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Abstract—We study tiled algorithms for going from a “full”
matrix to a condensed “band bidiagonal” form using orthog-
onal transformations: (i) the tiled bidiagonalization algorithm
BIDIAG, which is a tiled version of the standard scalar bidiago-
nalization algorithm; and (ii) the R-bidiagonalization algorithm
R-BIDIAG, which is a tiled version of the algorithm which
consists in first performing the QR factorization of the initial
matrix, then performing the band-bidiagonalization of the R-
factor. For both BIDIAG and R-BIDIAG, we use four main types
of reduction trees, namely FLATTS, FLATTT, GREEDY, and a
newly introduced auto-adaptive tree, AUTO. We provide a study
of critical path lengths for these tiled algorithms, which shows
that (i) R-BIDIAG has a shorter critical path length than BIDIAG
for tall and skinny matrices, and (ii) GREEDY based schemes are
much better than earlier proposed algorithms with unbounded
resources. We provide experiments on a single multicore node,
and on a few multicore nodes of a parallel distributed shared-
memory system, to show the superiority of the new algorithms
on a variety of matrix sizes, matrix shapes and core counts.

Keywords: bidiagonalization, R-bidiagonalization, critical
path, greedy algorithms, auto-adaptive reduction tree.

I. INTRODUCTION

This work is devoted to the design and comparison of

tiled algorithms for the bidiagonalization of large matrices.

Bidiagonalization is a widely used kernel that transforms a full

matrix into bidiagonal form using orthogonal transformations.

In many algorithms, the bidiagonal form is a critical step

to compute the singular value decomposition (SVD) of a

matrix. The necessity of computing the SVD is present in

many computational science and engineering areas. Based on

the Eckart–Young theorem [14], we know that the singular

vectors associated with the largest singular values represent

the best way (in the 2-norm sense) to approximate the matrix.

This approximation result leads to many applications, since it

means that SVD can be used to extract the “most important”

information of a matrix. We can use the SVD for compressing

data or making sense of data. In this era of Big Data, we

are interested in very large matrices. To reference one out

of many application, SVD is needed for principal component

analysis (PCA) in Statistics, a widely used method in applied

multivariate data analysis.

We consider algorithms for going from a “full” matrix

to a condensed “band bidiagonal” form using orthogonal

transformations. We use the framework of “algorithms by

tiles”. Within this framework, we study: (i) the tiled bidi-

agonalization algorithm BIDIAG, which is a tiled version of

the standard scalar bidiagonalization algorithm; and (ii) the

R-bidiagonalization algorithm R-BIDIAG, which is a tiled

version of the algorithm which consists in first performing

the QR factorization of the initial matrix, then performing

the band-bidiagonalization of the R-factor. For both bidiag-

onalization algorithms BIDIAG and R-BIDIAG, we use HQR-

based reduction trees, where HQR stands for the Hierarchical

QR factorization of a tiled matrix [12]. Considering various

reduction trees gives us the flexibility to adapt to matrix

shape and machine architecture. In this work, we consider

many types of reduction trees. In shared memory, they are

named FLATTS, FLATTT, GREEDY, and a newly introduced

auto-adaptive tree, AUTO. In distributed memory, they are

somewhat more complex and take into account the topology

of the machine. The main contributions are the following:

• The design and comparison of the BIDIAG and R-BIDIAG

tiled algorithms with many types of reduction trees. There

is considerable novelty in this. Previous work [22], [23],

[25], [27] on tiled bidiagonalization has only considered one

type of tree (FLATTS tree) with no R-BIDIAG. Previous

work [26] has considered GREEDY trees for only half of

the steps in BIDIAG and does not consider R-BIDIAG. This

paper is the first to study R-BIDIAG for tiled bidiagonalization

algorithm. and to study GREEDY trees for both steps of the

tiled bidiagonalization algorithm.

• A detailed study of critical path lengths for FLATTS,

FLATTT, GREEDY with BIDIAG and R-BIDIAG (so six

different algorithms in total), which shows that: (i) The newly-

introduced GREEDY based schemes (BIDIAG and R-BIDIAG)

are much better than earlier proposed variants with unbounded

resources and no communication: for matrices of p × q tiles,
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p ≥ q, their critical paths have a length Θ(q log2(p)) instead of

Θ(pq) for FLATTS and FLATTT; (ii) BIDIAGGREEDY has a

shorter critical path length than R-BIDIAGGREEDY for square

matrices; it is the opposite for tall and skinny matrices, and

the asymptotic ratio is 1
1+α

2
for tiled matrices of size p × q

when p = βq1+α, with 0 ≤ α < 1
• Implementation of our algorithms in DPLASMA [15],

which runs on top of the PARSEC runtime system [4], and

which enables parallel distributed experiments on multicore

nodes. All previous tiled bidiagonalization study [22], [23],

[25]–[27] were limited to shared memory implementation.

• Experiments on a single multicore node, and on a few mul-

ticore nodes of a parallel distributed shared-memory system,

show the superiority of the new algorithms on a variety of ma-

trix sizes, matrix shapes and core counts. AUTO outperforms

its competitors in almost every test case, hence standing as the

best algorithmic choice for most users.

The rest of the paper is organized as follows. Section II

provides a detailed overview of related work. Section III

describes the BIDIAG and R-BIDIAG algorithms with the

FLATTS, FLATTT and GREEDY trees. Section IV is devoted

to the analysis of the critical paths of all variants. Section V

outlines our implementation, and introduces the new AUTO

reduction tree. Experimental results are reported in Section VI.

Conclusion and hints for future work are given in Section VII.

