
Novel HPC Techniques to Batch Execution of Many Variable Size
BLAS Computations on GPUs

Ahmad Abdelfattah, Azzam Haidar, Stanimire Tomov, Jack Dongarra
Innovative Computing Laboratory,

University of Tennessee

Knoxville, USA

{ahmad,haidar,tomov,dongarra}@icl.utk.edu

ABSTRACT

This paper presents a software framework for solving large num-

bers of relatively small matrix problems using GPUs. Our approach

combines novel and existing HPC techniques to methodically apply

performance analysis, kernel design, low-level optimizations, and

autotuning to exceed in performance proprietary vendor libraries.

As a case study, we discuss the fundamental matrix operations de-

fined by the Basic Linear Algebra Subprograms (BLAS) standard.

This case study is significantly important for wide range of appli-

cations, including astrophysics, tensor contractions, sparse direct

solvers, and others. We provide a generic design that is capable of

dealing with problems of different sizes, and handling the irregu-

larity arising from size variations. The developed solution adopts a

batched computation scheme, where the same operation is concur-

rently applied to all matrices within a single computational kernel.

The paper discusses the data layout, kernel design, and optimization

techniques. We also propose a design scheme that is centralized

around matrix-matrix multiplication (GEMM) kernel, so that any

improvement on this particular kernel propagates automatically to

other routines. Our performance results show significant speedups

using a Pascal generation GPU (Tesla P100) against state-of-the-art

solutions using cuBLAS, as well as against two 10-core Haswell

CPUs running the MKL library. This work is part of the MAGMA

library.

CCS CONCEPTS

•Computing methodologies →Massively parallel algorithms;

KEYWORDS

Batched Computation, GPU Computing, Basic Linear ALgebra Sub-

programs

ACM Reference format:

Ahmad Abdelfattah, Azzam Haidar, Stanimire Tomov, Jack Dongarra. 2017.

Novel HPC Techniques to Batch Execution of Many Variable Size BLAS

Computations on GPUs. In Proceedings of ICS ’17, Chicago, IL, USA, June

14-16, 2017, 10 pages.

DOI: http://dx.doi.org/10.1145/3079079.3079103

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICS ’17, Chicago, IL, USA

© 2017 ACM. 978-1-4503-5020-4/17/06. . . $15.00
DOI: http://dx.doi.org/10.1145/3079079.3079103

1 INTRODUCTION

The processing of many small independent problems has gained

a lot of attention in the HPC community. Such workloads, which

we call batched workloads, appear in many large-scale scientific

computing applications, such as quantum chemistry [4], sparse

direct solvers [26], astrophysics [16], and signal processing [2].

In such applications, the operations required on each individual

problem often involve performing dense matrix operations. Most

high performance solutions use Basic Linear Algebra Subprograms

(BLAS) for the bulk of their computations, especially Level-3 BLAS

routines, which are compute intensive and rich in data reuse. It has

been shown that using non-batched BLAS kernels usually achieves

poor performance on such small sizes [1]. It is crucial, therefore,

to develop high performance batched BLAS in order to further

accelerate the applications relying on them.

Our focus in this paper is on the general case where matrices

differ in size, which is the typical case in the aforementioned applica-

tions. We also focus on developments for Graphics Processing Units

(GPUs), which are not trivial compared to similar developments for

multicore CPUs. Considering batched workloads, multicore CPUs

have the advantage of possessing large caches, where most of the

problem sizes of interest would fit. In addition, it is reasonable to run

parallel threads (e.g., using OpenMP), where each thread processes

one problem at a time. Such configuration is expected to deliver

high performance as long as fast single-thread execution is achieved.

The latter can be obtained by running optimized vendor libraries

such as Intel’s Math Kernel Library (MKL) [10]. On the other hand,

the same approach cannot be used for throughput-oriented hard-

ware, such as GPUs. On the architecture side, individual threads

on GPUs run much slower than CPU threads, and the capacities

provided by the L1 cache/shared memory on the GPUs are very

small compared to modern multicore CPUs. On the software side,

most of the available GPU software focuses only on big matrices,

where enough parallelism is available for the GPU to achieve high

performance. These are the reasons behind the need for dedicated

GPU kernels for batched workloads.

This paper presents a complete set of Level-3 BLAS routines de-

signed specifically for batched workloads on GPUs. The developed

kernels share common design concepts that are capable of dealing

with matrices of different sizes within the same computational ker-

nel. The routines that encapsulate such kernels are called vbatched

routines. We present discussions about the general design concepts

for batched computation, data layout, and optimization techniques

for every kernel. An important aspect of the proposed design is

the reliance on the matrix-matrix multiplications (GEMM) kernel
in almost all BLAS routines. This approach not only reduces the

ICS ’17, June 14-16, 2017, Chicago, IL, USA Abdelfattah et al.

code base required for the development, but also achieves high

performance for all routines, thanks to the GEMM kernel being a

common target for continuing research, development, and tun-

ing [21] [13] [3]. In fact, any performance improvement done to

the GEMM kernel would automatically propagate to almost all other

routines in Level-3 BLAS. Due to the lack of similar competitive

software, we compare against an implementation that submits indi-

vidual cuBLAS [18] kernels into concurrent execution queues (i.e.

CUDA streams), as well as against a CPU implementation that is

based on the MKL library [10]. Significant speedups are achieved

against both implementations using a system with a Pascal genera-

tion GPU (Tesla P100) and two 10-core Intel Haswell CPUs. All the

developed kernels have been released in the MAGMA library [9].

The rest of the paper is organized as follows. Section 2 highlights

related work about development of batched routines. Section 3

discusses the abstract structure and organization of batched GPU

kernels. Kernel drivers are also discussed in Section 4. Section 5

illustrates the design of our case study, which is the entire Level 3

BLAS routines. Performance results are presented in Section 6. The

paper ends with a conclusion in Section 7.

