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Abstract
A current trend in high-performance computing is to decompose a large linear algebra problem
into batches containing thousands of smaller problems, that can be solved independently, before
collating the results. To standardize the interface to these routines, the community is developing
an extension to the BLAS standard (the batched BLAS), enabling users to perform thousands
of small BLAS operations in parallel whilst making efficient use of their hardware. We discuss
the benefits and drawbacks of the current batched BLAS proposals and perform a number
of experiments, focusing on a general matrix-matrix multiplication (GEMM), to explore their
affect on the performance. In particular we analyze the effect of novel data layouts which,
for example, interleave the matrices in memory to aid vectorization and prefetching of data.
Utilizing these modifications our code outperforms both MKL1 and CuBLAS2 by up to 6 times
on the self-hosted Intel KNL (codenamed Knights Landing) and Kepler GPU architectures, for
large numbers of double precision GEMM operations using matrices of size 2× 2 to 20× 20.
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1 Introduction

Over the past few decades there has been a tremendous amount of community effort targeting
the design and implementation of efficient linear algebra software. The main focus of this
drive has been to solve larger problems in less time. As a result, numerous libraries have been
designed to take advantage of advances in computer architecture and exploit the parallelism

1https://software.intel.com/en-us/intel-mkl
2http://docs.nvidia.com/cuda/cublas
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both within a single node (using hardware accelerators), and between nodes (communicating
using MPI, for example).

In an attempt to utilize highly parallel computing resources more efficiently, there is a current
trend towards splitting large linear algebra problems into thousands of smaller subproblems that
can be solved concurrently [2]. One example of this is given by multifrontal solvers for sparse
linear systems [7]. Many popular linear algebra libraries such as Intel MKL and NVIDIA
CuBLAS have begun to provide limited support for this approach but no complete set of linear
algebra routines operating on batches of small matrices is available.

The solution to this problem is to develop a new standard set of routines for carrying
out linear algebra operations on batches of small matrices, building on the well-known Basic
Linear Algebra Subproblems (BLAS) standard [5], [6], [10]. The idea behind the batched BLAS
(BBLAS) is to perform multiple BLAS operations in parallel on many small matrices, making
more efficient use of the hardware than a simple OpenMP for loop would allow. For example,
if we consider a general matrix-matrix multiplication (GEMM) operation over a batch of N
matrices then we would like to compute, in parallel,

Ci ← αiAiBi + βiCi, i = 1 : N. (1)

In this example we might keep the sizes of the matrices and the values of αi and βi constant
throughout the entire batch or allow them to vary, depending upon the application that we
have in mind.

One particular application which can benefit dramatically from performing many small ma-
trix multiplications in parallel is deep learning: the batched GEMM functionality in vendor
libraries is already being utilized in popular machine learning libraries such as TensorFlow [1]
and Theano [4]. Further examples of applications where the solution of many small problems
are required include domain decomposition [3], the rendering of 3D graphics in web browsers [8],
metabolic networks [9], astrophysics [12], matrix-free finite element methods [11], and the so-
lution of separable elliptic equations [14].

Currently, libraries that implement BBLAS functionality use a relatively simple memory
layout (explained in section 2) which generally gives suboptimal performance. One of our
primary goals in this paper is to investigate a number of potential optimizations to increase
the performance of BBLAS routines for small matrices on modern parallel architectures. We
explore, amongst other things, the effect of different API designs and memory layouts on per-
formance. Currently, there is no standard interface for BBLAS operations and no complete
implementation of batched BLAS routines is available. Intel MKL has support for batched
GEMM computation whilst NVIDIA CuBLAS supports batched GEMM and triangular solve
(TRSM), plus some batched LAPACK routines; but these libraries do not share the same API.

The remainder of this article is organized as follows. In section 2 we outline the different APIs
for BBLAS and perform some experiments to compare their associated overheads. Section 3
contains discussion and experiments to determine the effect that the memory layout has on the
performance of BBLAS operations and the transfer to and from hardware accelerators, which
are an important consideration when designing an efficient API. In section 4 we focus on the
performance of a novel data layout, which interleaves the batches of matrices in memory, on
both GPUs and the self-hosted Intel KNL. Concluding remarks are given in section 5.