II. RELATED WORK

This section surveys the various approaches to compute the

singular values of a matrix, and positions our new algorithm

with respect to existing numerical software kernels.

Computing the SVD. Computing the SVD of large matrices

in an efficient and scalable way, is an important problem that

has gathered much attention. The matrices considered here

are rectangular m-by-n, with m ≥ n. We call GE2VAL the

problem of computing (only) the singular values of a matrix,

and GESVD the problem of computing the singular values and

the associated singular vectors.

From full to bidiagonal form. Many SVD algorithms

first reduce the matrix to bidiagonal form with orthogonal

transformations (GE2BD step), then process the bidiagonal

matrix to obtain the sought singular values (BD2VAL step).

These two steps (GE2BD and BD2VAL) are very different

in nature. GE2BD can be done in a known number of oper-

ations and has no numerical difficulties. On the other hand,

BD2VAL requires the convergence of an iterative process

and is prone to numerical difficulties. This paper mostly

focuses on GE2BD: reduction from full to bidiagonal form.

Clearly, GE2BD+BD2VAL solves GE2VAL: computing (only)

the singular value of a matrix. If the singular vectors are de-

sired (GESVD), one can also compute them by accumulating

the “backward” transformations; in this example, this would

consist in a VAL2BD step followed by a BD2GE step. Golub

and Kahan [17] provides a singular value solver based on

an initial reduction to bidiagonal form. In [17, Th. 1], the

GE2BD step is done using a QR step on the first column,

then an LQ step on the first row, then a QR step on the second

column, etc. The steps are done one column at a time using

Householder transformation. This algorithm is implemented as

a Level-2 BLAS algorithm in LAPACK as xGEBD2. For an

m-by-n matrix, the cost of this algorithm is (approximately)

4mn2 − 4
3n

3.

Level 3 BLAS for GE2BD. Dongarra, Sorensen and Ham-

marling [13] explains how to incorporate Level-3 BLAS in

LAPACK xGEBD2. The idea is to compute few Householder

transformations in advance, and then to accumulate and apply

them in block using the WY transform [2]. This algorithm is

available in LAPACK (using the compact WY transform [29])

as xGEBRD. Großer and Lang [19, Table 1] explain that

this algorithm performs (approximately) 50% of flops in

Level 2 BLAS (computing and accumulating Householder

vectors) and 50% in Level 3 BLAS (applying Householder

vectors). In 1995, Choi, Dongarra and Walker [10] presents the

SCALAPACK version, PxGEBRD, of the LAPACK xGEBRD
algorithm of [13].

Multi-step approach. Further improvements for GE2BD

(detailed thereafter) are possible. These improvements rely

on combining multiple steps. These multi-step methods will

perform in general much better for GE2VAL (when only

singular values are sought) than for GESVD (when singular

values and singular vectors are sought). When singular values

and singular vectors are sought, all the “multi” steps have to

be performed in “reverse” on the singular vectors adding a

non-negligible overhead to the singular vector computation.

Preprocessing the bidiagonalization with a QR fac-
torization (preQR step). Chan [9] explains that, for tall-

and-skinny matrices, in order to perform less flops, one

can pre-process the bidiagonalization step (GE2BD) with

a QR factorization. In other words, Chan propose to do

preQR(m,n)+GE2BD(n,n) instead of GE2BD(m,n). A cu-

riosity of this algorithm is that it introduces nonzeros

where zeros were previously introduced; yet, there is a gain

in term of flops. Chan proves that the crossover points

when preQR(m,n)+GE2BD(n,n) performs less flops than

GE2BD(m,n) is when m is greater than 5
3n. Chan also proved

that, asymptotically, preQR(m,n)+GE2BD(n,n) will perform

half the flops than GE2BD(m,n) for a fixed n and m going

to infinity. If the singular vectors are sought, preQR has more

overhead: (1) the crossover point is moved to more tall-and-

skinny matrices, and there is less gain; also (2) there is some

complication as far as storage goes.

Two-step approach: GE2BND+BND2BD. In 1999, Großer

and Lang [19] studied a two-step approach for GE2BD: (1)

go from full to band (GE2BND), (2) then go from band to

bidiagonal (BND2BD). In this scenario, GE2BND has most of

the flops and performs using Level-3 BLAS kernels; BND2BD

is not using Level-3 BLAS but it executes much less flops

and operates on a smaller data footprint that might fit better

in cache. There is a trade-off for the bandwidth to be chosen.

If the bandwidth is too small, then the first step (GE2BND)

will have the same issues as GE2BD. If the bandwidth is too

large, then the second step BND2BD will have many flops

and dominates the run time.
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Tiled Algorithms for the SVD. In the context of mas-

sive parallelism, and of reducing data movement, many

dense linear algebra algorithms operates on tiles of the

matrix, and tasks are scheduled thanks to a runtime. In

the context of the SVD, tiled algorithms naturally leads to

band bidiagonal form. Ltaief, Kurzak and Dongarra [25]

present a tiled algorithm for GE2BND (to go from full

to band bidiagonal form). Ltaief, Luszczek, Dongarra [27]

add the second step (BND2BD) and present a tiled al-

gorithm for GE2VAL using GE2BND+BND2BD+BD2VAL.

Ltaief, Luszczek, and Dongarra [26] improve the algorithm

for tall and skinny matrices by using “any” tree instead

of flat trees in the QR steps. Haidar, Ltaief, Luszczek and

Dongarra [23] improve the BND2BD step of [27]. Finally,

in 2013, Haidar, Kurzak, and Luszczek [22] consider the

problem of computing singular vectors (GESVD) by perform-

ing GE2BND+BND2BD+BD2VAL+VAL2BD+BD2BND+BND2GE. They

show that the two-step approach (from full to band, then band

to bidiagonal) can be successfully used not only for computing

singular values, but also for computing singular vectors.

