, Spiral’s automated code synthesis has recently addressed matrix-

matrix multiply [18]. To our best knowledge, these projects do not target their autotuning

efforts specifically for accelerators, and they mostly use the human expert knowledge of

the tuning as an embeddable component – the implementation code rather than exposing



this knowledge as a generic templates/stencils in the way we do. Also, there are DSLs

designed specifically for the purpose of autotuning parallel scientific codes [19,20]. A

more exhaustive survey of recent recent advances in the area of autotuning is available

elsewhere [21]. The recent work on GPU-specific autotuning [11,1,22] is also relevant.

V. NESTED LOOP PROBLEM

The components of LANAI-based specification define hardware, software, and/or

user defined constraints that allow the LANAI compiler to generate the corresponding

possible and acceptable configuration for a certain kernel. Figure 2 shows such a gen-

erated code from a Python-like code that was used for a matrix matrix multiplication

kernel [1]. As we can see in the Figure, the generated code consists of properly nested

for-loops and several if-statements that check conditions embedded inside the loop

nest as deep as is allowed by the dependence between the iterators and constraints. In

order to understand how the code works, we provide a brief description.

The for-loops generate all the possible configurations that a kernel might have

while each condition checks their validity and filters the invalid configurations. Thus,

a configuration is either acceptable and then the iteration continues toward the next

iteration of the loop or unacceptable and the iteration produces no configuration and

continue statement moves on to the next iteration. The filtering is based on the user-

defined constraints (either software, hardware, or kernel-specific). Due the deep loop

nest and non-trivial range of each loop, we could easily predict that such a code would

take a long time to execute: typically it has to go through millions of configurations

but it commonly filters them down to a few thousands that are used in execution on

the accelerator. Our main goal then is to try to parallelize such code and optimize

the execution time of LANAI. The natural choice for parallelization is to use pragma

directives due their simplicity and minimal effort in inserting them either manually or

automatically by the code generator. In order to achieve the best performance, we studied

various strategies using a number OpenMP directives and clauses. In particular, we used

the following:

• Implementation based on the critical construct.

• Implementation based on letting each thread write its own export file.

• Implementation based on writing in a single array allocated for all threads.

• Implementation based on writing in a dynamically allocated/reallocated array of

configurations for each thread that is subsequently saved to a file.

Moreover, for each of these strategies, we considered different OpenMP scheduling

flavors. We used either static or dynamic scheduling in the parallel-for loop construct.

VI. IMPLEMENTATION BASED ON USING CRITICAL CONSTRUCT

VI.1 Static Scheduling Construct

The first intuitive use of parallel-for is to use a static scheduling construct that splits

the loop iterations over the number of working threads. The attractive behavior of default



for (dim m = 1; dim m < 1025; dim m += 1)
for (trans a = 0; trans a < 1; trans a += 1)
for (trans b = 0; trans b < 1; trans b += 1)
for (blk k = 1; blk k < (min(1024, 1024) + 1); blk k += 1) {
if (dim vec delta != 0)
for (dim vec = dim vec start; dim vec < dim vec bound; dim vec += dim vec delta)
for (dim n = 1; dim n < 1025; dim n += 1)
for (tex b = 0; tex b < 2; tex b += 1)
for (tex a = 0; tex a < 2; tex a += 1) {
threads per block = dim m * dim n;
if (threads per block > max threads per block) continue;
if ((threads per block % warp size) != 0) continue;
if (vec mul delta != 0)
for (vec mul = vec mul start; vec mul < vec mul bound; vec mul += vec mul delta) {
if (blk m delta != 0)
for (blk m = blk m start; blk m < blk m bound; blk m += blk m delta) {
if (blk n delta != 0)
for (blk n = blk n start; blk n < blk n bound; blk n += blk n delta) {
if (shmem per block > max shared mem per block) continue;
if (regs per thread > max registers per thread) continue;
if (regs per block > max regs per block) continue;
if ((fmas per block / loads per block) < min fmas per load) continue;
if (max threads by shmem < min threads per multi processor) continue;
if (max threads by regs < min threads per multi processor) continue;
if (dim n b delta != 0)
for (dim n b = dim n b start; dim n b < dim n b bound; dim n b += dim n b delta) {

if (dim n a delta != 0)
for (dim n a =dim n a start; dim n a < dim n a bound; dim n a +=dim n a delta) {

if (dim m a delta != 0)
for (dim m a=dim m a start; dim m a <dim m a bound; dim m a+=dim m a delta){

if (dim m b delta != 0)
for (dim m b=dim m b start; dim m b<dim m b bound; dim m b+=dim m b delta){