2 Batched BLAS

Two main approaches can be taken to allocate computational resources to batched BLAS oper-
ations. First, we could compute each BLAS operation in order and allocate all available cores
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to each subproblem (which constitutes a fine-grained approach). The second (coarse-grained)
approach allocates a single core to each subproblem, but solves all subproblems in parallel.
When using the second approach all the cores work independently on their own input data.

Clearly, since BBLAS focuses on very small matrix operations, the second approach is to be
preferred. Numerous small matrices can fit in the cache which allows each core to work asyn-
chronously on the subproblems: using fine-grained parallelism forces the cores to synchronise
after each subproblem has been computed.
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Figure 1: Performance of current libraries implementing batched DGEMM on batches of 10, 000
matrices. All the matrices are square with the size denoted on the x-axis. The performance of
MKL and OpenMP are very similar and cannot be easily distinguished.

In Figure 1 we perform a comparison of the current performance that can be obtained
using Intel MKL, an OpenMP for loop, CuBLAS, and MAGMA3 as a reference point for our
future experiments. In particular we show the performance of computing a batch of 10,000
matrix-matrix multiplications in double precision arithmetic (DGEMM). The machine used
in this experiment is a NUMA node with 2 sockets, using Intel Xeon CPU E5-2650 v3 chips
(2.3GHz, Haswell architecture), for a total of 20 cores. The memory is interleaved between the
two processors4. Both CuBLAS and MAGMA are run on a Kepler K40c GPU. Interestingly
the OpenMP loop and Intel MKL have almost identical performance, whilst the two GPU
implementations vary significantly.

All the matrices are chosen to have elements taken from a random uniform distribution
on the interval [0, 1]. Note that throughout all of our experiments we ensure the cache of
each processor is flushed before every invocation of a BBLAS operation, to avoid obtaining
misleading performance results: by neglecting this step we can obtain performance results up
to 4 times faster than those reported here in the cases where the data fits into cache memory.
This is consistent with observations by Whaley and Castaldo [15].

Next, we briefly introduce two competing APIs for performing BBLAS operations being
discussed within the linear algebra community. The APIs make a distinction between batches
where all matrices are of the same size (called a “fixed batch”) and batches where the matrices
can vary in size (a “variable batch”). The reason for this distinction is that, in the fixed batch
case, there are fewer parameters to check before computation can begin. A more detailed

3http://icl.cs.utk.edu/magma/
4Run with “numactl --interleave=all”.
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to each subproblem (which constitutes a fine-grained approach). The second (coarse-grained)
approach allocates a single core to each subproblem, but solves all subproblems in parallel.
When using the second approach all the cores work independently on their own input data.

Clearly, since BBLAS focuses on very small matrix operations, the second approach is to be
preferred. Numerous small matrices can fit in the cache which allows each core to work asyn-
chronously on the subproblems: using fine-grained parallelism forces the cores to synchronise
after each subproblem has been computed.
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Figure 1: Performance of current libraries implementing batched DGEMM on batches of 10, 000
matrices. All the matrices are square with the size denoted on the x-axis. The performance of
MKL and OpenMP are very similar and cannot be easily distinguished.

In Figure 1 we perform a comparison of the current performance that can be obtained
using Intel MKL, an OpenMP for loop, CuBLAS, and MAGMA3 as a reference point for our
future experiments. In particular we show the performance of computing a batch of 10,000
matrix-matrix multiplications in double precision arithmetic (DGEMM). The machine used
in this experiment is a NUMA node with 2 sockets, using Intel Xeon CPU E5-2650 v3 chips
(2.3GHz, Haswell architecture), for a total of 20 cores. The memory is interleaved between the
two processors4. Both CuBLAS and MAGMA are run on a Kepler K40c GPU. Interestingly
the OpenMP loop and Intel MKL have almost identical performance, whilst the two GPU
implementations vary significantly.

All the matrices are chosen to have elements taken from a random uniform distribution
on the interval [0, 1]. Note that throughout all of our experiments we ensure the cache of
each processor is flushed before every invocation of a BBLAS operation, to avoid obtaining
misleading performance results: by neglecting this step we can obtain performance results up
to 4 times faster than those reported here in the cases where the data fits into cache memory.
This is consistent with observations by Whaley and Castaldo [15].