BND2BD step. The algorithm in LAPACK for BND2BD

is xGBBRD. In 1996, Lang [24] improved the sequential

version of the algorithm and developed a parallel distributed

algorithm. Recently, PLASMA released an efficient multi-

threaded implementation [23], [27], and Rajamanickam [28]

also worked on this step.

BD2VAL step. Much research has been done on this kernel.

Much software exists. In LAPACK, to compute the singular

values and optionally the singular vectors of a bidiagonal

matrix, the routine xBDSQR uses the Golub-Kahan QR algo-

rithm [17]; the routine xBDSDC uses the divide-and-conquer

algorithm [20]; and the routine xBDSVX uses bisection and

inverse iteration algorithm. Recent research was trying to

apply the MRRR (Multiple Relatively Robust Representations)

method [31] to the problem.

BND2BD+BD2VAL steps in this paper. This paper fo-

cuses neither on BND2BD nor BD2VAL. As far as we are

concerned, we can use any of the methods mentioned above.

The faster these two steps are, the better for us. For this study,

during the experimental section, for BND2BD, we use the

PLASMA multi-threaded implementation [23], [27] and, for

BD2VAL, we use LAPACK xBDSQR.

III. TILED BIDIAGONALIZATION ALGORITHMS

A. QR factorization

Tiled algorithms are expressed in terms of tile operations

rather than elementary operations. Each tile is of size nb×nb,

where nb is a parameter tuned to squeeze the most out of

arithmetic units and memory hierarchy. Typically, nb ranges

from 80 to 200 on state-of-the-art machines [1]. Consider a

rectangular tiled matrix A of size p×q. The actual size of A is

thus m× n, where m = pnb and n = qnb. In Algorithm 1, k
is the step, and also the panel index, and elim(i, piv(i, k), k)
is an orthogonal transformation that combines rows i and

piv(i, k) to zero out the tile in position (i, k). To implement

elim(i, piv(i, k), k), one can use six different kernels, whose

costs are given in Table I. In this table, the unit of time is the

time to perform
n3
b

3 floating-point operations. There are two

main possibilities. The first version eliminates tile (i, k) with

the TS (Triangle on top of square) kernels, while the second

version uses TT (Triangle on top of triangle) kernels. In a

nutshell, TT kernels allow for more parallelism, using several

eliminators per panel simultaneously, but they reach only a

fraction of the performance of TS kernels. See [6], [12] or the

extended version of this work [16] for details. There are many

algorithms to compute the QR factorization of A, and we refer

to [6] for a survey. We use the three following variants:

• FLATTS: This algorithm with TS kernels is the reference

algorithm used in [7], [8]. At step k, the pivot row is always

row k, and we perform the eliminations elim(i, k, k) in

sequence, for i = k + 1, i = k + 2 down to i = p.

• FLATTT: This algorithm is the counterpart of the FLATTS

algorithm with TT kernels. It uses exactly the same elimination

operations, but with different kernels.

• Greedy: This algorithm is asymptotically optimal, and turns

out to be the most efficient on a variety of platforms [5],

[12]. It eliminates many tiles in parallel at each step, using

a reduction tree (see [6] for a detailed description).

Algorithm 1: QR(p, q) algorithm for a tiled matrix of size

(p, q).

for k = 1 to min(p, q) do
Step k, denoted as QR(k):
for i = k + 1 to p do

elim(i, piv(i, k), k)

Algorithm 2: Step LQ(k) for a tiled matrix of size p× q.

Step k, denoted as LQ(k):
for j = k + 1 to q do

col-elim(j, piv(j, k), k)

Operation Panel Update
Name Cost Name Cost

Factor square into triangle GEQRT 4 UNMQR 6
Zero square with triangle on top TSQRT 6 TSMQR 12
Zero triangle with triangle on top TTQRT 2 TTMQR 6

Table I: Kernels for tiled QR. The unit of time is
n3
b

3 , where

nb is the blocksize.

B. Bidiagonalization

Consider a rectangular tiled matrix A of size p×q, with p ≥
q. The bidiagonalization algorithm BIDIAG proceeds as the

QR factorization, but interleaves one step of LQ factorization

between two steps of QR factorization (see Figure 1). More

precisely, BIDIAG executes the sequence

QR(1);LQ(1);QR(2);LQ(2) . . . QR(q−1);LQ(q−1);QR(q)

where QR(k) is the step k of the QR algorithm (see Algo-

rithm 1), and LQ(k) is the step k of the LQ algorithm. The

latter is a right factorization step that executes the column-

oriented eliminations shown in Algorithm 2.
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QR(1) LQ(1) QR(2) LQ(2) QR(3) LQ(3)

QR(4) LQ(4) QR(5) LQ(5) QR(6)

Figure 1: Snapshots of the bidiagonalization algorithm BIDIAG.

In Algorithm 2, col-elim(j, piv(k, j), k) is an orthogonal

transformation that combines columns j and piv(k, j) to zero

out the tile in position (k, j). It is the exact counterpart

to the row-oriented eliminations elim(i, piv(i, k), k) and be

implemented with the very same kernels, either TS or TT.

C. R-Bidiagonalization

When p is much larger than q, R-bidiagonalization should

be preferred, if minimizing the operation count is the objective.

