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Abstract— With the increasing sophistication in the use of
optimization algorithms such as deep learning on embedded sys-
tems, the convex optimization solvers on embedded systems have
found widespread use. This letter presents a novel linear solver
technique to reduce the run-time of convex optimization solver
by using the property that some parameters are fixed during
the solution iterations of a solve instance. Our experimental
results show that the run-time can be reduced by two orders
of magnitude.

Index Terms—Realtime embedded convex optimization solver,
KKT

I. INTRODUCTION

Recent advances in convex optimization [[1]] [2] have enabled
their use as realtime solvers for embedded systems [3] [4].
Embedded solvers come with certain features that can be ex-
ploited to reduce the complexity of the design. For instance, in
many cases, the embedded solvers only require a low accuracy.
One such example is the model predictive control (MPC),
where very low accuracy is needed to obtain acceptable control
performance [5]]. Another feature is that, for an embedded
solver, the structure of the problem does not change from one
solve to the next. For example, for a given problem instance
of Kalman filtering, an embedded solver perform many solves,
where the dimensions and structure of the system state, input
and output vectors, and steady-state error covariance matrix
are all fixed, and the system parameters remain unchanged
with each realtime solution iteration. Furthermore, the change
in the numerical values of the solver parameters between two
subsequent instances of the problem is usually small. The fixed
size and structure of the system provides an opportunity to
design and optimize the solver at the development time and
to significantly reduce the solve time.

To obtain high performance on the embedded system, recent
tools such as CVXGEN code generator [6] and ECOS [7]]
provide frameworks for realtime convex optimization solvers.
There are also some attempts in code generation for small-
sized basic linear algebra opeations like vector-matrix mul-
tiplication [8]. CVXGEN takes a high-level description of
the optimization problem, employs the CVX technique of
disciplined convex programming (DCP) [9] to ensure convex-
ity, and then generates a flat, and library-free C code. The
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generated code can be compiled into a high performance solver
for the specific problem family (e.g., all the matrices have
the same sparsity structure). Though CVXGEN solver obtains
a high performance that meets the strict realtime constraint
enforced on the solution time, the size of the problem is limited
to 100 or so variables for the code generator to successfully
generate a flat loop-free C code.

In DCP, a quadratic programming (QP) convex problem is
transformed into a standard form that seeks for the vector vari-
able v that minimizes the following optimization problem [10],

minimize (1/2)vTQu + ¢ 0

subject to Gv <h and Av =0,
where v,q € R", Q € S} = 0 (a square symmetric positive
semidefinite matrix), A € R™*", G € RP*"™, b ¢ R™, and
h € RP. At each iteration of the solve instance, most of the
time is spent solving a family of Karush Kuhn Tucker (KKT)
[2] linear system of equations Kz = ¢, whose coefficient
matrices K all have the following block structure:
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where (.)T denote the matrix transpose, I, € RP*? is the iden-
tity matrix, S = diag(s) € RP*? and Z = diag(z) € RP*P
are diagonal matrices, and s € R? and z € RP are vectors
representing the slack variables and inequality multipliers, re-
spectively, in the KKT condition [[11]]. The optimization solver
performs several iterations until a pre-determined accuracy or
the maximum number of iterations is reached.

To solve the linear system, CVXGEN first computes the
LDL" decomposition of the KKT matrix K, ie., PKP" =
LDLT [12], where P is a permutation maLriX, L a lower
triangular matrix with unit diagonals, and D is a diagonal
matrix. Then, the solution Z is computed through the sequence
of forward substitution, scaling, and backward substitution.

The current embedded optimization solvers, while good at
taking advantage of the structure of the problem family (e.g.
sparsity), fails to take advantage of the fact that several blocks
of the KKT matrix are fixed during the iterations of a given
solve instance. In most practical signal processing applica-
tions for embedded systems, such as linearizing pre-equalizer,
Kalman filtering, sliding window smoothing or estimation
[13], only the vectors g, h or b in @ change from one solve



instance to the next. These vectors only affect the right-hand-
side vector ¢ of the KKT linear system. In the online array
weight design for adaptive array signal processing [3]], only the
matrix G changes between the solve instances. In many other
problems of interests, only the diagonal block S~!Z changes
at each solve instance. This letter proposes to reduce the time
to solve the family of the KKT linear systems by exploiting
the fact that several blocks in the KKT matrix K are fixed
during the solution iterations of a given problem instance.