Next, we briefly introduce two competing APIs for performing BBLAS operations being
discussed within the linear algebra community. The APIs make a distinction between batches
where all matrices are of the same size (called a “fixed batch”) and batches where the matrices
can vary in size (a “variable batch”). The reason for this distinction is that, in the fixed batch
case, there are fewer parameters to check before computation can begin. A more detailed

3http://icl.cs.utk.edu/magma/
4Run with “numactl --interleave=all”.

3



498	 Jack Dongarra et al. / Procedia Computer Science 108C (2017) 495–504The Design and Performance of Batched BLAS Relton, Valero, Zounon et. al

Table 1: Details of the architectures used throughout our experiments

Platform Xeon E5-2650 v3 Xeon Phi KNL 7250 Kepler K40c
Cores 2×10 (2.3GHz) 68 (1.40GHz) 2880
On-chip Memory L1 32KB (per core) L1 32KB (per core) SM 16/48KB (per MP)

L2 256KB (per core) L2 512KB (per core) L1 48/16KB (per MP)
L3 25MB (per socket) MCDRAM 16GB L2 1536KB (unified)

Main Memory 32GB DDR4 384GB DDR4 12GB GDDR5
Bandwidth 64 GB/s 115.2 GB/s 288 GB/s
Compiler icc 16.0.0 icc 16.0.3 nvcc 7.5
BLAS MKL 11.3 MKL 11.3 CuBLAS 7.0

explanation of each API, along with the corresponding calling sequences for both fixed and
variable batch operations, can be found in [13].

The first API clearly distinguishes between fixed and variable batches by creating separate
functions for the different batch types. Since fixed batches require less parameters the main
benefit of this API is its simplicity, especially for the commonly used fixed batch operations.
The major drawback is that a separate function is required for variable batch computation,
exposing users to twice the number of library functions.

The second API, which we call the “group-based API”, takes a different approach. This
API is designed to facilitate the computation of multiple fixed batches from within one function
call. Each fixed batch is called a “group” and we can operate on multiple groups using just
one function call. Current versions of Intel MKL use this approach in their batched GEMM
routines. The main problem with this interface is that it makes both fixed and variable batch
operations more difficult. However, it could be useful for the situation where multiple fixed
batch operations are required. It is not yet clear how much this would differ from making
multiple calls to the fixed batch routine from the previous API.

2.1 Experiments using the group-based API

In this subsection we perform a number of experiments in order to clarify what benefit might
be gained from adopting the group-based API as opposed to making multiple calls to a routine
designed for fixed batches. Here we assume that the matrices have already been sorted into
groups. The experiments are based upon those shown by Sarah Knepper (Intel) at the recent
workshop on BBLAS, held at the University of Tennessee5. All the experiments in this sub-
section are performed on a NUMA architecture, the details of which can be found in the first
column of Table 1.

The experiment in Figure 2 compares the difference in performance between running a batch
DGEMM using one group of 10, 000 matrices versus using 10, 000 groups with one matrix in
each, for a variety of matrix sizes. The Intel MKL function dgemm batch is used to perform
both of these operations. The idea of this experiment is to compare the best and worst possible
scenarios for the group interface: when treating the computation as 10, 000 groups with one
matrix in each, the routine needs to perform more argument checks than when everything is
collated in a single group. The reported Gflop rates are averaged over 10 runs.

5PDF slides available at http://www.netlib.org/utk/people/JackDongarra/WEB-PAGES/

Batched-BLAS-2016/. Accessed on 9th February 2017.
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Figure 2: Performance of the MKL batched DGEMM on batches of 10, 000 matrices using
either one group of 10, 000 (1× 10, 000) or 10, 000 groups of one (10, 000× 1). All the matrices
are square with the size denoted on the x-axis.

We see that the performance increases with the matrix size and that, generally, running the
computation using just one group is slightly faster due to the reduced number of parameter
checks. In most cases the difference in performance between the two routines is not very dra-
matic: the mean difference between the performance of the two approaches is 7.7%. Remember
that running 10,000 groups containing one matrix each is essentially the worst possible case for
the group API so that, with a less dramatic difference between the two groupings, we would
expect the performance difference to be negligible.