This R-BIDIAG algorithm does a QR factorization of A,

followed by a bidiagonalization of the upper square q × q
matrix. In other words, given a rectangular tiled matrix A of

size p× q, with p ≥ q, R-BIDIAG executes the sequence

QR(p, q);LQ(1);QR(2);LQ(2);QR(3) . . . LQ(q−1);QR(q)

Let m = pnb and n = qnb be the actual size of A (element

wise). The number of arithmetic operations is 4n2(m− n
3 ) for

BIDIAG and 2n2(m + n) for R-BIDIAG [18, p.284]. These

numbers show that R-BIDIAG is less costly than BIDIAG

whenever m ≥ 5n
3 , or equivalently, whenever p ≥ 5q

3 . One

major contribution of this paper is to provide a comparison of

BIDIAG and R-BIDIAG in terms of parallel execution time,

instead of operation count.

IV. CRITICAL PATHS

In this section, we compute exact or estimated values of the

critical paths of the BIDIAG and R-BIDIAG algorithms with

the FLATTS, FLATTT, and GREEDY trees.

A. Bidiagonalization

To compute the critical path, given the sequence executed by

BIDIAG, we first observe that there is no overlap between two

consecutive steps QR(k) and LQ(k). To see why, consider

w.l.o.g. the first two steps QR(1) and LQ(1) on Figure 1.

Tile (1, 2) is used at the end of the QR(1) step to update the

last row of the trailing matrix (whichever it is). In passing, note

that all columns in this last row are updated in parallel, because

we assume unlimited resources when computing critical paths.

But tile (1, 2) is the first tile modified by the LQ(1) step,

hence there is no possible overlap. Similarly, there is no

overlap between two consecutive steps LQ(k) and QR(k+1).
Consider steps LQ(1) and QR(2) on Figure 1. Tile (2, 2) is

used at the end of the LQ(1) step to update the last column

of the trailing matrix (whichever it is), and it is the first tile

modified by the QR(1) step.

As a consequence, the critical path of BIDIAG is the sum of

the critical paths of each step. From [5], [6], [12] we have the

following values for the critical path of one QR step applied

to a tiled matrix of size (u, v):
FLATTS

QR− FTS1step(u, v) =

{
4 + 6(u− 1) if v = 1,

4 + 6 + 12(u− 1) otherwise.
FLATTT

QR− FTT1step(u, v) =

{
4 + 2(u− 1) if v = 1,

4 + 6 + 6(u− 1) otherwise.
GREEDY

QR−GRE1step(u, v) =

{
4 + 2�log2(u)� if v = 1,

4 + 6 + 6�log2(u)� otherwise.
The critical path of one LQ step applied to a tiled matrix

of size (u, v) is LQ1step(u, v) = QR1step(v, u). Finally, in

the BIDIAG algorithm, the size of the matrix for step QR(k)
is (p − k + 1, q − k + 1) and the size of the matrix for step

LQ(k) is (p− k + 1, q − k). We derive the following values:

• FLATTS: BIDIAGFLATTS(p, q) = 12pq − 6p+ 2q − 4
• FLATTT: BIDIAGFLATTT(p, q) = 6pq − 4p+ 12q − 10
• GREEDY: BIDIAGGREEDY(p, q) =

∑q−1
k=1(10+6�log2(p+

1−k)�)+∑q−1
k=1(10+6�log2(q−k)�)+(4+2�log2(p+1−q)�

If q is a power of two, we derive that

BIDIAGGREEDY(q, q) = 12q log2(q) + 8q − 6 log2(q) − 4.

If both p and q are powers of two, with p > q, we obtain

BIDIAGGREEDY(p, q) = 6q log2(p) + 6q log2(q) + 14q −
4 log2(p) − 6 log2(q) − 10. For the general case, see [16]

for the exact but complicated formula. Simpler bounds are

obtained by rounding down and up the ceiling function in

the logarithms [16]. Here, we content ourselves with an

asymptotical analysis for large matrices. Take p = βq1+α,

with 0 ≤ α. We obtain that

lim
q→∞

BIDIAGGREEDY(βq1+α, q)

(12 + 6α)q log2(q)
= 1 (1)

Equation (1) shows that BIDIAGGREEDY is an order

of magnitude faster than FLATTS or FLATTT. For in-

stance when α = 0, hence p = βq are propor-

tional (with β ≥ 1), we have BIDIAGFLATTS(βq, q) =
12βq2 + O(q), BIDIAGFLATTT(βq, q) = 6βq2 + O(q), and

BIDIAGGREEDY(βq, q) = 12q log2(q) +O(q).
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In fact, we have derived a stronger result: the optimal

critical path of BIDIAG(p, q) with p = βq1+α is asymp-

totically equivalent to (12 + 6α)q log2(q), regardless of the

reduction tree used for each QR and LQ step: this is because

GREEDY is optimal (up to a constant) for each step [5], hence

BIDIAGGREEDY is optimal up to a linear factor in q, hence

asymptotically optimal.

B. R-Bidiagonalization

Computing the critical path of R-BIDIAG is more difficult

than for BIDIAG, because kernels partly overlap. For exam-

ple, there is no need to wait for the end of the (left) QR
factorization to start the first (right) factorization step LQ(1).
In fact, this step can start as soon as the first step QR(1)
is over because the first row of the matrix is no longer used

throughout the whole QR factorization at this point. However,

the interleaving of the following kernels gets quite intricate.

Since taking it into account, or not, does not change the

higher-order terms, in the following we simply sum up the

values obtained without overlap, adding the cost of the QR

factorization of size (p, q) to that of the bidiagonalization of

the top square (q, q) matrix, and subtracting step QR(1) as

discussed above.