II. ALGORITHMS

We consider two types of changes in the KKT matrix for
the interior-point methods [[1]] [2]]: A) the change that occurs
at each iteration of a solve instance and B) the change that
persists across all the solution iterations in one solve instance.
Hence, our linear solver consists of three phases: 1) off-line
setup which is done once for all the solve instances of a
problem family, 2) off-line update which is done once for each
solve instance, and 3) on-line factorization and solve which
are done once at each iteration. To avoid factorizing singular
blocks, like CVXGEN, we regularize K using the standard
techique [11].

A. Fixed Q, A, G and variable S™'Z

Between the solution iterations, it is often that only the
diagonal block S~!Z changes. We take advantage of this
property and amortize the cost of the operations that involve
@, A and G over all the solve instances. For this, we solve an
equivalent, implicitly-reordered, linear system, Kz = b, i.e.,
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We emphasize that the matrix is not explicitly reordered, but
we factorize and solve the linear system in the order given
in (@) as follows:

a) Initial off-line setup: As part of our off-line setup, we
partially factorize the matrix such that K = LDLT, where
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For this partial factorization, the last 2-by-2 trailing blocks of
L and D are not yet fully factorized, but will be factorized in
the on-line factorization phase. Therefore, neither L nor D are
yet in its respective full lower triangular nor diagonal form.
We compute this partial LDLT factorization as follows:

1) We compute the LDLT factorization of Q) such that Q =
LiiDiaLy .

2) We compute the off-diagonal blocks Lo 1 and L4 ; in the
first block column of L such that Ly y := A(Dy L} ;)~*
and L471 = G(DLlL’{_’l)il.

3) We compute the LDLT factorization of the second diag-
onal block Ky 5 such that K5 = L 2D L3 5, where
K2,2 = —(L2,1D1,1L;1)'

We put ~ on top of the block to distinguish it from the
corresponding block of the original matrix K.

4) We compute the off-diagonal block L4 in the second
block column of L such that Ly := Ky (D2 2L3,)"",
where K4,2 = —(L4’1D1,1L;1)

5) We compute the last diagonal block C' of D such that
C = —(L4,1D171LZ)1) — (L4,2D272L£)2).

It is not shown to simplify the notations, but the LDLT factor-
ization of each diagonal block is computed with permutation.

b) On-line Factorization: At each iteration of the solve in-
stance with a new S~1Z, we can factorize the last two
diagonal blocks of D in @), i.e.,

(slzfp )z( L, | 0 )(Dg,g )(Ile.s)
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where
D373 = Sz
{L4,3 = Di3=2"'5,

and C = Ly 4Dy 4L}, with C := C — (Z~1S). Since both Z
and S are diagonal, the most computationally expensive part
of the on-line factorization is the LDLT factorization of C. In
other words, our on-line factorization only factorizes a matrix
of the dimension p, and this algorithm allows us to solve the
realtime convex optimization where p, instead of n 4+ m + 2p,
is the largest dimension of the matrix that must be factorized
within the realtime constraint.

In this letter, we only consider the QP problem, i.e., diago-
nal S~1Z. However, the algorithm can be trivially extended to
a more general case such as the second order cone program-
ming (SOCP) [2], where S~'Z is replaced with a symmetric
positive definite scaling matrix computed from the primal and
dual variables (such as S—1/2Z5-1/2),

c) On-line Solve: With the complete LDL” factorization of
K, the solution to the linear system can be computed through
the forward and backward substitutions.

B. Fixed Q), A and variable G, S™1Z

In some cases, the submatrix G changes between the solve
instances, but stays fixed during the solution iterations of one
solve instance. In such cases, we introduce an intermediate
off-line update step, where we only recompute the steps that
use G. The cost of this intermediate step is amortized over all
the solution iterations of the solve instance.

a) Initial off-line setup:

1) We compute the LDLT factorization of @ such that Q =
Ly1Dyg LT .