However, we note that the time to sort the matrices into groups was not included in this
experiment. If the matrices are generated at random and need to be fully sorted, then creating
the groups can take longer than the computation itself. Therefore, to take advantage of the
this API, applications should be revisited to generate matrices that can naturally be assigned
to the different groups.

3 Impact of the Data Layout

Whilst we have discussed some of the features of the different APIs, another major issue is the
way that the matrices are stored in memory. As our experiments will show, the memory layout
is a critical part of obtaining good performance for BBLAS routines on modern hardware.

There are three main approaches to the data layout that we have identified. These are the
pointer-to-pointer (P2P) layout, the “strided” data layout, and the “interleaved” layout.

The P2P data layout involves passing each BBLAS function arrays of pointers where each
element of an array is a pointer to a memory location containing a matrix. The main benefit
of this approach is its flexibility: it is very easy to add more matrices into the batch by simply
appending their respective memory locations onto the array of pointers. However, the major
drawback of this approach is that allocating memory for each matrix separately means the data
will be scattered throughout the RAM. When performing the computation this means that the
CPU will need to load memory from many different locations which is much slower than loading
contiguous memory. This difference in memory access speed is much more apparent when we
consider offloading computation to hardware accelerators. In this case, since the matrices are
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spread throughout the RAM, they must be sent separately which incurs a (comparatively large)
latency cost.

One solution to this problem is to use the strided memory layout. For storing the matrices
Ai in a fixed batch DGEMM, this involves creating one large array containing all the Ai

in contiguous memory along with a strideA parameter which gives the number of memory
locations between the matrices. For example, if ptr was a variable pointing to the first element
of A1 then ptr + strideA would be a pointer to the first element of A2 and, in general, ptr
+ (i-1)*strideA would point to the first element of Ai.

The strided memory layout stores the matrices in contiguous memory and is therefore more
efficient when allocating, loading into the CPU cache, and offloading to hardware accelerators
as illustrated in Figure 3. However, we have lost the flexibility of the P2P approach. In order
to add extra matrices to our batch we need to allocate an additional large block of contiguous
memory locations and copy all the data across, which can be extremely expensive relative to
the actual computation time.
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Figure 3: Evaluation of the impact of the P2P and strided memory layouts on memory allocation
(and data transfer for accelerators) on three architectures: NVIDIA GPU, Intel Xeon and Intel
KNL. In each case, we use a fixed batch of 10,000 small matrices ranging from 2× 2 to 32× 32.

Alternatively we might consider a memory layout that consists of “interleaving” the matrices
in memory. In this case we create one large array and fill it as follows. Firstly, store the first
element of each matrix in turn, followed by the second element of each matrix etc. To illustrate
this, if we have a batch of three matrices

D =

[
d11 d12
d21 d22

]
, E =

[
e11 e12
e21 e22

]
, F =

[
f11 f12
f21 f22

]
,

and work in column major order, then the strided and interleaved memory layouts will store
the elements as follows.

• Strided:
[d11, d21, d12, d22, e11, e21, e12, e22, f11, f21, f12, f22]

• Interleaved:
[d11, e11, f11, d21, e21, f21, d12, e12, f12, d22, e22, f22]

From this we can see that the interleaved memory layout is simply a permutation of the
strided memory layout. The reason that the interleaved format is interesting is that it may aid in
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utilizing vectorization for very small matrices, a key component in obtaining high-performance
in modern multi(many)-core architectures. For example, if the matrices are of size 2 × 2 but
the length of the vector units is 8 double precision numbers, as in the self-hosted Intel KNL,
then the strided and P2P memory layouts will not fill the vector units. By comparison, the
interleaved memory layout can work on 8 matrices simultaneously to fill the vector units in each
clock cycle. The current trend is for SIMD units to grow wider (e.g. the AVX-512 instruction
set on Intel KNL), so maximizing vectorization is critical to obtaining good performance.

