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ABSTRACT
We consider the problem of how to reduce the cost of communica-
tion that is required for the parallel training of a neural network. The
state-of-the-art method, Bulk Synchronous Parallel Stochastic Gra-
dient Descent (BSP-SGD), requires many collective communication
operations, like broadcasts of parameters or reductions for partial
gradient aggregations, which for large messages quickly dominates
overall execution time and limits parallel scalability. To address this
problem, we develop a new technique for collective operations, re-
ferred to as Linear Pipelining (LP). It is tuned to the message sizes
that arise in BSP-SGD, and works effectively on multi-GPU systems.
Theoretically, the cost of LP is invariant to P , where P is the number
of GPUs, while the cost of the more conventional Minimum Span-
ning Tree (MST) scales like O(log P). LP also demonstrates up to 2x
higher bandwidth than Bidirectional Exchange (BE) techniques that
are widely adopted by current MPI implementations. We apply these
collectives to BSP-SGD, showing that the proposed implementations
reduce communication bottlenecks in practice while preserving the
attractive convergence properties of BSP-SGD.
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1 INTRODUCTION
Scaling up neural networks with respect to parameter sizes, train-
ing sets, or both has drastically improved the state-of-the-art per-
formance in several domains ranging from scene understanding,
speech recognition, even to playing Go against professional players.
Although training a large network saturated with nonlinearities is
extremely time-consuming, the benefits brought forth by large-scale
models has sparked a surge of interest in parallelizing training on
multi-GPUs. The parallelization of SGD demands synchronizations
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to exchange gradients and parameters per iteration, and this intro-
duces significant communication overhead. Previous studies have
focused on trading the SGD convergence rate for fast gradient up-
dates, such as stale or asynchronous SGD, 1-bit compressed gradient,
etc. However, these methods are rarely adopted by Deep Learning
frameworks as they depend on the balance between the enhanced
iteration throughput and the decelerated convergence rate. Since
BSP retains the convergence properties of SGD, its optimization
should be of interest.

The gradient aggregations and parameter exchanges in BSP SGD
are typical operations of communication collectives [4]. Messages
in the large-scale neural networks training are dense, long, and fixed-
length, while the performance of collective algorithms is drastically
sensitive to these attributes. Besides, the processing speed is several
orders of magnitude faster than the network unidirectional transmis-
sion rate. These prioritize the utilization of network bandwidth in
the collective design. However, we have seen sub-optimal collective
algorithms, e.g. MST and BE, widely adopted by the deep learn-
ing community [1] [12] [9]. MST is only suitable for the latency
dominant case such as frequent short message exchanges, while the
bandwidth term of BE can be further improved [19].

In this paper, we introduce new Linear Pipeline based collec-
tives for multiGPU training. The collectives demonstrate O(loд(P))
speedups over MST collectives and up to 2x speedups over BE
based ones; the bounds only hold in training large neural networks.
In particular, the theoretical analysis and the implementation yield
an interesting insight that the cost of our design is invariant to GPU
numbers, i.e., the cost of collective operations on 2 GPUs is similar
to 20 GPUs. The design explores message granularity to maximize
simultaneous bidirectional data exchanges. In specific, it divides a
message into fine-grained blocks as the basic communication ele-
ment. A GPU sends a block (via DMA 1) while receiving (via DMA
2) a new block from a neighbor. The copies are asynchronously
launched on two GPU streams, and numerical operations further
overlap data copies. As a result, our method yields a highly efficient
pipeline over which messages for neural network training may be
exchanged.

The proposed collective design achieves 2.3x to 360.55x speedups
over Open MPI alternatives on 6 GPUs. In training GoogLeNet, we
set up the same BSP SGD implementation with different underlying
collectives. Our design demonstrates up to 1.7x convergence speedup
over MST based Caffe.

https://doi.org/10.475/123_4
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Figure 1: Illustrations of various methods to accelerate the training. Black blocks stands for computations, and white blocks stands
for communications. CUDNN reduces the computation cost, while we reduce the communication cost.