2 RELATEDWORK

GPUs have long been used in hybrid algorithms that solve dense

matrix problems of relatively large sizes [22]. Compute intensive

tasks (e.g. GEMMs in trailing matrix updates [24]) are offloaded to

the GPU, while latency sensitive tasks (e.g. panel factorization) are

performed using the CPU. This kind of algorithmic design does not

work well for small problems, due to the lack of parallelism, which

fails to overlap any CPU-GPU communication. Therefore, GPU-

based solution for small matrix computation should not involve

hybrid CPU-GPU solutions.

There have been early efforts dealing with many small problems

on GPUs. Small LU factorizations were investigated by Villa et

al. [19, 20] (for size up to 128), and Wainwright [25] (for sizes up

to 32). Kurzak et al. also showed batched Cholesky factorization

in single precision for sizes up to 100 [12]. The size limits in these

contributions arise from a customized design that does the entire

factorization of one matrix using one CUDA thread block (TB).

While the idea of fusing all computational steps into one TB pays off

for very small matrices, such design approach fails to work for the

midrange sizes (e.g. up to 512) due to the hardware constraints on

the resources available per TB (e.g. running out of shared memory

or requiring too many threads beyond the TB maximum capacity).

Such constraints motivated our more generic approach, which

is to have the building blocks (i.e. the BLAS kernels) developed

specifically for batched workloads. While some efforts focus on

fixed size problems[8] [6] [7], we consider the generic case of having

problems of different sizes, which is of particular importance to

some applications such as sparse direct solvers[26]. In this paper,

we pay attention to Level-3 BLAS routines, which are at the core of

any matrix factorization/solve algorithm.

3 ABSTRACT DESIGN CONCEPTS

3.1 Unified Kernel Structure

The design of our solution uses advanced template techniques for

better reusability, portability and adaptability of the code. All the

developed routines have a unified kernel structure that is indepen-

dent from the operation being performed, so that it can be used for

any kind of batched operations other than the ones discussed in

this paper later on.

In general, a batched kernel is organized as a 3D grid of TBs, so

that the grid configuration is (Gx , Gy , Gz), and each thread block

has an ID (Bx , By , Bz). The dimensionGz is always set to the num-

ber of problems (which we refer to as batchCount). The first

two dimensions of the grid are called “subgrid” dimensions. These

dimensions are calculated based on the input problem size and pos-

sibly some other tuning parameters of the kernel itself. For example,

all of the kernels discussed in this paper use a 2D subdivision of the

input and output matrices. The subgrid dimensions (Gx , Gy) are

then calculated based on the problem size(s), and the subdivision

(blocking) size. In other words, the grid is internally reorganized

as an array of 2D subgrids, where each subgrid represents one

problem configuration. While subgrids are independent from each

other, they all share the same device code that is written to perform

the computation of one problem. Eventually, each subgrid executes

the same code, but a unique problem. Figure 1 shows the abstract

structure of a batched GPU kernel.

Figure 1: Abstract structure of a batched GPU kernel.

3.2 Adaptive Subgrid Truncation (ASGT)

The design shown in Figure 1 shows that all subgrids have the

same configuration. In fact, the CUDA runtime does not allow

launching subgrids of different sizes, which means that we cannot

define as many values for (Gx , Gy) as the number of problems. In

order to support operating on problems of different sizes, the pro-

posed solution sets Gx = MAX(Gx 1,Gx 2, · · · ,Gx batchCount),

Novel HPC Techniques for GPU Batched BLAS ICS ’17, June 14-16, 2017, Chicago, IL, USA

and Gy = MAX(Gy 1,Gy 2, · · · ,Gy batchCount). This configura-

tion ensures that each subgrid can accommodate the problem as-

signed to it. However, the size of the assigned problem may require

a smaller subgrid. In order to avoid unnecessary resource allocation,

we propose an Adaptive SubGrid Truncation (ASGT) technique.

The ASGT technique is a lightweight preprocessing step that is

executed by every CUDA thread in the subgrid. This layer reads

the local size(s) of the assigned problem, and determines exactly

how many TBs the problem needs. This is done by computing the

corrected values (Ḡx , Ḡy) of the subgrid. Based on the corrected

values, any thread block having Bx ≥ Ḡx or By ≥ Ḡy is terminated

immediately before any computation takes place. Note that in any

case, Ḡx ≤ Gx and Ḡy ≤ Gy , and that the values of (Ḡx , Ḡy) are

homogeneous for all threads belonging to the same subgrid.

3×3 subgrid
(:, :, 0)

3×3 subgrid
(:, :, 1)

3×3 subgrid
(:, :, 2)

vbatched GEMM kernel
(3, 3, 3) grid configuration

Figure 2: Example of vbatched GEMM using ASGT.

Figure 2 shows an example of the ASGT technique when exe-

cuted in a variable size batched GEMM operation, where the value

of batchCount is 3. The figure only shows the output matrices.

According to the explanation above, this leads toGz = 3. The GEMM
kernel driver computes Gx and Gy based on the dimensions of the

output matrices and the blocking size, leading to Gx = Gy = 3 in

our example. Upon the kernel start, the ASGT layer is executed,

terminating all thread blocks marked by ‘×’ for smaller problems.

The final (Ḡx , Ḡy) values for the three subgrids are (1, 2), (2, 3),

and (3, 1).

4 KERNEL LAUNCHER

The kernel launcher is a driver code that is executed on the host

CPU. It performs any setup necessary for having safe launch on

the GPU side. While we always assume that all the data exist in

the GPU memory before the launch, our design is generic in the

sense that it does not require individual problems to be stored

consecutively in memory, neither does it assume that they should

be equidistant from each other. Our design assumes that problems

can be scattered totally randomly in the GPU memory space. This

comes at the cost of providing pointer arrays to the GPU kernel to

locate the data.