Due to lack of space, we refer to [16] for critical path values

of R-BIDIAG (p,q) with FLATTS and FLATTT. Here, we con-

centrate on the most efficient tree GREEDY. The key result is

the following: combining [5, Theorem 3.5] with [11, Theorem

3] we derive that the cost QR−GRE of the QR factorization

with GREEDY is QR − GRE(p, q) = 22q + o(q) whenever

p = o(q2). This leads to R-BIDIAGGREEDY(p, q) ≤ (22q +
o(q)) + (12q log2(q) + (20 − 12 log2(e))q + o(q)) − o(q) =
12q log2(q) + (42− 12 log2(e))q + o(q) whenever p = o(q2).

Again, we are interested in the asymptotic analysis of R-

BIDIAGGREEDY, and in the comparison with BIDIAG. In fact,

when p = o(q2), say p = βq1+α, with 0 ≤ α < 1, the

cost of the QR factorization QR(p, q) is negligible in front

of the cost of the bidiagonalization BIDIAGGREEDY(q, q), so

that R-BIDIAGGREEDY(p, q) is asymptotically equivalent to

BIDIAGGREEDY(q, q), and we derive that:

lim
q→∞

BIDIAGGREEDY(βq1+α, q)

R-BIDIAGGREEDY(βq1+α, q)
= 1 +

α

2
(2)

Asymptotically, BIDIAGGREEDY is at least as costly (with

equality is p and q are proportional) and at most 1.5 times

as costly as R-BIDIAGGREEDY (the maximum ratio being

reached when α = 1− ε for small values of ε.

Just as before, R-BIDIAGGREEDY is asymptotically opti-

mal among all possible reduction trees, and we have proven

the following result, where for notation convenience we let

BIDIAG(p, q) and R-BIDIAG(p, q) denote the optimal critical

path lengths of the algorithms::

Theorem 1. For p = βq1+α, with 0 ≤ α < 1:

lim
q→∞

BIDIAG(p, q)

(12 + 6α)q log2(q)
= 1, lim

q→∞
BIDIAG(p, q)

R-BIDIAG(p, q)
= 1+

α

2

When p and q are proportional (α = 0, β ≥ 1), both

algorithms have same asymptotic cost 12qlog2(q). On the

contrary, for very elongated matrices with fixed q ≥ 2, the

ratio of the critical path lengths of BIDIAG and R-BIDIAG

gets high asymptotically: the cost of the QR factorization is

equivalent to 6 log2(p) and that of BIDIAG(p, q) to 6q log2(p).
Since the cost of BIDIAG(q, q) is a constant for fixed q, we

get a ratio of q. Finally, to give a more practical insight, we

provide detailed comparisons of all schemes in [16].

C. Switching from BIDIAG to R-BIDIAG

For square matrices, BIDIAG is better than R-BIDIAG. For

tall and skinny matrices, this is the opposite. For a given q,

what is the ratio δ = p/q for which we should switch between

BIDIAG and R-BIDIAG? Let δs denote this crossover ratio.

The question was answered by Chan [9] when considering

the operation count, showing that the optimal switching point

between BIDIAG and R-BIDIAG when singular values only

are sought is δ = 5
3 . We consider the same question but

when critical path length (instead of number of flops) is the

objective function. We provide some experimental data in [16],

focusing on BIDIAGGREEDY R-BIDIAGGREEDY and writing

some code snippets that explicitly compute the critical path

lengths for given p and q, and find the intersection for a given

q. Altogether, we find that δs is a complicated function of q.

oscillating between 5 and 8.

V. IMPLEMENTATION

To evaluate experimentally the impact of the different reduc-

tion trees on the performance of the GE2BND and GE2VAL

algorithms, we have implemented both the BIDIAG and R-

BIDIAG algorithms in the DPLASMA library [15], which

runs on top of the PARSEC runtime system [4]. PARSEC is a

high-performance fully-distributed scheduling environment for

generic data-flow algorithms. It takes as input a problem-size-

independent, symbolic representation of a Directet Acyclic

Graph (DAG) in which each node represents a task, and

each edge a dependency, or data movement, from one task to

another. PARSEC schedules those tasks on distributed parallel

machine of multi-cores, potentially heterogeneous, while com-

plying with the dependencies expressed by the programmer.

At runtime, task executions trigger data movements, and create

new ready tasks, following the dependencies defined by the

DAG representation. The runtime engine is responsible for

actually moving the data from one machine (node) to another,

if necessary, using an underlying communication mechanism,

like MPI. Tasks that are ready to compute are scheduled

according to a data-reuse heuristic: each core will try to

execute close successors of the last task it ran, under the

assumption that these tasks require data that was just touched

by the terminated one. This policy is tuned by the user through

a priority function: among the tasks of a given core, the choice

is done following this function. To balance load between

the cores, tasks of a same cluster in the algorithm (reside

on a same shared memory machine) are shared between the

computing cores, and a NUMA-aware job stealing policy is
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implemented. The user is then responsible only to provide

the algorithm, the initial data distribution, and potentially the

task distribution. The last one is usually correlated to the data

distribution when the (default) owner-compute rule is applied.

In our case, we use a 2D block-cyclic data distribution as used

in the SCALAPACK library, and we map the computation

together with the data. A full description of PARSEC can be

found in [4].