2 RELATED WORK
The communication overhead has been widely identified as the major
bottleneck in the data-parallel SGD ([16], [13]). The data parallelism
linearly adds the processing power by concurrent gradient computa-
tions with multiple GPUs. But it also requires synchronizations to
collect partial gradients or to broadcast parameters. In practice, the
communication rate is several orders of magnitude slower than the
computation [5]. Various approaches have been proposed to reduce
the overhead.

The first group of approaches relaxes synchronous models of
SGD to increase the iteration throughput ([7], [23]). In this case,
the relaxed SGD enables computations on a GPU to partially over-
lap with communications on others as demonstrated in Fig.1c and
Fig.1d. [14] proposed a lock free Asynchronous SGD (ASGD) that
entirely gets rid of the synchronization requirement by allowing free
concurrent parameter updates. But the relaxation only works well on
sparse learning problems. In response, [11] introduced the concept
of staleness by bounding the fastest and the slowest machine within a
few iterations of each other to ensure correctness. These relaxations
claim to be effective as the enhanced iteration throughput offsets
the disadvantages of degraded convergence rate. However, recent
advances in deep learning frameworks ([6]) have reestablished the
advantages of BSP over relaxed ones in training neural networks.
This reiterates the importance of studying BSP SGD.

The second group of approaches tries to reduce the overall com-
munication volume. [15] quantized gradients from 32 bits to 1 bit
to reduce the message length, but the lost gradient information de-
celerates the convergence rate. Another approach is to accelerate
the convergence with a large batch. [8] shows the convergence rate
of mini-batch SGD is O(1/

√
Tb + 1/T ) with b being the batch size.

This result indicates a large batch needs fewer iterations to find a
solution, and thereby fewer overall synchronizations. However, un-
wieldy increasing the batch size is also unfavorable under limited
computing resources demonstrated by [21]. Please note these meth-
ods still need synchronizations, and our work will further improve
their performance.

The third group of approaches conducts system optimizations
to minimize the communication cost [20]. [2] and [1] presented
partial gradients aggregations guided with a MST that takes loд(P)
steps to fully synchronize the model. Deep learning frameworks
such as Caffe [12] also adopt this approach. Unfortunately, MST is
only suitable for latency dominant scenarios (i.e. high frequent short
messages). Although collective algorithms have been thoroughly

discussed in the HPC community ([3], [10], [17]), few have stud-
ied their performances for the deep learning. The performance of
collectives varies significantly with different message lengths and
network topologies, while messages in deep network training are
dense, long and fixed-length. Therefore, it is imperative to address
such peculiarities in the collectives. [22] proposed a pipeline col-
lective model in shared memory environment for CPU data, but
communications of different MPI processes sharing the same CPU
memory bus within the same CPU socket. This causes bandwidth
competition among different processes, thereby poor performance
for the collective communication in shared memory environment for
CPU data. In contrast, PCI-E is bi-directional. The latest GPUs also
feature two independent DMA engines for simultaneous independent
in/out communications. The hardware updates pave the way for LP
based GPU communications.

3 LINEAR PIPELINE BASED COLLECTIVE
DESIGN DEDICATED FOR NEURAL
NETWORK TRAINING ON MULTI-GPUS

This section presents a new LP based MultiGPU collective design
ensued by the concrete proof of its performance in training neural
networks. The general idea of LP is as follows: a) we dissect a long
message into fine-grained blocks. b) a GPU receives a block from
the prior GPU via DMA1 while sending a block to the next one
via DMA2. Please note each block exchange utilizes an indepen-
dent physical link, and the entire network is fully utilized once the
pipeline is filled.

Broadcast tackles the synchronizations of parameters among mul-
tiple GPUs. It copies the source vector to every GPU. Fig.2a illus-
trates the data flow of the broadcast collective on 3 GPUs. GPU0
is the source, and the rest are destinations. Broadcast starts with
filling the pipe by copying block a on GPU0 to GPU1 at step 1. Let’s
focus on GPU1. At each step, GPU1 receives a block from GPU0
via DMA1, while GPU1 is also sending a block to GPU2 via DMA2.
The data exchange in either way utilizes an independent link and
DMA engine to achieve the maximal unidirectional rate. Hence, the
bandwidth is fully exploited.