if ((dim m a * dim n a) != threads per block) continue;
if ((dim m b * dim n b) != threads per block) continue;
if (((((blk k % (dim m b * dim vec)) != 0) || ((blk n % dim n b) != 0))))
continue;

if (((((blk m % (dim m a * dim vec)) != 0) || ((blk k % dim n a) != 0))))
continue;

idx += 1;
record(trans a, trans b, dim m, dim n, blk m, blk n, blk k, dim vec, vec mul,

dim m a, dim n a, dim m b, dim n b, tex a, tex b, idx);
}}}}}}}}}

Fig. 2. Generated C code

static scheduling is that it is straightforward for the OpenMP scheduler since it does not

have to maintain a queue of tasks for each thread (in case chunking is enabled). This

may sometimes involve complex mechanisms like deadlock handling mechanism, or

runtime dynamic distribution of load (in case of using dynamic scheduler). Thus, it is

well known that such scheduling is very good when the per-thread workload is equally

distributed but it might suffer from load imbalance when different threads have different

amount of work.

We did analyze the LANAI code, and we predicted that such a static scheduling

construct might not be a good option since we know that some boundary of the loop

iteration space might be filtered at an earlier stage of the code and thus its corresponding

thread will finish earlier.

We conducted research on where to put the parallel for construct (top, or lower level

of the code) with generic heuristic of using outer loops as targets for parallelization. If

we put the parallelization at a lower (inner) loop level, there is a big overhead related to



the creation of the parallel-for instance, and the barrier at the end of each parallel-for

required for synchronization of the output in the I/O buffers. Nonetheless, we did try

such implementation and the results were disappointing and are not reported here. The

best implementation is to parallelize the most outer loop which is the first top loop. Using

the collapse construct, we can see this in Figure 2 as the first four loops are fused

together and collapsed because there is no if-statement in between. This will create

more dynamic behavior at runtime and can contribute to spreading out the workload

across the threads.

To give the reader more details about relative workload handled by the individual

threads, we performed an experiment with 8 threads. We collected the number of

iterations that ended up being assigned to each thread and the number of configurations

that each thread generated. In other words, how many iterations of the inner-most

loop each thread executed that resulted in generating an acceptable configuration. We

illustrated these findings in Figure 3. We also collected the information on the time spent

in each thread and show it in Figure 4.

As we could notice from workload and time split figures, Thread 0 ended up with

all the work since it spent nearly 109 seconds to finish. Furthermore, it is clear from

Figure 3 that the first thread generates all the acceptable configurations while all the

other threads terminated their part of the loop-nest (at an earlier stage of the code). As a

consequence, it is expected that Thread 0 will be the slowest and the performance will

be bound by its speed.

On the other hand, Figure 3 also helps us in understanding the LANAI code behavior.

We may conclude that the first portion of the outer loop (the portion that got assigned to

Thread 0) is the most important because it generates majority (if not all) of the acceptable

configurations. In order to avoid such imbalance, we decided to use the chunk option

combined with the static scheduling.

We could use a chunk of size 1 but as we know such a chunk size would create a

lot of overhead for the OpenMP runtime scheduler. On the other hand, using too large

of a chunk size (as is often the default) might end up effectively serializing the code

execution which clearly is not what we want. In the end, it is better to use a chunk size

that is only slightly larger than 1 with avoids scheduling all the work into one thread

without much runtime overhead. We also collapsed the four outer-most loops (using the

collapse construct) to have a better distribution of the work since the work will be

distributed using the collapsed loops instead of just using the index set of the outer-most

loop.

Because of the aforementioned issues, why the parallelism alone is not the only main

focus but equally important is the good distribution of work among threads and using

all threads effectively is crucial to get a better performance for this autotuner code. In

particular, we could see that the Thread 0 was assigned the majority of work-inducing

iterations and, consequently, the most running time. That lead us to always follow the

threads’ workload distribution and address load balancing problems in our parallelization

heuristics with pragma directives.
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VI.2 Dynamic Scheduling Construct

As we have mentioned above, using static scheduler is very sensitive to the per-thread

workload which relates to the kernel-specific parametrization and constraints – a hard to



predict feature of the generated code. As a result, we decided to use dynamic scheduling

construct. The goal here is to avoid the predefined (likely static) distribution of work

as we are unlikely to know in advance how many iterations each thread will execute

because the inner-most loops may be eliminated by the conditions that related to the

kernel constraints. The dynamic scheduling construct distributes the load among all

threads at runtime and only when each thread requests a work item once it finished the

previous work item.

To verify our choice of collapsed loop count in the dynamic scheduling case as well,

we performed experiments with and without the collapse(4) construct implemen-

tation. The use of collapse(4) provided better performance across all of our tests.