One drawback to the interleaved approach is the additional complexity of the format. This
means that either the programmer must interleave their matrices manually—requiring signifi-
cant code refactoring—or the software library automatically converts matrices in P2P format
to interleaved format for performance gains, which costs both time and extra memory. In the
next section we start all experiments from the P2P format and convert matrices into inter-
leaved format within our routines: excluding the cost of this conversion makes our routines
approximately twice as fast.

4 Interleaved data layout performance

As mentioned previously, the main motivation for considering the interleaved memory layout
was to aid vectorization, and therefore performance, for small matrices. In this section we
perform experiments to substantiate that claim, using a NUMA node with 20 CPU cores, a
self-hosted Intel KNL with 68 CPU cores, and a Kepler K40c GPU.6 Further detail on these
architectures is given in Table 1.

We will use two versions of the interleaved data format in our comparisons, both parallelized
for CPU cores using OpenMP. The first version, as explained in the previous section, stores
the first element of each matrix followed by the second element etc. One issue is that, for large
batch sizes, the machine needs to make large jumps in memory to access the different elements
of the matrices (leading to cache misses). For example, moving from the first to the second
element of a matrix in the batch requires jumping batch count memory locations, which can
hinder the overall performance. We will refer to this “fully interleaved” approach as Intl.

To alleviate the impact of the jumps in memory we also use a “block interleaved” approach.
In this memory layout we allocate one large chunk of memory and begin by interleaving the
first k matrices, where the block size k is a tunable parameter. We then interleave the next k
matrices in the next block of consecutive memory and so on, until all matrices have been stored.
If batch count is not a multiple of k then there will be a small amount of unused memory at the
end of the final block. This is merely another permutation of the interleaved (and hence strided)
memory layouts which attempts to balance the vectorization of the interleaved approach with
the smaller memory jumps required in the strided memory layout. More detail on choosing the
optimal block size is described separately for the Intel KNL and GPU architectures later in this
section. This approach will be referred to as BlkIntl.

For each architecture we compare the two interleaved memory approaches to the P2P mem-
ory layouts. We compare the performance of each approach by computing a batch of 10,000
matrix-matrix multiplications. We will focus firstly on the NUMA node architecture. For the
Intl approach we use OpenMP to loop over the different matrices in the batch meanwhile, for
the BlkIntl approach, we use OpenMP to loop over the blocks, allocating one core to each
block. The optimal block size k will likely depend on the number of cores and the memory

6The interleaved DGEMM code used to run these experiments can be found at https://www.github.

com/srelton/bblas_interleaved and https://github.com/pedrovalerolara/CUDA_BATCH_DGEMM_INTERLEAVED

for Xeon Phi and GPU implementations, respectively.
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spread throughout the RAM, they must be sent separately which incurs a (comparatively large)
latency cost.

One solution to this problem is to use the strided memory layout. For storing the matrices
Ai in a fixed batch DGEMM, this involves creating one large array containing all the Ai

in contiguous memory along with a strideA parameter which gives the number of memory
locations between the matrices. For example, if ptr was a variable pointing to the first element
of A1 then ptr + strideA would be a pointer to the first element of A2 and, in general, ptr
+ (i-1)*strideA would point to the first element of Ai.

The strided memory layout stores the matrices in contiguous memory and is therefore more
efficient when allocating, loading into the CPU cache, and offloading to hardware accelerators
as illustrated in Figure 3. However, we have lost the flexibility of the P2P approach. In order
to add extra matrices to our batch we need to allocate an additional large block of contiguous
memory locations and copy all the data across, which can be extremely expensive relative to
the actual computation time.
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Figure 3: Evaluation of the impact of the P2P and strided memory layouts on memory allocation
(and data transfer for accelerators) on three architectures: NVIDIA GPU, Intel Xeon and Intel
KNL. In each case, we use a fixed batch of 10,000 small matrices ranging from 2× 2 to 32× 32.

Alternatively we might consider a memory layout that consists of “interleaving” the matrices
in memory. In this case we create one large array and fill it as follows. Firstly, store the first
element of each matrix in turn, followed by the second element of each matrix etc. To illustrate
this, if we have a batch of three matrices

D =

[
d11 d12
d21 d22

]
, E =

[
e11 e12
e21 e22

]
, F =

[
f11 f12
f21 f22

]
,

and work in column major order, then the strided and interleaved memory layouts will store
the elements as follows.