2) We compute the off-diagonal block L5 ; in the first block
column of L such that Ly := A(Dy1 LT ;)™



TABLE I
NUMBER OF FLOATING POINT OPERATIONS NEEDED FOR FACTORIZATION.

Fixed Q, A, G
Off-line setup

Fixed Q and A

LDLT factor Q
Compute L2 1
LDLT factor K32

n3/3
nm

m2n +m3/3

Compute Lg4,1 nzp
Compute Ly 2  2pmn + m?p Compute H m?2n
Compute C p?(n +m)

Off-line update

Compute L4 1 n2p
Compute Ly 2  2pmn
Compute C p?(n + m)
On-line factorization
LDLT factor C  p3/3

3) \ye factorize the second diaggnal block I~(272 such that
Koo = Ly3Dy oLy o, where Koo := —(L21D1,1Lo1)

4) We partially compute the off-diagonal block in the second
block column of L, i.e., H := =Dy 1L} (D3 2L22)"".

b) Off-line update: To solve each convex optimization prob-
lem with a new submatrix G, we complete the off-line
factorization as follows:

1) We compute the off-diagonal block L, ; in the first block
column of L such that Ly, := G(Dy L] ;)"

2) We compute the off-diagonal block L4 o in the second
block column of L such that Ly := L4 1 H.

3) We compute the last block C' of D such that C' :=
—(Ly1D11Ly,) — (LaaDapLy ).

c) On-line Factorization: Finally, at each iteration with the
new diagonal submatrix S~!Z, we can cheaply perform the
on-line factorization and solve as in Section

To summarize our two structure-aware linear solvers, Table
lists the required number of floating point operations at each
step of factorization (in non-complex precision).

III. IMPLEMENTATION

For our experiments, we focused on the dense blocks @, A,
and G, and our implementation is based on LAPACK [14]. For
example, to factorize the diagonal blocks, we used LAPACK’s
dsytrf subroutine that dynamically permutes the matrix to
ensure the numerical stability. In contrast, the CVXGEN’s
generated solver uses static permutation and regularization to
avoid the small diagonal entries through small diagonal shifts
[6]]. Compared to the dynamic pivoting, the static pivoting may
be less stable or accurate, but it can be more efficient and leads
to the fixed factorization time.

Unfortunately, LAPACK does not provide a flexible enough in-
terface to take the full advantage of the symmetry in the KKT
matrix. In particular, LAPACK has the subroutine dsytrs to
apply (LDL")~! using the LDL”" factorization computed by
dsytrf, but it does not have a subroutine to apply L' or
D~ alone, which is needed, for example, at Step 2 of the

off-line setup in Section Hence, we compute the non-
symmetric LDU factorization of the KKT matrix, K = LDU,
where L and D have the same block structures as those
in @), and U has the same structure as that of LT. With
this implementation, at Step 1 of the initial off-line setup in
Section welet Ly =1,, D1y = I,, and Uy; = Q,
and then, we use dsytrf to compute the LDLT factorization
of Q. Then, at Step 2, we compute, Lo = AUl_,l1 and
Lyy = GUi{, while Uyp = AT and Uy = G'. We
use LAPACK’s dsytrs to apply U;; based on the LDLT
factorization of Q.

Similary, at Steps 3, we set Loy = I,,, Do = I, and
Uz = ]?2,2, where ]?2’2 := —(L2,1U21), and we factorize
1?272 using dsytrf. Then, at Step 4, we compute, Ly o :=
—(L4’1U1_’2)U2T21 and Us 4 := Ly 1U; 4. Finally, at Step 5, we
compute C .= —(L471U1’4) — (L4’2U2,4).