The implementation of the BIDIAG and R-BIDIAG algo-

rithms have then been designed as an extension of our previous

work on HQR factorization [12] within the DPLASMA

library. The HQR algorithm proposes to perform the tiled

QR factorization of a (p × q)-tile matrix, with p ≥ q,

by using a variety of trees that are optimized for both the

target architecture and the matrix size. It relies on multi-level

reduction trees. The highest level is a tree of size R, where

R is the number of rows in the R × C two-dimensional grid

distribution of the matrix, and it is configured by default to

be a flat tree if p ≥ 2q, and a Fibonacci tree otherwise. The

second level, the domino level, is an optional intermediate

level that enhances the pipeline of the lowest levels when

they are connected together by the highest distributed tree.

It is by default disabled when p ≥ 2q, and enabled otherwise.

Finally, the last two levels of trees are use to create parallelism

within a node and work only on local tiles. They correspond

to a composition of one or multiple FLATTS trees that are

connected together with an arbitrary tree of TT kernels. The

bottom FLATTS tree enables highly efficient kernels while the

TT tree on top of it generates more parallelism to feed all the

computing resources from the architecture. The default is to

have FLATTS trees of size 4 that are connected by a GREEDY

tree in all cases. This design is for QR trees, a similar design

exists for LQ trees. Using these building blocks, we have

crafted an implementation of BIDIAG and R-BIDIAG within

the abridged representation used by PARSEC to represent

algorithms. This implementation is independent of the type of

trees selected for the computation, thereby allowing the user

to test a large spectrum of configuration without the hassle of

rewriting all the algorithm variants.

One important contribution is the introduction of two new

tree structures dedicated to the BIDIAG algorithm. The first

tree, GREEDY, is a binomial tree which reduces a panel in

the minimum amount of steps. The second tree, AUTO, is an

adaptive tree which automatically adapts to the size of the local

panel and number of computing resources. We developed the

auto-adaptive tree to take advantage of (i) the higher efficiency

of the TS kernels with respect to the TT kernels, (ii) the highest

degree of parallelism of the GREEDY tree with respect to any

other tree, and (iii) the complete independence of each step

of the BIDIAG algorithm, which precludes any possibility of

pipelining. Thus, we propose to combine in this configuration

a set of FLATTS trees connected by a GREEDY tree, and

to automatically adapt the number of FLATTS trees, and by

construction their sizes, a, to provide enough parallelism to the

available computing resources. Given a matrix of size p×q, at

each step k, we need to apply a QR factorization on a matrix

of size (p − k − 1) × (q − k − 1), the number of parallel

tasks available at the step beginning of the step is given by

�(p − k − 1)/a� ∗ (q − k − 1). Note that we consider the

panel as being computed in parallel of the update, which is

the case when a is greater than 1, with an offset of one time

unit. Based on this formula, we compute a at each step of the

factorization such that the degree of parallelism is greater than

a quantity γ × nbcores , where γ is a parameter and nbcores
is the number of cores. For the experiments, we set γ = 2.

Finally, we point out that AUTO is defined for a resourced-

limited platform, hence computing its critical path would have

no meaning, which explains a posteriori that it was not studied

in Section IV.

VI. EXPERIMENTS

In this section, we evaluate the performance of the proposed

algorithms for the GE2BND kernel against existing competi-

tors.

A. Architecture

Experiments are carried out using the PLAFRIM experi-

mental testbed1. We used up to 25 nodes of the miriel
cluster, each equipped with 2 Dodeca-core Haswell Intel

Xeon E5-2680 v3 and 128GB of memory. The nodes are

interconnected with an Infiniband QDR TrueScale network

with provides a bandwidth of 40Gb/s. All the software are

compiled with gcc 4.9.2, and linked against the sequential

BLAS implementation of the Intel MKL 11.2 library. For

the distributed runs, the MPI library used is OpenMPI 2.0.0.

The practical GEMM performance is of 37 GFlop/s on one

core, and 642 GFlop/s when the 24 cores are used. For each

experiment, we generated a matrix with prescribed singular

values using LAPACK LATMS matrix generator and checked

that the computed singular values were satisfactory up to

machine precision.

B. Competitors

This paper presents new parallel distributed algorithms

and implementations for GE2BND using DPLASMA. To

compare against competitors on GE2VAL, we follow up our

DPLASMA GE2BND implementation with the PLASMA

multi-threaded BND2BD algorithm, and then use the Intel

MKL multi-threaded BD2VAL implementation. We thus ob-

tain GEVAL by doing GE2BND+BND2BD+BD2VAL.

It is important to note that we do not use parallel distributed

implementations neither for BND2BD nor for BD2VAL.

We only use shared memory implementations for these two

last steps. Thus, for our distributed memory runs, after the

GE2BND step in parallel distributed using DPLASMA, the

band is gathered on a single node, and BND2BD+BD2VAL is

performed by this node while all all other nodes are left idle.

We will show that, despite this current limitation for parallel

distributed, our implementation outperforms its competitors.

1Inria PlaFRIM development action with support from Bordeaux INP,
LABRI and IMB and other entities: Conseil Régional d’Aquitaine, Université
de Bordeaux and CNRS, see https://www.plafrim.fr/.
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Figure 2: Shared memory performance of the multiple variants for the GE2BND algorithm on the first row, and for the GE2VAL

algorithm on the second row, using a single 24 core node of the miriel cluster.

On the square test cases, only 23 cores of a 24-core node

were used for computation, and the 24th core was left free to

handle MPI communications progress. The implementation of

the algorithm is available in a public fork of the DPLASMA

library at https://bitbucket.org/mfaverge/parsec.