Reduce aggregates the partial gradients to reconstruct the global
one. It combines the elements provided in the vector of each GPU,
and returns the combined value in the receive vector to a specific
GPU. It supports basic arithmetic operations such as summations
and multiplications. Fig.2b illustrates the data flow of the reduce col-
lective. GPU2 is the root that aggregates the vectors across all GPUs.
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Figure 2: The data flow of broadcast , reduce and allreduce on 3 GPUs.

Reduce starts with filling the pipe by writing block a0 to a buffer on
GPU1. Then, GPU1 reduces the received block a0 with a1 to yield
a′ (within the rectangle of Fig.2b). Please note the computation is
much faster than the communication, we assume no latency on it. In
practice, computations are further overlapped with communications.
In the next step, GPU1 retrieves b0 from GPU0 to reduce to b ′ via
DMA 1, while GPU1 is also sending a′ to GPU2 to reduce to a′′ via
DMA 2. b ′′, c ′′, d ′′ are reduced at steps 3, 4, 5 in a similar fashion.

AllReduce enables us to collect partial gradients and broadcast
the latest parameters with only one synchronization point per SGD
iteration. It combines vectors from all GPUs and distributes the
result back to them. Mathematically, it is equivalent to a reduce
followed by a broadcast . However, allreduce is more efficient than
two separate calls as it only needs to fill the pipeline once. For
example, it takes 9 timesteps to allreduce 4 message blocks, while
broadcast + reduce will cost 10. Fig.2c illustrates the data flow of
the allreduce collective. It starts with reducing a′′, after which a′′ is
broadcast to GPU1 and GPU2 at step 5, 6 respectively. Please note
d0 utilizes the outbound DMA at step 4, therefore a′′ has to wait
until step 5. b ′′, c ′′, d ′′ are processed in a similar fashion.

Our collective is also specifically designed to accommodate GPU
features such as asynchronous kernel launches and multi-stream pro-
cessing. In the rectangle of Fig.2a, it demonstrates the data transfers
are asynchronously launched on two separate streams. The copies
happening in the red steps are scheduled on one stream while copies
in the black steps are scheduled on another stream. This overlaps the
overhead of GPU kernel launches, further improving the pipeline.
We illustrate the data flow of the collectives on 3 GPUs. If there are
k GPUs, GPU n, 0 < n < k − 1, duplicates the same communication
pattern on GPU 1.

3.1 Architecture Analysis
LP is the optimal collective algorithm to fully exploit the network
bandwidth of a MultiGPU system. Even though PCI-E supports
full-duplex communication between any two endpoints, each PCI-E
endpoint device only has one input and output port. This results in
bandwidth competition if a GPU is receiving from multiple GPUs.
Similarly, each PCI-E switch only contains one input and output
port used for inter-switch communication, and inter-switch com-
munications of the same direction also compete for the PCI-E bus.
It is known that any delay in data movement between two GPUs
interrupts the pipelining in the collectives. In such architecture, the

Algorithm 1: BSP SGD with communications/computations
overlapping.

1 while not converge do
2 broadcast(w0

t )

3 for i ∈ [0, 1, ...,max_layers] do
4 nonblockinд_broadcast(wi+1

t )

5 Forward(i)
6 sync_broadcast()

7 Backward(max_layers)
8 for i ∈ [max_layers − 1, ..., 1, 0] do
9 nonblockinд_reduce(∇ψ i+1

sub )

10 Backward(i)
11 sync_reduce()

12 wt+1 = GradientUpdate()

communication from parents to children in MST based collective
algorithms will compete for the same PCI-E bus, therefore breaking
pipelining. The data exchange of BE also suffers from the inter-
switch communication congestion in one direction. In contrast, LP
connects all GPUs into a chain, and data always flow in one direction.
Hence, data movements between two GPUs exclusively occupy the
entire PCI-E bus, ensuring uninterrupted pipelining.