IV. EXPERIMENTS

We conducted all of our experiments on MacBook Pro®,
using just one core of 2.7 GHz Intel® Core™ i7. Our codes
were compiled using gcc of Apple® LLVM version 5.1 with
the optimization flag —Os. For our experiments, we linked
our codes to BLAS and LAPACK provided in the Apple’s
Accelerate Framework [15]], but on any other embedded sys-
tem, it could be statically linked to open-source reference
implementations of BLAS [16] and LAPACK [14].

A. Results with fixed Q, A, G and variable S~'Z

The performance results in Table [II| correspond to the largest
convex optimization problem of the form (T)), that CVXGEN
could handle. The KKT matrix is of dimension 131, and the
respective dimensions of the submatrices @, Z, GG, and A are
95 x 95, 12 x 12, 95 x 12, and 95 x 12.

For this particular dimension of the matrix, the CVXGEN’s
generated solver was slower than calling LAPACK’s non-
symmetric or symmetrAic solver, dgesv or dsysv, respec-
tively, on the matrix K, even though LAPACK ignores the
structure of the KKT matrix and performs dynamic pivoting.

Since LAPACK interface does not allow our off-line factoriza-
tion to take full advantage of the symmetry of the KKT matrix,
it was slower than the LAPACK’s symmetric dsysv solver.
However, it was faster than the LAPACK’s non-symmetric
dgesv solver or the CVXGEN’s generated solver. More
importantly, the cost of this initial off-line setup is amortized
over all the solve instances, and by taking advantage of
the fixed structure, our on-line factorization was significantly
faster than the CVXGEN’s factorization with speedups of
about 131.3.

In Table [l we also show the results when we consider the
submatrix @ to be diagonal. Since the submatrix ¢) does not
have to be factorized, compared to the case of a dense @,
our off-line factorization obtained a greater speedup over the
CVXGEN’s factorization.



TABLE 11
RUN TIME (IN SECONDS) FOR SOLVING KKT LINEAR SYSTEM.

Technique || Factor Solve
CVXGEN 5.25-10~% 1.70-107°
LAPACK (dgesv) 3.03-10-% 220-10~°
LAPACK (dsysv) 1.78-10~%*  1.90-10~5
fixed Q,A,G (dense Q):

initial off-line setup 1.85-10~4

on-line factor and solve 4.00-10"% 2.30-107°
fixed Q,A,G (diagonal Q):

initial off-line setup 3.90-107°

on-line factor and solve || 4.00-10~% 6.00-10~
fixed Q,A (dense Q):

initial off-line setup 1.21-10~4

off-line update 7.00-1072

on-line factor and solve 4.00-10=% 2.30-10"6
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Fig. 1. Processing rate and relative performance with respect to CVXGEN

B. Results with fixed ), A and variable G, S™'Z

The last few rows of Table [[I] show the performance of
our solver when only the submatrix G changes between the
instances of the solve. Even with the extra operations required
for the non-symmetric factorization, by taking advantage of the
structure, our on-line update was faster than the CVXGEN’s
factorization by a factor of about 7.5.

C. Scaling with the problem size

We compare the performance of our solver with that of
CVXGEN, using a set of test problems of varying sizes; the
KKT matrix of dimension from 13 (n 10, m = 1, and
p = 1) to 208 (n = 160, m = 16, and p = 16). Figure [I]
plots the processing rates (the number of solves per seconds)
and the relative performance of various schemes. For the KKT
matrix with its dimension greater than 52 (n = 40, m = 4, and
p = 4), both of our solvers performed better than CVXGEN’s.
For problems with the matrix size larger than 130 (n = 100,
m = 10, and p = 10), CVXGEN could not generate the
necessary code.

Figure [T] also shows that the relative performance of our two
solvers, compared with CVXGEN, grows with the problem
size, reaching to about 24 and 12 for the matrix size of 130
(n =100, m = 10, and p = 10).

V. CONCLUSION

In this letter, we proposed techniques to reduce the time to
factorize the KKT matrices for solving a realtime convex
optimization on an embedded system. This technique takes
advantage of the fact that many blocks of the KKT matrix
do not change during the iterations of one solve instance.
Our experimental results have shown that compared to the
CVXGEN’s generated solver, the factorization time can be
reduced by two orders of magnitude.
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