• Strided:
[d11, d21, d12, d22, e11, e21, e12, e22, f11, f21, f12, f22]

• Interleaved:
[d11, e11, f11, d21, e21, f21, d12, e12, f12, d22, e22, f22]

From this we can see that the interleaved memory layout is simply a permutation of the
strided memory layout. The reason that the interleaved format is interesting is that it may aid in
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utilizing vectorization for very small matrices, a key component in obtaining high-performance
in modern multi(many)-core architectures. For example, if the matrices are of size 2 × 2 but
the length of the vector units is 8 double precision numbers, as in the self-hosted Intel KNL,
then the strided and P2P memory layouts will not fill the vector units. By comparison, the
interleaved memory layout can work on 8 matrices simultaneously to fill the vector units in each
clock cycle. The current trend is for SIMD units to grow wider (e.g. the AVX-512 instruction
set on Intel KNL), so maximizing vectorization is critical to obtaining good performance.

One drawback to the interleaved approach is the additional complexity of the format. This
means that either the programmer must interleave their matrices manually—requiring signifi-
cant code refactoring—or the software library automatically converts matrices in P2P format
to interleaved format for performance gains, which costs both time and extra memory. In the
next section we start all experiments from the P2P format and convert matrices into inter-
leaved format within our routines: excluding the cost of this conversion makes our routines
approximately twice as fast.

4 Interleaved data layout performance

As mentioned previously, the main motivation for considering the interleaved memory layout
was to aid vectorization, and therefore performance, for small matrices. In this section we
perform experiments to substantiate that claim, using a NUMA node with 20 CPU cores, a
self-hosted Intel KNL with 68 CPU cores, and a Kepler K40c GPU.6 Further detail on these
architectures is given in Table 1.

We will use two versions of the interleaved data format in our comparisons, both parallelized
for CPU cores using OpenMP. The first version, as explained in the previous section, stores
the first element of each matrix followed by the second element etc. One issue is that, for large
batch sizes, the machine needs to make large jumps in memory to access the different elements
of the matrices (leading to cache misses). For example, moving from the first to the second
element of a matrix in the batch requires jumping batch count memory locations, which can
hinder the overall performance. We will refer to this “fully interleaved” approach as Intl.

To alleviate the impact of the jumps in memory we also use a “block interleaved” approach.
In this memory layout we allocate one large chunk of memory and begin by interleaving the
first k matrices, where the block size k is a tunable parameter. We then interleave the next k
matrices in the next block of consecutive memory and so on, until all matrices have been stored.
If batch count is not a multiple of k then there will be a small amount of unused memory at the
end of the final block. This is merely another permutation of the interleaved (and hence strided)
memory layouts which attempts to balance the vectorization of the interleaved approach with
the smaller memory jumps required in the strided memory layout. More detail on choosing the
optimal block size is described separately for the Intel KNL and GPU architectures later in this
section. This approach will be referred to as BlkIntl.

For each architecture we compare the two interleaved memory approaches to the P2P mem-
ory layouts. We compare the performance of each approach by computing a batch of 10,000
matrix-matrix multiplications. We will focus firstly on the NUMA node architecture. For the
Intl approach we use OpenMP to loop over the different matrices in the batch meanwhile, for
the BlkIntl approach, we use OpenMP to loop over the blocks, allocating one core to each
block. The optimal block size k will likely depend on the number of cores and the memory

6The interleaved DGEMM code used to run these experiments can be found at https://www.github.

com/srelton/bblas_interleaved and https://github.com/pedrovalerolara/CUDA_BATCH_DGEMM_INTERLEAVED

for Xeon Phi and GPU implementations, respectively.
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Figure 4: Performance results for batched DGEMM using a batch of 10, 000 square matrices
on a NUMA node.

hierarchy so, for each invocation of the algorithm presented below, we will tune the block size
to give the optimal performance.

We compare the two interleaved memory formats to two implementations using the P2P
memory layout. The first P2P memory layout is Intel MKL’s cblas dgemm batch function
using the group-based API; whilst the second is a simple for loop over the batch of matrices
(using OpenMP and single threaded cblas dgemm) which uses a single-core to compute each
DGEMM operation. We will refer to these approaches as MKL and OMP, respectively.