While the kernel launcher is executed on the CPU, there are two

cases where a preprocessing GPU kernel might be launched prior

to the launch of the computational kernel:

(1) Argument Checking: The purpose of argument checking is

to avoid any run time errors during execution. For example,

in our case study of BLAS routines, we can check the in-

put arguments to make sure a valid operation is requested.

Since problem sizes are stored in the GPU memory, it be-

comes so expensive to make the CPU check for arguments,

since it will have to copy the array of sizes from the GPU,

loop over and perform the check. Thus, it is the GPU which

has to perform the checking. As a result, customized GPU

kernels were developed to perform the necessary checks.

Such kernels report the checking result back to the CPU,

which either launches the computational kernel, or inform

the user about the errors found in the input arguments.

While the kernel is lightweight, the CPU-GPU communi-

cation can impose some overhead, especially if the batch

is relatively small, but in any case it remains way less

expensive than the CPU checking.

(2) Kernel Configuration: Since the CPU is responsible for the

kernel launch, it needs to compute (Gx ,Gy) as described

in Section 3. Therefore, the CPU computes such values

according to the maximal sizes across all problems. The

preprocessing step of finding these maximum values can

be done at the same time with the arguments checking

operation inside the same preprocessing kernel.

We observe that the overhead of the preprocessing steps is minor

in most cases. However, if the arguments are guaranteed to be

correct, and/or the maximum values are predetermined, there is no

need to launch the preprocessing GPU kernel.

5 DESIGN CONCEPTS AND DETAILS

This section provides a detailed illustration of the design of the

vbatched Level-3 BLAS routines. Table 1 summarizes basic infor-

mation about these routines. While all routines support different

settings of the operation (e.g. transposed matrices in GEMM), the
table shows one setting per kernel as an example. The developed

kernels have the same behavior, and support all the different set-

tings of BLAS compliant routines. We also assume that all the

matrices are stored in the GPU memory using a column-major

layout.

GEMM
(generic)

(generic) (g)
GEMM code

base

HEMM/SYMM
(generic)

TRMM
(generic)

TRSM
(generic)

HERK/SYRK
(generic)

HER2K/SYR2K
(generic)

TRMMTRSM

base

TRSM
(small size)

TRMM
(small size)

similar code
base

internal routine
(generic)

H

Figure 3: Overall design of BLAS-3 routines.

ICS ’17, June 14-16, 2017, Chicago, IL, USA Abdelfattah et al.

Abbreviation Routine Description Sample operation (double precision) Notes

GEMM General Matrix Matrix Multiplication Compute: (C = αA × B + βC) -

HERK Hermitian rank-k update Compute: (C = αA × AH + βC) C Hermitian

HER2K Hermitian rank-2k update Compute: (C = αA × BH + ᾱB × AH + βC) C Hermitian

HEMM Hermitian Matrix Matrix Multiplication Compute: (C = αA × B + βC) A Hermitian

TRMM Triangular Matrix Matrix Multiplication Compute: (B = αA × B) A Triangular

TRSM Triangular solve Solve for X: (A × X = αB) A Triangular

Table 1: Description of the Level-3 BLAS routines. All matrices are general unless those mentioned in the last column. The

variables α and β are scalars, with ᾱ being the conjugate of α .

5.1 Centralized Design Strategy

One goal of the proposed design is to reduce the code base as much

as possible. Among all routines, the GEMM kernel is the most impor-

tant kernel. In fact, it has been studied extensively for performance

optimization and tuning across different architectures ([11, 13–

15, 17, 21, 23]). This is because GEMM is the main performance key

for LAPACK algorithms. In a similar manner, we designed Level-3

BLAS routines to extract their high performance from the GEMM
kernel, so that any future performance improvement in this par-

ticular kernel will positively impact the performance of the other

routines.

Figure 3 shows an overview of the BLAS-3 routine design, where

every routine is dependent on the GEMM kernel. Following the

abstract structure of Figure 1, the GEMM implementation consists

of a code base, written using CUDA device routines, wrapped into

a CUDA kernel. A device routine performs one GEMM operation,

meaning that they do not have a batched interface. They are generic

GEMM functions that can be invoked from within a CUDA kernel.

The wrapping kernel takes care of assigning subgrids into different

problems, where each subgrid is assigned a unique batch id. The

subgrid uses its ID to read the corresponding pointers, sizes, and

leading dimensions of a specific problem from the batch. Once these

arguments are read, they are passed into the device routines to start

the computational part of the kernel. The idea of separating the

GEMM code base from the wrapping kernel is very beneficial, since

both the HERK and the HER2K kernels call the GEMM device rou-

tines rather than the kernels. The HEMM kernel is the only routine

that does not share any code base with GEMM. However, its design
and implementation is quite similar to GEMM. The TRMM and TRSM
routines are developed using a recursive approach, which breaks

down the operation into a TRMM/TRSM of a small size problem that

fits into the GPU shared memory, plus a number of GEMM updates.

Apart from the HEMM routines, all the operations either invoke a

GEMM device routine from within its kernel, or call the vbatched

GEMM routine as it is.

5.2 Matrix Multiplication (GEMM)
The main design idea of the GEMM kernel is to subdivide the output

matrixC into square or rectangular blocks, where each block is com-

puted by one TB. As shown in Figure 4, a TB processes a block row

of A, in steps of (BLKM×BLKK) blocks, and a block column of B, in
steps of (BLKK×BLKN) blocks, to compute a single (BLKM×BLKN)
block ofC . The kernel uses register blocking to hold three blocks

of A, B, andC in the register file. As the TB moves across A and B,

new blocks of A and B are read in the registers, while theC block

is kept for result accumulation. The multiplication between blocks

takes place in shared memory, which allows data prefetching of

the next A and B blocks in registers. The kernel has at least five

tuning parameters, which are BLKM, BLKN, BLKK, and the (x , y)
configuration of TBs.