3.2 Theoretical Analysis
We adopt a cost model widely used by the MPI community to analyze
collective operations ([19], [18]). The model assumes the time taken
to send a message between two nodes follows:

T = α + βn + γn (1)

where α is the latency or startup time of sending a message, β and γ
is the transmission rate and reduce rate measured by time per byte,
and n is the message size in bytes. We also denote p as the node
count, and b as the block size (in bytes) in the pipeline.

THEOREM 3.1. If the network latency α → 0, Linear Pipeline
collectives provide an O(logp) speedup over Minimal Spanning Tree
collectives and up to a 2 times speedup over Bidirectional Exchange
collectives as the message size n → ∞.

Proof. First, we derive the costs of the three Linear Pipeline
collectives. According to Fig.2, the length of pipeline is p − 1 + n

b



Table 1: The estimated costs of 3 collective communications.

Bidirectional Exchange (BE) Minimal Spanning Tree (MST) Linear Pipeline (LP)

broadcast (logp + p − 1)α + 2(p−1p n)β logp(α + nβ) (p − 1 + n
b )α + (b(p − 1) + n)β

reduce (2 logp)α + 2(p−1p n)β + (
p−1
p n)γ logp(α + nβ + nγ ) (p − 1 + n

b )α + (bp − b + n)(β + γ )

allreduce (2 logp)α + 2(p−1p n)β + (
p−1
p n)γ logp(2α + 2nβ + nγ ) 2(p − 1 + n

b )α + (bp − b + n)(2β + γ )

Algorithm 2: BSP SGD uses broadcast + reduce.

1 while not converge do
2 ∇ψsub = ForwardBackward(dt)
3 ∇ψ = reduce(∇ψsub )

4 if root then
5 wt+1 = GradientUpdate()

6 broadcast(wt+1)

7 barrier /* sync new w */

Algorithm 3: BSP SGD uses allreduce.

1 while not converge do
2 ∇ψsub = ForwardBackward(dt)
3 ∇ψ = allreduce(∇ψsub)

4 barrier /* collect ∇ψsub */

5 wt+1 = GradientUpdate()
6 if iter%5 = 0 then
7 broadcast(wt+1)

blocks assuming each block to be b bytes. A block exchange takes
α + βb +γb (with reduce) or α + βb (without reduce). Consequently,
broadcast essentially costs (α + βb)(p − 1 + n

b ) = (p − 1 + n
b )α +

(b(p − 1)+n)β , and reduce costs (α + βb +γb)(p − 1+ n
b ) = (p − 1+

n
b )α + (b(p − 1) + n)(β + γ ). allreduce is approximately equivalent
with a reduce followed by a broadcast . Therefore, the allreduce’s
cost is broadcast’s cost plus reduce’s cost, i.e. 2(p − 1+ n

b )α + (bp −
b + n)(2β + γ ).

Secondly, we derive the costs of the three Minimal Spanning
Tree collectives. MPI adopts MST to broadcast or reduce short
messages ([19]), the length of which is less than 12 KB. The core
concept of MST is to organize p GPUs into a balanced tree of
height ⌈loдp⌉. Then, it takes ⌈logp⌉ steps to traverse all GPUs in
the tree. Each step carries the message of length n, resulting in the
cost of broadcast to be the tree height times the cost per step, i.e.
logp(α + nβ) (we omit the ceiling for simplicity). Similarly, MST
reduce is logp(α+nβ+nγ ), and MST allreduce is also a combination
of broadcast and reduce. Please note the latency term, logpα , is
the smallest among algorithms in Table.1, and the bandwidth term,
logpnβ , is the slowest as logpnβ ≫ nβ . Therefore, MST is widely
used for high frequent exchanges of short message.