Figure 4a shows the results of this experiment. We see that the Intl approach is better
than MKL and OMP for 2×2 and 3×3 matrices but quickly hits a limit of 2.5 GFlop/s. The large
jumps in memory needed to access different elements of the matrices are the cause of this limit.
Meanwhile the BlkIntl approach is superior to MKL and OMP for matrices until size 12 × 12.
Furthermore, in Figure 4b we show the effect of the block size k on BlkIntl for matrices of size
2× 2, 4× 4, and 8× 8. Whilst the block size has little impact on the performance for matrices
of size 2 × 2, we can see that it has a significant impact for larger matrix sizes and must be
tuned carefully depending on the architecture and matrix size. In general, over all matrix sizes,
we typically 72 and 168 to be the optimal block sizes.

The next architecture we consider is the Intel KNL using the high-bandwidth MCDRAM.
As before, we use OpenMP to loop over the matrices in the Intl approach and to loop over
each block in the BlkIntl approach. We found that 80 and 152 were often the optimal block
sizes, which are fairly similar to those seen in the NUMA architecture. We compare against
MKL and OMP as described in the previous architecture.

The performance that we obtain is given in Figure 5a. For 2 × 2 and 3 × 3 matrices both
interleaved approaches are faster than the P2P routines, but after this the Intl approach
hits a limit of 2.5 Gflop/s. As before, this is due to the large jumps in memory that are
required to access different elements of the matrix. Meanwhile, BlkIntl quickly attains its
peak performance of around 100 Glop/s and is significantly faster than both P2P approaches
until matrices of size 16 × 16 are used; shortly after this point the P2P approaches become
faster. This peak performance of 115 Glop/s for the BlkIntl approach could be improved by
prefetching the required data more efficiently. Indeed, both the BlkIntl and MKL approaches
are performing the same operations in a different order, so obtaining good performance is merely
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Figure 5: Performance results for batched DGEMM using a batch of 10, 000 square matrices
varying in size from 2× 2 to 20× 20.

a race to fill the vector units of the cores as fast as possible.
The GPU experiments are depicted in Figure 5b. The initial CUDA kernels of the Intl

and BlkIntl do not make use of shared memory. We designed another block interleaved
kernel (BlkIntlSM) taking advantage of the shared memory with a slight change in the memory
hierarchy to use 48KB of shared memory and 16KB of L1 cache. This kernel outperforms
cuBLAS for very small matrices up to 13× 13. We believe that this approach has potential for
GPU architectures and further tuning will enable better performance.

5 Conclusions

The main contribution of this paper is the experiments which show the performance gains the
interleaved approach offers. We have summarised the current API and memory layout choices
used for batched BLAS operations and performed a number of experiments to compare their
efficiency. In particular, we found that the block interleaved memory format gives extremely
promising performance for batches of small matrices over a range of architectures including a
NUMA node, a Kepler K40c and the self-hosted Intel KNL. The peak performances we obtained
were 24, 120, and 115 Gflop/s, respectively; and we have shown how our approach performs
faster than vendor libraries when operating on batches of small matrices.

Although this work focused on GEMM the analysis, and particularly the interleaved memory
approach, is also applicable to other BLAS kernels. In fact, most other level 3 BLAS operations,
except for TRSM (triangular solve), can be viewed as specialized GEMM operations so we
expect similar performance increases.

In the future it would be interesting to see the effect that interleaved memory layouts can
have on the performance of batched TRSM operations. In particular, each column of the
matrices requires one division so, by using the interleaved memory layout, we can perform
large numbers of these divisions simultaneously and make more efficient use of the vector units
in a CPU core. One could also extend batch operations to include LAPACK routines, for
example batched LU and QR-based solvers are already available in CuBLAS. Extending our
block interleaved approach to LAPACK routines could lead to significant performance increases.

Finally, these analyses and the comparisons between different APIs are vital in helping the
community decide upon a standard interface for batched linear algebra operations which may
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hierarchy so, for each invocation of the algorithm presented below, we will tune the block size
to give the optimal performance.