BLKN
BLKk

BLKk
BLKM BLKM

BLKN

M

K

K

N

A C

B

Figure 4: GEMM design.

5.3 GEMM Autotuning

We conducted a comprehensive autotuning experiment particularly

for the GEMM kernel. The main goal of this experiment is to have

the best performance on the GPU, not only for square matrices, but

also for realistic scenarios where the GEMM kernel is called within

a higher-level algorithm such as batched one-sided factorization.

Our autotuning framework starts by fully expanding the search

space, enumerating all possible values of the tuning parameters.

It then proceeds to prune the search space according to two sets

of constraints. The first is the hard constraints defined by the tar-

get hardware. For example, the CUDA runtime does not allow

more than 1024 threads per TB, or more than 2048 threads on a

multiprocessor (on a modern post-Kepler GPU). The second set of

constraints are soft constraints that are defined based on our expe-

rience with GPU computing. For example, we consider blocking

Novel HPC Techniques for GPU Batched BLAS ICS ’17, June 14-16, 2017, Chicago, IL, USA

sizes that are power of 2, or at least multiples of 16 and 32. We also

consider tuning parameters that have relatively few threads per

TB (e.g. less than 256). This decision allows scheduling more TBs

on the same multiprocessor, which leads to better occupancy and

execution throughput.

Finally, we defined a set of realistic test cases that are commonly

found in higher-level algorithms, especially those found in LAPACK

algorithms. For each test case, the autotuning framework automat-

ically records the tuning parameters of the top five performing

kernel instances. We then aggregate the results and try to find

common winning kernel instances among different test cases. Fol-

lowing a C++ template-based design, the kernel launcher eventually

has access to a database of winning kernel instances, so that it can

choose the best kernel instance based on the problem configuration.

5.4 Hermitian Rank Updates (HERK and HER2K)
As shown in Figure 3, the Hermitian rank updates depend on a

custom internal routine that inherits the GEMM code base. This

routine does not exist in the standard BLAS, but it helps realize

two of the standard routines. The internal routine computes the

upper or the lower triangular part of a matrix C , where (C =
αP ×QH + βC) for a non-transposed operation or (C = αPH ×
Q + βC) for a transposed operation. The kernel starts with the

same 2D thread block configuration as the GEMM kernel, except that

TBs that correspond to the unreferenced part ofC are terminated

immediately using the ASGT technique. To provide the HERK
functionality (Table 1), the internal routine is invoked with P =
Q = A. The HER2K operation requires two calls to the internal

routine. Considering a non-transposed operation, the first call has

P = A andQ = B, so thatC1 = αA×BH +βC . The second call has

P = B,Q = A, andC = C1. It also uses the conjugate of α and sets

β = 1. The result isC2 = ᾱB × AH + C1. By substitutingC1 into

the latter equation, the final result is αA × BH + ᾱB × AH + βC ,
which is the standard HER2K operation. Eventually, three of the

batched BLAS kernels share the exact same code base (GEMM, HERK,
and HER2K).

5.5 Hermitian Matrix Multiplication (HEMM)
The HEMM routine has a similar design to the GEMM kernel, except

for reading the Hermitian matrix A. Consider Figure 5, where the
lower triangular part of the Hermitian matrix A is multiplied by B.
Instead of reading a block row of A, a TB reads a partial block row

and a partial block column. In general, there are three phases in the

lifetime of every TB. The first is a non-transposed multiplication

where the multiplication between A and B blocks occur exactly

like a GEMM operation. This corresponds to the partial block row of

A before the diagonal. The second and third phases involve some

preprocessing performed on A blocks before multiplication takes

place. The second phase reads the diagonal block of A, mirrors it

along its diagonal in shared memory, and then proceeds normally

with multiplication. The third phase switches the direction of the

TB to move vertically through A. In this phase, blocks from A are

conjugate-transposed in shared memory before doing the usual

multiplication. Note that the processing of matrices B and C is

the same as the GEMM kernel. We also point out that blocking of

the matrix A is restricted to square blocks only, which is a typical

design choice for Hermitian matrices.

BLKN

BLKM

BLKM
BLKM

BLKN

M

M

M

N

A C

B

BLKM KK

A

BLKM

Figure 5: HEMM design.

5.6 Triangular Matrix Multiplication (TRMM)
The TRMM routine cannot be designed similar to any of the previ-

ous kernels because the operation is done in-place, meaning that

the result of the multiplication overwrites the matrix B (refer to

Table 1). Therefore, we use a different design strategy that relies

on a recursive implementation, similar to what has been done for

non-batched kernels [5]. We developed a TRMM kernel that works

only on small triangular matrices that fit in the GPU shared mem-

ory. Figure 6 shows a simplified version of the kernel for a lower

unit-triangular matrix A that is multiplied by an NB×NB general

matrix B. The kernel does the operation in-place because A can be

stored entirely in shared memory. The size of B is not a concern,

because it can be subdivided among independent TBs. This kernel

is invoked only if the size ofA is ≤ NB, which is a tuning parameter.

In order to support any matrix size, we adopt a recursive imple-

mentation that is shown in Figure 7. The recursive TRMM routine

checks for the triangular matrix size. If it is less than or equal to

NB, it reaches a stopping condition and invokes the TRMM kernel.