Accordingly, we used this implementation choice for all of the following experiments.

This implementation is considered to be very efficient as it asymptotically achieves a

perfect speedup as the results below indicate.

VII. DETAILS ON THE IMPLEMENTATIONS USED IN TESTS

Below, we present a number of implementation variants that were appropriate for

the pragma parallelization.

VII.1 Implementation Based On Letting Each Thread Write Its Own Export File.

In this case, we let each thread write its own export file independently, then we

gather them all into one file. Once done, we remove the individual files for each thread.

This allows us to eliminate the use of critical construct. Note that the gathering

happens in the code and it is included in the timing. We performed experiment using

the Multiwriting strategy. This method with dynamic and collapse constructs is also

a good choice to improve LANAI-generated code as it has similar behavior to the one

with critical construct.

VII.2 Implementation Based On Writting In A Dynamically Reallocated Table

To avoid using pragma critical construct or to write into separate files, we

decided to store the data in an array of structures. Each thread defined its own array of

structures. The structure contained, beside the array of kernel configuration data, a thread

ID, the size of the allocated array and the size actually used. Each thread would reallocate

its array of data in case it was needed (in case the size used reached the allocated size).

And after filling all the data in the dynamic arrays, the master thread accessed the

individual threads’ sructures and subsequently wrote all relevant data in one export file

without the need of using critical section or gathering exported files.

VII.3 Implementation Based On Wrtting In A Large Table Allocated Once For All

We could avoid the extra cost of checking the memory space as described in the

strategy above with array reallocation, by allocating an array of larger size which ensures

that all threads will have no need to reallocate to increase their array sizes. In such a

scenario, we could avoid to checking the array size limit. However, such implementation



is very sensitive to the characteristic of the kernel in question and also requires either

a dry run in advance to get the maximum acceptable configuration. Optionally, a user

input might be required that defines the maximum acceptable configuration.

VIII. PERFORMANCE RESULTS

We first describe the hardware platforms used in the tests.

VIII.1 Knights Landing

Knights Landing (KNL) is the codename for the second-generation of Intel’s Xeon

Phi many integrated core (MIC) hardware platform. The 7230 and 7250 KNL variants

utilize 14 nm lithography similar to the “Broadwell” Xeon E5 and E7 server processors

to achieve 3.05 TFLOPS peak double precision floating-point performance. The 68

cores on the 7250 KNL chip are also based upon the 3-way out-of-order “Silvermont”

microarchitecture and support four execution threads. Both the 7230 and 7250 KNL

variants have two AVX512 vector processing units per core. There are two types of

memory used in KNL: a larger DDR4-2400 memory (115.2 GB/s) and a small 16 GB

MCDRAM providing up to 490 GB/s of sustained bandwidth through the 2D mesh

interconnect. The memory bandwidth per KNL core is approximately 11 GB/sec for

small thread counts. In the experiments we used the 16 GB high speed MCDRAM as a

NUMA node (flat mode) instead of transparent cache for DRAM (cache mode). We use

Quadrant cluster mode. We compiled our codes using GCC 6.1.0.

VIII.2 POWER8

The IBM POWER8 [23] is a RISC microprocessor from IBM fabricated using 22nm

technology. The IBM POWER8 processor features up to 12 cores per socket, 8 threads

per core, 32 KB instruction cache, 64 KB L1 data cache, 512 KB L2 cache, and 8 MB

L3 cache, per core. Each core can issue up to 10 instructions per cycle, and complete 8

instructions per cycle. Functional unit wise, the POWER8 has two independent fixed-

point units (FXU), two independent load-store units (LSU) plus two more load units,

and two independent floating-point vector/scalar units (VSU). The maximum double-

precision floating-point issue rate is 4 fmadds per cycle, single-precision 8 fmadds per

cycle. The SIMD width is 2 for double precision and 4 for single precision. Thus the peak

double precision performance is Freq×8×#cores. For a 3.5 GHz frequency 20-cores

node the peak DP performance is 560 GFLOPS. We used dual socket IBM POWER8

compute nodes with 20 cores in total. The frequency is about 3.5 GHz. We compiled our

codes using GCC 6.3.1.

VIII.3 ARMv8

For this experiment we used a dual socket 96 core Cavium ThunderX compute

node. ThunderX features up to 48 cores per socket and is fabricated using 28nm pro-

cess technology. The clock rate is 2.0 GHz. The double precision fused multiply-add

performance is 4 GFLOPS per core. We compiled our codes using GCC 6.1.0. For all



the measurements, we used OpenMP environment variables to bind each thread to each

hardware core.