Finally, we present the costs of the three Bidirectional Exchange
collectives. MPI broadcast handles long messages with a MST
scatter followed by a BE allдather . Please refer to [4] for the analy-
sis of BE collectives. Basically, scatter costs

∑ ⌈loдp ⌉
k=1 (α + 2−knβ) =

logpα + p−1
p nβ , while allдather costs (p − 1)α + p−1

p nβ . The cost
of broadcast is the sum of these two. The MPI long message reduce
consists of a reducescatter plus a дather , while allreduce consists
of a reducescatter and a allдather . The cost for reducescatter is
logpα + p−1

p nβ +
p−1
p nγ , and both the costs of дather and allдather

are logpα + p−1
p nβ (also in [4]). Table 1 summarizes the costs of

broadcast , reduce and allreduce for the three different underlying
algorithms.

The theorem holds under the assumptions of α → 0 and n → ∞,
and these assumptions are legitimate for the training of large scale
neural networks on multiGPUs. Nowadays, the PCI Express x16
effectively reduces the latency α down to 10−7s. The current two
sockets shared memory machine supports up to 8 GPUs indicating
limited p in practice. Let’s take an appropriate block size b to ensure
p ≪ n

b and α n
b ∼ 0. This enables us to safely ignore the latency

term, e.g. logpα in MST broadcast . On the other hand, current
deep convolutional neural network uses a tremendous number of
parameters. For example, AlexNet uses 50 MB parameters. The
transmission rate1 β ∼ 109Byte/Seconds. Compared to the trivial
latency term, the bandwidth term dominates the entire cost T . This
result leads us to simplify the costs of BE, MST, and LP based
broadcast (Table. 2) to be 2p−1p nβ , nβ logp and (b(p − 1) + n)β ,
obtaining the following equations:

Tbroadcast_BE

Tbroadcast_LP
≈

2(1 − 1
p )

1 + b
n (p − 1)

< 2 (2)

Tbroadcast_MST

Tbroadcast_LP
≈

logp
b(p−1)

n + 1
< logp (3)

Compared with broadcast , reduce has the additional γ term.
Please note the processing speed of GPUs exceeds TFLOPs im-
plying the term γ ∗ n → 0. Therefore, it is also legitimate to ignore
the γ term, and it yields the same resultTr educe_BE/Tr educe_LP < 2
and Tr educe_MST /Tr educe_LP < logp. This completes our proof of
the theorem 3.1.

Another interesting point is the cost of Linear Pipeline is invari-
ant to GPU count p regardless of message length n. This implies
broadcasting a vector to 8 GPUs should cost the same as broadcast-
ing to 2 GPUs. In practice, we set the block size b around 64 KB, and
p is within 101. This suggests the bandwidth term, e.g. the cost of

1https://en.wikipedia.org/wiki/InfiniBand
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Figure 3: The performance of different collective algorithms at different message sizes on 4 K40m.
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Figure 4: The scalability experiment: it measures performance variations with increasing GPUs.

LP broadcast (bp − p + n)β ∼ nβ . Hence, the cost of LP collectives
are less likely to be affected by GPU counts p.

3.3 Deep Learning with Efficient BSP SGD
We formulate the neural network training as the following optimiza-
tion problem. Let ψ be a loss function with weight vector w as
function parameters that takes randomly sampled images dt as the
input. The objective of training is to find an approximate solution to
the following problem:

min
w

E{ψw(dt)} =
∫
Ω
ψw(dt)dP (4)

A typical neural network training iteration consists of a forward
and backward pass. The forward pass yields a loss that measures
the discrepancy between the current predictions and the target; The
backward pass calculates the gradient, the negative of which points
to the steepest descent direction. The gradient descent updates the
parameters, w, as follows:

wt = wt−1 − ηt∇ψw(dt) (5)

Guided with Data Parallelism, BSP SGD evenly divides dt into p
slices d1t , d

2
t , ..., d

p
t so that every GPU computes a partial gradient

from dit in parallel. The global gradient is equivalent to the aver-
age of partial gradients. After finishing the gradient update, wt is
synchronized to all GPUs. We integrate the proposed collectives
into this process to harness parallel processing capabilities of multi-
GPU system. In this paper, we discuss two approaches to BSP SGD
implementations.