Otherwise, the matrix A is subdivided as shown in Figure 7. We

begin by calling the recursive TRMM routine with respect to A11
and update B1x in-place (step 1). We then call the GEMM routine to

compute the remaining portion for B1x (step 2). The final step is to

invoke the recursive TRMM routine with respect to A00 and update

B0x in-place. Note that these three steps have to be performed in

the specified order. For example, exchanging steps 1 and 2 destroys

the original data in B1x, which is needed in step 1. Also performing

step 3 before 2 overwrites B0x, whose original values are needed
to perform the GEMM operation in step 2. We point out that the

subdivision of A does not have to be even. In fact, the subdivision

follows a tuning experiment (not the scope of this paper), which

ICS ’17, June 14-16, 2017, Chicago, IL, USA Abdelfattah et al.

template<typename T, const int NB>

static __device__

void trmm_lNU_template_device(

enum uplo, enum diag,

T alpha, T* A, int ldda,

T* B, int lddb)

{

const int tx = threadIdx.x;

const int ty = threadIdx.y;

const int bx = blockIdx.x;

__shared__ T sA[NB * NB];

__shared__ T sB[NB * NB];

T rb = make_zero<T>();

B += bx * NB * lddb;

// load A and B

sA[ty * NB + tx] = A[ty * ldda + tx];

sB[ty * NB + tx] = B[ty * lddb + tx];

// ignore diagonal elements

if(ty == tx)

sA[ty * NB + tx] = make_one<T>();

// ignore upper triangle

if(tx < ty)

sA[ty * NB + tx] = make_zero<T>();

__syncthreads();

// multiply

#pragma unroll

for(int i = 0; i < NB; i++)

rb += sA[i * NB + tx] * sB[ty * NB + i];

rb *= alpha;

// write B

B[ty * lddb + tx] = rb;

}

Figure 6: A sample of the TRMM device routine in CUDA.

tends to make the execution time mainly dominated by the GEMM
operation of step 2.

B00 = A00×B00 B10 = A10×B00 + A11×B10

B01 = A00×B01

B11 = A10×B01 + A11×B11

B00 B01

B10 B11

A00

A10 A11

A00

A10 A11

B00 B01

B10 B11

=

2GEMM 1TRMM 3TRMM

m2

m1

m1 m2

m1

m2

n

(1)[B10 B11] = A11× [B10 B11](recursive TRMM)
(2)[B10 B11]+= A10× [B00 B01](GEMM)
(3)[B00 B01] = A00× [B00 B01](recursive TRMM)

Figure 7: TRMM design.

5.7 Triangular Solve (TRSM)
Figure 11 shows an example for a triangular solve problem, where

the solution X overwrites the matrix B. Similar to TRMM, this is

an in-place operation. We present two different approaches to

address this problem. The first one is inspired by the non-batched

TRSM kernel in the MAGMA library[9]. Such design is based on

inverting the NB×NB triangular matrices that reside on the block

diagonal of A. The value of NB is a tuning parameter. The inverses

are stored in a separate workspace. The routine loops over the

matrix A in steps of NB, where at each iteration, it multiplies an

inverted triangular block with the corresponding right hand side

(RHS), which produces part of the solution matrix X . The partial

solution is then used to update the unsolved part of the matrix.

Figures 8 and 9 show an example for realizing TRSM using matrix

inversion. There are few sources of overheads that add up to the

execution time of this approachwith respect to variable size batched

workloads. The first is that it needs allocation and initialization

of internal workspaces, which are used to store the inverses. The

second is that figuring out the total amount of workspace needed

is not trivial. Since matrices are assumed to have different sizes,

each matrix requires a different amount of workspace. In particular,

the total amount required is
∑batchCount
i=1

⌈mi

NB

⌉
× NB2, which

requires a reduction operation to take place in order to compute

the correct workspace. In addition, the allocation of the workspace

is followed by assigning a sub-workspace pointer for each problem

in the batch. Since the displacement between two adjacent sub-

workspaces is no longer uniform, a dedicated preprocessing kernel

was developed to correctly set the sub-workspace pointer for each

problem. The third source of overhead is that all the multiplications

in Figure 9 are performed through GEMM, which means that the

computation is done out-of-place. An additional workspace is used

to store the solution X , which is then copied back (using device

memory copies) to overwrite B. Despite these overheads, this

approach is very competitive in performance when the problem

size increases, as the impact of the overheads get smaller.

A00

m A10

A20

A30

A11

A21

A31

A22

A32 A33

X0

X1

X2

X3

B0

B1

B2

B3

A-100 A-111 A-122 A-133

m n

=

n

NB
NB

NB A X B

Workspace for
inverses

Figure 8: TRSM design.

We also propose a second approach that uses an exact triangular

solve (no inversions), and performs the operation in-place, with no

need to workspaces or memory copies. The kernel is based on a

recursive approach similar to the TRMM routine. We developed a

TRSM kernel which assumes that the triangular matrix A fits into

shared memory. The kernel also uses register blocking to store the

right hand sides. Independent TBs solve different right hand sides

Novel HPC Techniques for GPU Batched BLAS ICS ’17, June 14-16, 2017, Chicago, IL, USA

1: for i = 0 to 3 do

2: Xi ← A−1
ii
× Bi ;

3: for j = (i + 1) to 3 do

4: Bj ← Bj − Aji × Xi ;

5: end for

6: end for

Figure 9: Pseudocode for computing X in the TRSM shown

in Figure 8.

through in-register data exchanges that use shuffle operations. A

simplified example for a unit lower triangular matrix of size NB is

shown in Figure 10. Larger triangular matrices are handled using a

recursive implementation that is shown in Figure 11. Similar to the

TRMM routine, the order specified in the Figure has to be followed

in order to produce the correct solution X . The advantage of the

recursive approach is that it does not have any overheads. First, it

does not require any workspace allocation/initialization. Second,

the solution is done in-place, which means that no memory copies

are required. Another advantage is that the recursive subdivision is

more flexible than the blocked implementation shown in Figure 8.

The values m1 and m2 follow a tuning experiment that aims to

maximize the time spent performing GEMM. On the other side, the

blocked implementation restricts the stepping to be equal to the

size of the inverted diagonal blocks (NB).