We compare the two interleaved memory formats to two implementations using the P2P
memory layout. The first P2P memory layout is Intel MKL’s cblas dgemm batch function
using the group-based API; whilst the second is a simple for loop over the batch of matrices
(using OpenMP and single threaded cblas dgemm) which uses a single-core to compute each
DGEMM operation. We will refer to these approaches as MKL and OMP, respectively.

Figure 4a shows the results of this experiment. We see that the Intl approach is better
than MKL and OMP for 2×2 and 3×3 matrices but quickly hits a limit of 2.5 GFlop/s. The large
jumps in memory needed to access different elements of the matrices are the cause of this limit.
Meanwhile the BlkIntl approach is superior to MKL and OMP for matrices until size 12 × 12.
Furthermore, in Figure 4b we show the effect of the block size k on BlkIntl for matrices of size
2× 2, 4× 4, and 8× 8. Whilst the block size has little impact on the performance for matrices
of size 2 × 2, we can see that it has a significant impact for larger matrix sizes and must be
tuned carefully depending on the architecture and matrix size. In general, over all matrix sizes,
we typically 72 and 168 to be the optimal block sizes.

The next architecture we consider is the Intel KNL using the high-bandwidth MCDRAM.
As before, we use OpenMP to loop over the matrices in the Intl approach and to loop over
each block in the BlkIntl approach. We found that 80 and 152 were often the optimal block
sizes, which are fairly similar to those seen in the NUMA architecture. We compare against
MKL and OMP as described in the previous architecture.

The performance that we obtain is given in Figure 5a. For 2 × 2 and 3 × 3 matrices both
interleaved approaches are faster than the P2P routines, but after this the Intl approach
hits a limit of 2.5 Gflop/s. As before, this is due to the large jumps in memory that are
required to access different elements of the matrix. Meanwhile, BlkIntl quickly attains its
peak performance of around 100 Glop/s and is significantly faster than both P2P approaches
until matrices of size 16 × 16 are used; shortly after this point the P2P approaches become
faster. This peak performance of 115 Glop/s for the BlkIntl approach could be improved by
prefetching the required data more efficiently. Indeed, both the BlkIntl and MKL approaches
are performing the same operations in a different order, so obtaining good performance is merely
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a race to fill the vector units of the cores as fast as possible.
The GPU experiments are depicted in Figure 5b. The initial CUDA kernels of the Intl

and BlkIntl do not make use of shared memory. We designed another block interleaved
kernel (BlkIntlSM) taking advantage of the shared memory with a slight change in the memory
hierarchy to use 48KB of shared memory and 16KB of L1 cache. This kernel outperforms
cuBLAS for very small matrices up to 13× 13. We believe that this approach has potential for
GPU architectures and further tuning will enable better performance.

5 Conclusions

The main contribution of this paper is the experiments which show the performance gains the
interleaved approach offers. We have summarised the current API and memory layout choices
used for batched BLAS operations and performed a number of experiments to compare their
efficiency. In particular, we found that the block interleaved memory format gives extremely
promising performance for batches of small matrices over a range of architectures including a
NUMA node, a Kepler K40c and the self-hosted Intel KNL. The peak performances we obtained
were 24, 120, and 115 Gflop/s, respectively; and we have shown how our approach performs
faster than vendor libraries when operating on batches of small matrices.

Although this work focused on GEMM the analysis, and particularly the interleaved memory
approach, is also applicable to other BLAS kernels. In fact, most other level 3 BLAS operations,
except for TRSM (triangular solve), can be viewed as specialized GEMM operations so we
expect similar performance increases.

In the future it would be interesting to see the effect that interleaved memory layouts can
have on the performance of batched TRSM operations. In particular, each column of the
matrices requires one division so, by using the interleaved memory layout, we can perform
large numbers of these divisions simultaneously and make more efficient use of the vector units
in a CPU core. One could also extend batch operations to include LAPACK routines, for
example batched LU and QR-based solvers are already available in CuBLAS. Extending our
block interleaved approach to LAPACK routines could lead to significant performance increases.

Finally, these analyses and the comparisons between different APIs are vital in helping the
community decide upon a standard interface for batched linear algebra operations which may
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a have profound impact on the future of HPC, as the original BLAS standard certainly has.
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