VIII.4 Haswell

The Haswell system we uses was an Intel Xeon Processor E5-2650V3 fabricated

using 22nm technology. The Haswell processor has 2 sockets with 10 cores per socket

and 2 hardware threads per core. It has 32KB for Level 1 data cache, 32K for Level 1

instruction cache, 256K for L2 cache and 25600K Level 3 cache. To compile our codes

we used GCC 6.3.0 compiler.
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VIII.5 Comparison of Static Scheduling Runs

To confirm the analysis we presented above, we did run this version using the static

construct and plotted the elapsed time in Figure 5. As the figure shows, the time does

not decrease linearly when increasing the number of threads The parallel version that

uses the static default construct or the one that is combined with collapse, does

not seem to be efficient (for example, using 20 threads takes about 1.3 times faster to

finish than the sequential version that requires 128 seconds). Such a low speedup is

not acceptable. We found that chunk equal to 4 is a good option. As we can see in the

Figure 5, the static scheduler with a chunk equal to 4 is much better than the default



one, and this corresponds to the good distribution of work among the threads and avoids

excessive load on Thread 0 (this is not the case for the default distribution of iterations).

VIII.6 Dynamic Scheduling Construct
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From all the chart drawn in Figure 6, Figure 7, Figure 8, and Figure 9 we can see that

the use of dynamic scheduling construct combined with the collapse clause provide a

very good speedup and distribution of work. For example the on the Haswell machine

(Figure 6), using 8 and 20 threads is about 7 and 17 times faster, respectively, than the

sequential execution.

VIII.7 Implementation Based on Per-Thread Export File

We can observe in Figure 10 that Multiwriting provides behavior that is similar to the

critical strategy with dynamic scheduling. In addition, note the instability of the static

schedule for the Threads 8, 16, 32 that corresponds to the pre-distribution of the total

number of iterations on the threads.

VIII.8 Implementation Based On Dynamically Allocated Array

As we see in Figure 11, the timing is not much better than the critical and the

Multiwriting strategies. Our investigation of the details of this implementation revealed
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that the slowdown of the dynamic reallocation method is due to the necessity of adding

an if-statements inside the most inner loop, just before filling the array with data. This

is done to check whether there is still space available in the allocated array and whether

there is a need for a reallocation. Based on this, we decided to avoid the cost of adding
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the code for checking buffer size and instead we allocated a large-enough buffer for each

thread’s data structure, and we can see the improvement of timing of about 1.5x. We get

similar timing for the critical and the Multiwriting strategies.



128.11

64.74

9.14 6.58 6.21

198.60

99.63

14.39 9.89 9.07

0

50

100

150

200

0 5 10 15 20 25 30 35 40

T
IM

E
	(
se
co
n
d
s)

Number	of	Threads

Haswell	Run

allocation	of		bigBuffer	size Dynamic	reallocation

Fig. 11. Reallocate VS Non-Reallocate array strategy

VIII.9 Analysis of Speedup of the Scheduling Strategies

The speedup of the static scheduling methods implemented in the critical and the

Multiwriting strategies were run on the four test machines and results are prsented in

Figure 12, Figure 13, Figure 14 and Figure 15. Most strategies appear to be unstable

and do not scale linearly. This may be attributed to bad distribution of work for some
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threads counts. The known weakness is that the distribution with the static scheduling is

done once before the loop starts and threads do not request work as needed and leads

directly to a load imbalance for our code. On the other hand, the three methods based on

a dynamic scheduling combined with collapse (Multiwriting-Allocate-Critical) scale
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linearly. Also, we can see that on the Haswell machine that we see strong scalability until

20 threads and beyond 20 threads we see that the scaling slows down which is mostly due

HyperThreading. Similar effect occurs for KNL and POWER8. For KNL, we have for

64 threads a coefficient of 60 and 52 for critical construct and Multiwriting, respectively.

And beyond that the scalability slows down. This lack of scaling shows that the hardware

cores are not that useful for evaluating search space for the LANAI-generated code. For

the ARM machine, there is no hyperthreading. Thus, we get close to linear speedup until

96 threads with the dynamic scheduling method as we see in Figure 15.

CONCLUSION

We have presented LANAI-generated code that is part of the BONSAI project and

used as the autotuning space exploration and pruning. We also showed the importance

of using and comparing multiple methods for reducing the run time and watching the

threads behavior by analysing the obtained results. After studying the 4 cases of parallel

LANAI, that tested various number of threads we concluded that the best result in our

experiments in terms of time and threads behavior is the “Dynamic scheduling using

collapse (4) and combined with the critical construct”. For that setting, we obtained

a result of 7.35 seconds for LANAI parallel which is 17 times faster than the LANAI

sequential (124 seconds) using 20 threads on the Haswell machine.
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