6 PERFORMANCE RESULTS

Performance experiments are conducted on a machine equipped

with two 10-core Intel Haswell CPUs (Intel Xeon E5-2650 v3, run-

ning at 2.30 GHz), and a Pascal generation GPU (Tesla P100, run-

ning at 1.189 GHz). Results are shown for real double precision

on batches of 2000 matrices. Because of the lack of competitive

vbatched routines on the GPU, we compare our proposed solution

(MAGMA) against cuBLAS called within concurrent CUDA streams.

GPU performance tests use CUDA Toolkit 8.0. CPU performance

tests use Intel MKL Library 11.3.0, with one core assigned per ma-

trix at a time. We use an OpenMP parallel for pragma with

dynamic loop scheduling to balance the workload among cores. The

sizes in every test batch are randomly sampled within the range

[1 : x̄], where x̄ represents an arbitrary point on the x-axis of the
performance graphs. MAGMA has been timed with the overheads

mentioned in Section 4 included. While we show performance

results for double precision only, the developed solution runs on

all the four precisions of the reference BLAS implementation.

Figure 12a shows the performance of the DGEMM kernel when

launched on square problems, which can be regarded as an upper

bound for the performance of all other routines. We observe that,

at sizes around 350, concurrent cuBLAS launches into independent

streams outperforms MAGMA. The reason is that cuBLAS has a

highly optimized kernel that is based on an optimal algorithm

written in the native machine language [21]. For example, at size

384, which is the approximate intersection point, the cuBLAS kernel

achieves 1.25 Tflop/s on one problem of size 384 × 384, while the

MAGMA scores 0.45 Tflop/s. However, MAGMA is still competitive

template<typename T, const int NB>

static __device__

void trsm_lNL_template_device(

enum diag, int m, int n,

T alpha, T* A, int ldda,

T* B, int lddb)

{

const int tx = threadIdx.x;

const int ty = threadIdx.y;

const int bx = blockIdx.x;

B += bx * NB * lddb;

__shared__ T sA[NB * NB];

T rB = make_zero<T>();

// load A

sA[ty * NB + tx] = A[ty * ldda + tx];

// ignore diagonal elements

if(ty == tx){

sA[tx * NB + tx] = make_one<T>();

}

__syncthreads();

// load B

rB = alpha * B[ty * lddb + tx];

// solve

#pragma unroll

for(int i = 0; i < NB; i++){

if(tx == i) rB *= sA[i * NB + i];

T rT = xshfl__(rB, i, NB);

if(tx > i) rB -= sA[i * NB + tx] * rT;

}

// write B

B[ty * lddb + tx] = rB;

}

Figure 10: A sample of the TRSM device routine in CUDA.

Theproblem is a simplified example for anNB×NBunit lower

triangular matrix and NB right hand sides.

B00 = A00×X00 B10 = A10×X00 + A11×X10

B01 = A00×X01

B11 = A10×X01 + A11×X11

X00 X01

X10 X11

A00

A10 A11

A00

A10 A11

B00 B01

B10 B11

=

2GEMM 3TRSM 1TRSM

m2

m1

m1 m2

m1

m2

n

(1) [B00 B01] = A00× [X00 X01] (recursive TRSM)
(2) [B10 B11]-= A10× [X00 X01] (GEMM)
(3) [B10 B11] = A11× [X10 X11] (recursive TRSM)

Figure 11: TRSM design.

at this point because it aggregates the work of all matrices into

one computational kernel, maximizing occupancy and minimizing

the overhead of launching concurrent kernels. On the left of the

intersection point, the MAGMA DGEMM scores speedups against

cuBLAS that range from 1.3× to more than 10× (on sizes less than

ICS ’17, June 14-16, 2017, Chicago, IL, USA Abdelfattah et al.

100). The MAGMA kernel also maintains an asymptotic speedup of

more than 4.5× against the CPU implementation.

(a) Square matrices (m = n = k)

(b) Rectangular matrices (m = n, k = 16)

Figure 12: Performance of vbatched DGEMM.

Figure 12b shows a more realistic test case for batched workloads.

Consider an LU factorization with a panel width equal to 16, during

which trailing matrix updates involve calls to the GEMM kernel

with k = 16 (Cm×n− =Am×k×Bk×n), andm = n if the factorized

matrices are square. For such practical workloads, the MAGMA

DGEMM is much faster than cuBLAS, achieving speedups from 2.6×
up to more than 20× on sizes less than 100. A significant speedup

of approximately 6× is also achieved against the CPU.

Similar to LU factorization, trailingmatrix updates in the Cholesky

factorization algorithm call the HERK routine with a relatively small

k (Cn×n− =An×k×AH
k×n). Figure 13 shows a test case with k=32.

Thanks to the GEMM dependent design, the MAGMA kernel is 2.8×
to 25× faster than cuBLAS. It is also up to 7.3× faster than MKL. We

point out that since the HER2K routine shares the same internal

routine with HERK, it has a nearly identical performance to HERK,
and so is not shown to avoid duplication.

Figure 14 shows the performance of the DSYMM kernel on square

matrices. We first observe that the asymptotic performance of the

MAGMA implementation is about 85% of the DGEMM performance

in Figure 12a, since both kernels have very similar design, except

for the processing of the Hermitian matrix. The speedups scored

against cuBLAS ranges from 1.7× up to more than 7× as the sizes

Figure 13: Performance of vbatched DSYRK (n is random, k

= 32).

get smaller than 100. In addition, our solution is asymptotically 4×
faster than MKL.

Figure 14: Performance of vbatched DSYMM.

In Figure 15, we observe that the performance of the DTRMM
kernel is generally less than the performances of the DGEMM and

the DSYMM kernels, in Figures 12a and 14, respectively. The reason

behind this behavior is that the TRMM operation is done in-place

(e.g., B = A × B), which imposes a certain order of execution

(Figure 7) to respect the data dependency. This is unlike the em-

barrassingly parallel design of GEMM and HEMM, where each TB is

totally independent from other TBs. The MAGMA kernel is 1.2×
to 6.5× faster than cuBLAS. It also scores 3× asymptotic speedups

against the CPU implementation.