PLASMA is the closest alternative to our proposed solution

but it is only using FLATTS as its reduction tree, and is

limited to single-node platform, and is supported by a different

runtime. For both our code, and PLASMA, the tile size

parameter is critical to get good performance: a large tile size

will get an higher kernel efficiency and a faster computation

of the band, but it will increase the number of flops of

the BND2BD step which is heavily memory bound. On the

contrary, a small tile size will speed up the BND2BD step by

fitting the band into cache memory, but decreases the efficiency

of the kernels used in the GE2BND step. We tuned the nb

(tile size) and ib (internal blocking in TS and TT kernels)

parameters to get the better performance on the square case

m = n = 20000, and m = n = 30000 on the PLASMA

code. The selected values are nb = 160, and ib = 32. We

used the same parameters in the DPLASMA implementation

for both the shared memory runs and the distributed ones. The

PLASMA 2.8.0 library was used.

Intel MKL proposes an multi-threaded implementation of

the GE2VAL algorithm which gained an important speedup

while switching from version 11.1 to 11.2 [30]. While it is

unclear which algorithm is used beneath, the speedup reflects

the move to a multi-stage algorithm. Intel MKL is limited to

single-node platforms.

SCALAPACK implements the parallel distributed version

of the LAPACK GEBRD algorithm which interleaves phases

of memory bound BLAS2 calls with computational bound

BLAS3 calls. It can be used either with one process per core

and a sequential BLAS implementation, or with a process per

node and a multi-threaded BLAS implementation. The latter

being less efficient, we used the former for the experiments.

The blocking size nb is critical to get performances since it

impacts the phase interleaving. We tuned the nb parameter to

get the better performance on a single node with the same test

cases as for PLASMA, and nb = 48 was selected.

Elemental implements an algorithm similar to SCALA-

PACK, but it automatically switches to Chan’s algorithm [9]

when m ≥ 1.2n. As for SCALAPACK, it is possible to

use it as a single MPI implementation, or an hybrid MPI-

thread implementation. The first one being recommended,

we used this solution. Tuning of the nb parameter similarly

to previous libraries gave us the value nb = 96. A better

algorithm developed on top of the LibFLAME [21] is provided

by Elemental, but this one is used only when singular vectors

are sought.

In the following, we compare all these implementation on

the miriel cluster with 3 main configurations: (i) square

matrices; (ii) tall and skinny matrices with n = 2, 000; this

choice restricts the level of parallelism induced by the number

of panels to half the cores; and (iii) tall and skinny matrices

with n = 10, 000: this choice enables for more parallelism. For

all performance comparisons, we use the same operation count

as in [3, p. 123] for the GE2BND and GE2VAL algorithms.

The BD2VAL step has a negligible cost O(n2). For R-

BIDIAG, we use the same number of flops as for BIDIAG; we
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Square (m = n) Tall & skinny (m=2, 000, 000, n=2, 000) Tall & skinny (m=1, 000, 000, n=10, 000)

Figure 3: Distributed memory performance of the multiple variants for the GE2BND and the GE2VAL algorithms, respectively

on the top and bottom row, on the miriel cluster. Grid data distributions are
√
nbnodes ×

√
nbnodes for square matrices,

and nbnodes × 1 for tall and skinny matrices. For the square case, solid lines are for m = n = 20, 000 and dashed lines for

m = n = 30, 000.

do not assess the absolute performance of R-BIDIAG, instead

we provide a direct comparison with BIDIAG.

C. Shared Memory

The top row of Figure 2 presents the performance of the

three configurations selected for our study of GE2BND. On the

top left, the square case perfectly illustrates the strengths and

weaknesses of each configuration. On small matrices, FLATTT

in blue and GREEDY in green illustrate the importance of

creating algorithmically more parallelism to feed all resources.

However, on large size problems, the performance is limited

by the lower efficiency of the TT kernels. The FLATTS

tree behaves at the opposite: it provides better asymptotic

performance thanks to the TS kernels, but lacks parallelism

when the problem is too small to feed all cores. AUTO is able

to benefit from the advantages of both GREEDY and FLATTS

trees to provide a significant improvement on small matrices,

and a 10% speedup on the larger matrices.

For the tall and skinny matrices, we observe that the R-

BIDIAG algorithm (dashed lines) quickly outperforms the

BIDIAG algorithm, and is up to 1.8 faster. On the small

case (n = 2, 000), the crossover point is immediate, and

both FLATTT and GREEDY, exposing more parallelism, are

able to get better performances than FLATTS. On the larger

case (n = 10, 000), the parallelism from the larger matrix

size allows FLATTS to perform better, and to postpone the

crossover point due to the ratio in the number of flops. In

both cases, AUTO provides the better performance with an

extra 100 GFlop/s.

On the bottom row of Figure 2, we compare our best

solutions, namely AUTO tree with BIDIAG for square cases

and with R-BIDIAG on tall and skinny cases, to the competi-

tors on the GE2VAL algorithm. The difference between our

solution and PLASMA, which is using the FLATTS tree, is not

as impressive due to the additional BND2BD and BD2VAL

steps which have limited parallel efficiency. Furthermore, in

our implementation, due to the change of runtime, we cannot

pipeline the GE2BND and BND2BD steps to partially overlap

the second step. However these two solutions still provide a

good improvement over MKL which is slower on the small

cases but overtakes at larger sizes. For such sizes, Elemental

and SCALAPACK are not able to scale and reach up a

maximum of 50 Gflop/s due to their highly memory bound

algorithm.