•fork and join: This approach forks the gradient computations,
and joins partial gradients with communications. In this case, com-
munications do not overlap with computations. Alg.2 and Alg.3
demonstrate two collective based implementations using 2 and 1
synchronization points, respectively.

In Alg.2, synchronizations rely on broadcast and reduce. Each
GPU calculates a partial gradient referred to as ∇ψsub . The mas-
ter GPU reconstructs ∇ψ by reducing all ∇ψsub . Then, the GPUs
synchronize the latest weight, w, by broadcasting.

In Alg.3, synchronizations only rely on allreduce. The differences
between this and Alg.2 are that 1) there is only 1 synchronization
point; 2) every GPU computes the gradient update. However, the pa-
rameters are not consistent after several iterations due to the precision
issues of float multiplications in GradientUpdate. We synchronize
w every 5 iterations to enforce consistency while still retaining the
benefit of efficient pipelining in allreduce (line 7-8 Alg.3).

•overlapping communications with computations: Another ap-
proach is to overlap communications and computations for each
network layer. In the forward pass, GPUs broadcast network pa-
rameters of layer t+1 during forward computations at layer t. In the
backward pass, GPUs reduce partial gradients of layer t+1 during
backward computations at layer t. As a result, layer-wise compu-
tations partially overlap with communications further improving
the SGD efficiency. Alg.1 outlines the general idea of overlapping
communications and computations during network training. We use
nonblocking collectives to achieve the overlap.

•pros and cons of both approaches: The cost of Alg.2 or Alg.3
is comm + compt , while the cost of Alg.1 is max(comm, compt). If



Table 2: The iteration profile. comm stands for communications, and compt stands for computations. % represents the percentages
of communications in an iteration. The statistics are the average of 30000 AlexNet iterations, and 67000 GoogLeNet iterations. We set
the batch size of AlexNet to 1000, and GoogLeNet to 80. AlexNet and GoogLeNet are 256MB and 51MB, respectively.

MST Alg.1 BE Alg.1 BE Alg.3 LP Alg.1 LP Alg.2 LP Alg.3
comm compt comm% comm compt % comm compt % comm compt % comm compt % comm compt %

AlexNet 0.77s 0.92s 45.5% 1.05s 0.94s 52.7% 0.22s 0.93s 18.9% 0.084s 0.93s 8.3% 0.057s 0.94s 5.7% 0.011s 0.93s 1.2%
GoogLeNet 0.046s 0.267s 14.7% 0.334s 0.264s 55.9% 0.137s 0.263s 34.3% 0.02s 0.265s 7% 0.016s 0.26s 5.8% 0.01s 0.263s 3.7%
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Figure 5: The training losses in fixed iterations on 4 K40m. We set GoogLeNet lr = 0.01. AlexNet starts at lr = 0.015, and set to 0.0015
after the average loss < 2. The solver is SGD + momentum, and the dataset is ImageNet.

the network has over a few hundred MB of parameters, the over-
lapping will be significantly better than the fork and join approach.
However, Alg.2 and Alg.3 are relatively easy to implement, and the
performance on networks < 100 MB is similar to that of Alg.1.

4 EXPERIMENT
4.1 Collectives Evaluation
The MST and BE implementations used in benchmarks are Caffe 2

and OpenMPI. Caffe optimizes the GPU placement in an MST to
fully utilize inter-GPU peer to peer (P2P) access. OpenMPI and our
implementation, similar to Caffe, also take advantages of P2P. We
set up AlexNet and GoogLeNet training using the three BSP SGD
algorithms proposed in section 3.3.

Fig.3 presents the performance of LP, MST, and BE based col-
lectives at different message sizes on 4 K40m. The LP broadcast
demonstrates an average of 29.2x and 2.3x speedup over BE and
MST based alternatives in Caffe and OpenMPI; the LP reduce
demonstrates an average of 360.55x and 8.7x speedup over BE
and MST reduce, and the LP allreduce demonstrates an average of
109.2x and 7.9x speedup over BE and MST allreduce. In theory, LP
is approximately 2x faster than both the MST (p = 4 → loдp = 2)
and BE approaches. An extraordinary speedup against Open MPI
is observable due to inefficient data movement in Open MPI, which
moves data to host RAM to perform reduce operations on the CPU
before being copied to the target GPU. Instead, we perform reduce
on the GPUs, and data blocks directly flow to the target GPU via P2P
access. The overlapped reduce computations with communications
enables our reduce and allreduce to be 8x faster than that of MST.