We show two performance graphs for the DTRSM kernel. The

first is shown in Figure 16a, which considers the square problem:

(Am×m×Xm×n=Bm×n ,m = n). Such a problem can be considered

as an upper bound test. In Figure 16a, we observe that the two pro-

posed approaches are asymptotically close to each other, with the

MAGMA w/solve routine being slightly better. This means that the

overheads associated with the MAGMA w/inv routine are minor if

the problem sizes are not very small. TheMAGMAw/solve routine is

2× to 12× faster than cuBLAS. It is also 2.5× faster (asymptotically)

than MKL. Figure 16a also shows that the performance graph of the

MAGMA w/solve kernel has a similar shape, but less performance

Novel HPC Techniques for GPU Batched BLAS ICS ’17, June 14-16, 2017, Chicago, IL, USA

Figure 15: Performance of vbatched DTRMM.

than the DTRMM, although the two routines have a nearly identi-

cal design. The reason is that the TRSM kernel for small matrices

(Figure 10) imposes a more serial execution than the corresponding

TRMM code in Figure 6, which is basically a matrix multiplication

in shared memory.

The second TRSM test (Figure 16b) is a more practical test case

that is found in Cholesky factorization of the lower triangular part

of a Hermitian matrix, which is of the form (Xm×n×AH
n×n=Bm×n).

In batched workloads, we use a small value of n. Figure 16b shows
an example with n = 32. In Figure 16b, however, we observe a

larger gap between theMAGMAw/solve and theMAGMAw/inv rou-

tines. Since the figure represents smaller problems, the overheads

associated with the MAGMA w/inv routine become more signifi-

cant. We also observe more competition from the CPU, which by

nature achieve very good performance in serial executions of small

problems. The MAGMA w/solve routine is 3.5× to more than 15×
faster than cuBLAS. It also maintains a 1.8× asymptotic speedup

against the CPU implementation using MKL.

7 CONCLUSION

This paper introduced an abstraction for batching execution of

many small problems of different sizes using GPUs. As a case study,

the paper applies the abstract design concepts to the complete

set of Level-3 BLAS kernels. Thanks to a carefully designed and

thoroughly tuned GEMM kernel, and a GEMM-concentric design, the
proposed kernels achieve high performance on a modern GPU

and are significantly faster than other state-of-the-art approaches.

Future directions include applying the same design concepts for

more routines, such as one-sided factorizations and singular value

decomposition, and studying the impact of such batched routines

on real applications.

ACKNOWLEDGEMENT

This research was supported by the Exascale Computing Project (17-

SC-20-SC), a collaborative effort of the U.S. Department of Energy

Office of Science and the National Nuclear Security Administration.

The work was also partially supported by Nvidia and NSF under

grant No. 1514406.

(a) Solve Am×n ·Xn×n=Bn×n , (m = n)

(b) Solve Xm×n ·An×n=Bm×n , (n = 32)

Figure 16: Performance of vbatched DTRSM.

REFERENCES
[1] Ahmad Abdelfattah, Azzam Haidar, Stanimire Tomov, and Jack Dongarra. 2016.

Performance, Design, and Autotuning of Batched GEMM for GPUs. In High
Performance Computing - 31st International Conference, ISC High Performance
2016, Frankfurt, Germany, June 19-23, 2016, Proceedings. 21–38. DOI:http://dx.
doi.org/10.1007/978-3-319-41321-1 2

[2] M.J. Anderson, D. Sheffield, and K. Keutzer. 2012. A Predictive Model for Solving
Small Linear Algebra Problems in GPU Registers. In IEEE 26th International
Parallel Distributed Processing Symposium (IPDPS).

[3] Hartwig Anzt, Blake Haugen, Jakub Kurzak, Piotr Luszczek, and Jack Dongarra.
2015. Experiences in autotuning matrix multiplication for energy minimization
on GPUs. Concurrency and Computation: Practice and Experience 27, 17 (2015),
5096–5113. DOI:http://dx.doi.org/10.1002/cpe.3516

[4] Alexander A Auer, Gerald Baumgartner, David E Bernholdt, Alina Bibireata,
Venkatesh Choppella, Daniel Cociorva, Xiaoyang Gao, Robert Harrison, Sriram
Krishnamoorthy, Sandhya Krishnan, Chi-Chung Lam, Qingda Luc, Marcel Nooi-
jene, Russell Pitzerf, J Ramanujamg, P Sadayappanc, and Alexander Sibiryakovc.
2006. Automatic code generation for many-body electronic structure methods:
the tensor contraction engine. Molecular Physics 104, 2 (2006), 211–228.

[5] Ali Charara, Hatem Ltaief, and David E. Keyes. 2016. Redesigning Triangular
Dense Matrix Computations on GPUs. In Euro-Par 2016: Parallel Processing -
22nd International Conference on Parallel and Distributed Computing, Grenoble,
France, August 24-26, 2016, Proceedings. 477–489. DOI:http://dx.doi.org/10.1007/
978-3-319-43659-3 35

[6] Azzam Haidar, Tingxing Dong, Piotr Luszczek, Stanimire Tomov, and Jack Don-
garra. 2015. Batched matrix computations on hardware accelerators based
on GPUs. IJHPCA 29, 2 (2015), 193–208. DOI:http://dx.doi.org/10.1177/
1094342014567546

[7] Azzam Haidar, TingxingTim Dong, Stanimire Tomov, Piotr Luszczek, and Jack
Dongarra. 2015. A Framework for Batched and GPU-Resident Factorization
Algorithms Applied to Block Householder Transformations. In High Perfor-
mance Computing, Julian M. Kunkel and Thomas Ludwig (Eds.). Lecture Notes
in Computer Science, Vol. 9137. Springer International Publishing, 31–47. DOI:

ICS ’17, June 14-16, 2017, Chicago, IL, USA Abdelfattah et al.

http://dx.doi.org/10.1007/978-3-319-20119-1 3
[8] Azzam Haidar, Piotr Luszczek, Stanimire Tomov, and Jack Dongarra. 2015. To-

wards Batched Linear Solvers on Accelerated Hardware Platforms. In Proceedings
of the 20th ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming (PPoPP 2015). ACM, ACM, San Francisco, CA.