On the tall and skinny cases, differences are more em-

phasized. We see the limitation of using only the BIDIAG

algorithm on MKL, PLASMA and SCALAPACK, while our

solution and elemental keep scaling up with matrix size. We

also observe that MKL behaves correctly on the second test

case, while it quickly saturates in the first one where the

parallelism is less important. In that case, we are able to reach

twice the MKL performance.
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Figure 4: Study of the distributed weak scalability on tall and skinny matrices of size (80, 000 nbnodes)× 2, 000 on the first

row, and (100, 000 nbnodes) × 10, 000 on the second row. First column presents the GE2BND performance, second column

the GE2VAL performance, and third column the GE2VAL scaling efficiency.

D. Distributed Memory

a) Strong Scaling: Figure 3 presents a scalability study

of the three variants on 4 cases: two square matrices with

BIDIAG, and two tall and skinny matrices with R-BIDIAG.

For all of them, we couple high-level distributed trees, and

low-level shared memory trees. FLATTS and FLATTT config-

uration are coupled with a high level flat tree, while GREEDY

and AUTO are coupled with a high level GREEDY tree. The

configuration of the preQR step is setup similarly, except for

AUTO which is using the automatic configuration described

previously.

On all cases, performances are as expected. FLATTS, which

is able to provide higher efficient kernels, hardly behaves better

on the large square case; GREEDY, which provides better

parallelism, is the best solution out of the three on the first

tall and skinny case. We also observe the impact of the high

level tree: GREEDY doubles the number of communications

on square cases [12], which impacts its performance and

gives an advantage to the flat tree which performs half the

communication volume. Overall, AUTO keeps taking benefit

from its flexibility, and scales well despite the fact that local

matrices are less than 38 × 38 tiles, so less than 2 columns

per core.

When considering the full GE2VAL algorithm on Figure 3,

we observe a huge drop in the overall performance. This is

due to the integration of the shared memory BND2BD and

BD2VAL steps which do not scale when adding more nodes.

For the the square case, we added the upper bound that we

cannot beat due to those two steps. However, despite this limi-

tation, our solution brings an important speedup to algorithms

looking for the singular values, with respect to the competitors

presented here. Elemental again benefits from the automatic

switch to the R-BIDIAG algorithm, which allows a better

scaling on tall and skinny matrices. However, it surprisingly

reaches a plateau after 10 nodes where the performance stops

increasing significantly. Our solution automatically adapts to

create more or fewer parallelism, and reduces the amount of

communications, which allows it to sustain a good speedup

up to 25 nodes (600 cores).

b) Weak Scaling: Figure 4 presents a weak scalability

study with tall and skinny matrices of width n = 2, 000
on the first row, and n = 10, 000 on the second row2.

As previously, FLATTS quickly saturates due to its lack of

parallelism. FLATTT is able to compete with, and even to

outperform, GREEDY on the larger case due to its lower

communication volume. AUTO offers a better scaling and is

able to reach 10 TFlop/s which represents 400 to 475 GFlop/s

per node. When comparing to Elemental and SCALAPACK

on the GE2VAL algorithm, the proposed solution offers a

much better scalability. Both Elemental and SCALAPACK

suffer from their memory bound BIDIAG algorithm. With

the switch to a R-BIDIAG algorithm, Elemental is able to

provide better performance than SCALAPACK, but the lack of

scalability of the Elemental QR factorization compared to the

HQR implementation quickly limits the overall performance

of the GE2VAL implementation.

2Experiments for the n = 10, 000 case stop at 20 nodes due to the 32 bit
integer default interface for all libraries
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VII. CONCLUSION

In this paper, we have presented the use of many reduction

trees for tiled bidiagonalization algorithms. We proved that,

during the bidiagonalization process, the alternating QR and

LQ reduction trees cannot overlap. Therefore, minimizing the

time of each individual tree will minimize the overall time.

Consequently, if one considers an unbounded number of cores

and no communication, one will want to use a succession

of greedy trees. We show that BIDIAGGREEDY is asymptot-

ically much better than previously presented approaches with

FLATTS. In practice, in order to have an effective solution, one

has to take into account load balancing and communication,

hence we propose trees that adapt to the parallel distributed

topology (highest level tree) and enable more sequential but

faster kernels on a node (AUTO). We have also studied R-

bidiagonalization in the context of tiled algorithms. While R-

bidiagonalization is not new, it had never been used in the

context of tiled algorithms. Previous work was comparing

bidiagonalization and R-bidiagonalization in term of flops,

while our comparison is conducted in term of critical path

lengths. We show that bidiagonalization has a shorter critical

path than R-bidiagonalization, that this is the opposite for

tall and skinny matrices, and provide an asymptotic analysis.

Along all this work, we give detailed critical path lengths

for many of the algorithms under study. Our implementation

is the first parallel distributed tiled algorithm implementation

for bidiagonalization. We show the benefit of our approach

(DPLASMA) against existing software on a multicore node

(PLASMA, Intel MKL, Elemental and ScaLAPACK), and

on a few multicore nodes (Elemental and ScaLAPACK) for

various matrix sizes, for computing the singular values of a

matrix. Future work will be devoted to gain access to a large

distributed platform with a high count of multicore nodes,

and to assess the efficiency and scalability of our parallel

distributed BIDIAG and R-BIDIAG algorithms. Other research

directions are the following: (i) investigate the trade-off of

our approach when singular vectors are requested; a previous

study [22] in shared memory was conclusive for FLATTS and

no R-BIDIAG (square matrices only); the question is to study

the problem on parallel distributed platforms, with or without

R-BIDIAG, for various shapes of matrices and various trees;

and (ii) develop a scalable parallel distributed BND2BD step;

for now, for parallel distributed experiments on many nodes,

we are limited in scalability by the BND2BD step, since it

is performed using the shared memory library PLASMA on a

single node.
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