2Caffe implements an MST based broadcast and reduce for the multiGPU training.

At each step of MST, GPUs reduce the incoming data only after
all the data is available. In contrast, our fine-grained block design
enables communications and computations to overlap by reducing
a block while receiving a new one in the pipeline. broadcast only
involves data copies, and both we and Caffe use P2P to transmit the
data. Therefore, the speedup of MST broadcast (2.3x), conforms to
the 2.0x theoretical prediction.

The theoretical analysis indicates both the cost of LP and BE
collectives are invariant to the GPU count p, while the cost of MST
increases with p by a factor of loдp. This is also noticeable in the
scalability experiment demonstrated in Fig.4. Please note there is
a cost jump between 4 and 5 GPUs. Communications have to go
through QPI after 4 GPUs incurring the additional cost of copying
through the host RAM. The cost of the Linear Pipeline method
robustly stays the same if GPU counts =[2,3,4] or [5,6], and QPI
explains the inconsistency. The communication steps of MST for
2,3,4,5,6 GPUs are 1,2,2,3,3, respectively. The MST experiments
verify the loдp cost increase w.r.t GPU counts by evident cost jumps
at 3 and 5 GPUs. The data flow of OpenMPI between two GPUs
follows GPU RAM→host RAM→GPU RAM. The inefficient data
flow inside Open MPI contributes to the near linear cost increase
with GPU counts p.

4.2 Impact on the Neural Network Training
Fig.5 demonstrates LP collectives effectively reduce the total train-
ing time without affecting SGD’s convergence properties in training
large scale neural networks. We use inspurCaffe, Caffe and cuhk’s
Caffe branch to benchmark the performance of BE-Alg.1, MST-
Alg.1 and BE-Overlap-Alg.3. We also implement Alg.1,2,3, inte-
grated with LP collectives, in Caffe to ensure consistency. Please



note the model size affects the communication time, while the batch
size affects the computation time. We carefully set these parameters
to cover as many cases as possible. Please refer to the captions of
Table.2 and Fig.5 for experiment details. We assume these algo-
rithms have similar convergence speeds in iterations as losses of
AlexNet are approximately 1 after 30000 iterations and losses of
GoogLeNet are approximately 2 after 67000 iterations. However,
the time taken to reach the target loss varies dramatically. For exam-
ple, the speedups of LP-Overlap-Alg.3 over BE-Alg.1 in training
AlexNet and GoogLeNet are 2.12x and 2.19x, respectively.

Under Alg.1, but using different underlying collective algorithms,
LP-Alg.1 presents 1.91x and 1.74x speedup over BE-Alg.1 and
MST-Alg.1 in AlexNet, and 1.6x and 1.1x speedup over BE-Alg.1
and MST-Alg.1 in GoogLeNet. The iteration profiles of these 3
algorithms in Table.2 indicate the communication cost of LP-Alg.1
is only 10% of BE-Alg.1, and 11% of MST-Alg.1 in AlexNet; and 6%
of BE-Alg.1, and 43% of MST-Alg.1 in GoogLetNet.

The experiments demonstrate that the speed of the three proposed
BSP SGD algorithms is Alg.3 > Alg.2 > Alg.1. The result conforms
to our expectations as the cost of Alg.3 is max(comm, compt), while
the cost of Alg.1 and Alg.2 is comm + compt . However, the perfor-
mance gain is quite limited from Alg.2 to Alg.3 as there is little
room left for reducing communications from LP Alg.2 to Alg.3 as
demonstrated in Table.2. If the model parameters keep increasing,
we expect Alg.3 to be more efficient than Alg.2.
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