[9] Innovative Computing Laboratory at the University of Tennessee 2014. Matrix
Algebra on GPU and Multicore Architectures (MAGMA). (2014). Available at
http://icl.cs.utk.edu/magma/.

[10] Intel Corporation 2016. Intel Math Kernel Library. (2016). Available at http:
//software.intel.com/intel-mkl/.

[11] Chetan Jhurani and Paul Mullowney. 2013. A GEMM interface and implementa-
tion on NVIDIA GPUs for multiple small matrices. CoRR abs/1304.7053 (2013).
http://arxiv.org/abs/1304.7053

[12] J. Kurzak, H. Anzt, M. Gates, and J. Dongarra. 2015. Implementation and Tuning
of Batched Cholesky Factorization and Solve for NVIDIA GPUs. Parallel and
Distributed Systems, IEEE Transactions on PP, 99 (2015), 1–1. DOI:http://dx.doi.
org/10.1109/TPDS.2015.2481890

[13] Jakub Kurzak, Stanimire Tomov, and Jack Dongarra. 2012. Autotuning GEMM
Kernels for the Fermi GPU. IEEE Transactions on Parallel and Distributed Systems
23, 11 (November 2012), 2045–2057.

[14] Junjie Lai and Andre Seznec. 2013. Performance Upper Bound Analysis and
Optimization of SGEMM on Fermi and Kepler GPUs. In Proceedings of the 2013
IEEE/ACM International Symposium on Code Generation and Optimization (CGO)
(CGO ’13). IEEE Computer Society, Washington, DC, USA, 1–10. DOI:http:
//dx.doi.org/10.1109/CGO.2013.6494986

[15] Y. Li, J. Dongarra, and S. Tomov. 2009. A Note on Auto-tuning GEMM for GPUs.
In Proceedings of the 2009 International Conference on Computational Science,
ICCS’09. Springer, Baton Roube, LA.

[16] O.E.B. Messer, J.A. Harris, S. Parete-Koon, and M.A. Chertkow. 2012. Multi-
core and Accelerator Development for a Leadership-Class Stellar Astrophysics
Code. In Proceedings of ”PARA 2012: State-of-the-Art in Scientific and Parallel
Computing.”.

[17] Rajib Nath, Stanimire Tomov, and Jack Dongarra. 2010. An Improved Magma
Gemm For Fermi Graphics Processing Units. Int. J. High Perform. Comput. Appl.
24, 4 (Nov. 2010), 511–515. DOI:http://dx.doi.org/10.1177/1094342010385729

[18] NVIDIA Corporation 2016. NVIDIA CUDA Basic Linear Algebra Subroutines
(CUBLAS). (2016). Available at https://developer.nvidia.com/cublas.

[19] Villa Oreste, Massimiliano Fatica, Nitin A. Gawande, and Antonino Tumeo. 2013.
Power/Performance Trade-offs of Small Batched LU Based Solvers on GPUs. In
19th International Conference on Parallel Processing, Euro-Par 2013 (Lecture Notes
in Computer Science), Vol. 8097. Aachen, Germany, 813–825.

[20] Villa Oreste, Nitin A. Gawande, and Antonino Tumeo. 2013. Accelerating Sub-
surface Transport Simulation on Heterogeneous Clusters. In IEEE International
Conference on Cluster Computing (CLUSTER 2013). Indianapolis, Indiana.

[21] Guangming Tan, Linchuan Li, Sean Triechle, Everett Phillips, Yungang Bao,
and Ninghui Sun. 2011. Fast Implementation of DGEMM on Fermi GPU. In
Proceedings of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis (SC ’11). ACM, New York, NY, USA, Article 35,
11 pages. DOI:http://dx.doi.org/10.1145/2063384.2063431

[22] S. Tomov, R. Nath, H. Ltaief, and J. Dongarra. 2010. Dense Linear Algebra
Solvers for Multicore with GPU Accelerators. In Proc. of the IEEE IPDPS’10. IEEE
Computer Society, Atlanta, GA, 1–8. DOI: 10.1109/IPDPSW.2010.5470941.

[23] Vasily Volkov and James Demmel. 2008. Benchmarking GPUs to tune dense linear
algebra. In SC ’08: Proceedings of the 2008 ACM/IEEE conference on Supercomputing.
IEEE Press, Piscataway, NJ, USA, 1–11.

[24] Vasily Volkov and James W. Demmel. 2008. LU, QR and Cholesky Factoriza-
tions using Vector Capabilities of GPUs. Technical Report UCB/EECS-2008-49.
University of California, Berkeley. Also available as LAPACK Working Note 202.

[25] Ian Wainwright. April, 2013. Optimized LU-decomposition with Full Pivot for
Small Batched Matrices. (April, 2013). http://on-demand.gputechconf.com/
gtc/2013/presentations/S3069-LU-Decomposition-Small-Batched-Matrices.pdf
GTC’13 – ID S3069.

[26] SENCER NURI YERALAN, TIMOTHY A DAVIS, SID-LAKHDAR WISSAM M,
and SANJAY RANKA. 2015. Algorithm 9xx: Sparse QR Factorization on the
GPU. ACM Trans. Math. Software (2015). http://faculty.cse.tamu.edu/davis/
publications files/qrgpu revised.pdf

