Available online at www.sciencedirect.com

ScienceDirect Procedia

Computer Science

CrossMark

Procedia Computer Science 108C (2017) 1783—-1792

International Conference on Computational Science, ICCS 2017, 12-14 June 2017,
Zurich, Switzerland

Variable-Size Batched Gauss-Huard for
Block-Jacobi Preconditioning

Hartwig Anzt!, Jack Dongarral??, Goran Flegar*, Enrique S. Quintana-Orti?,
and Andrés E. Tom4s?

! Tnnovative Computing Lab, University of Tennessee, Knoxville, Tennessee, US
hanzt@icl.utk.edu, dongarra@icl.utk.edu
2 Qak Ridge National Laboratory, USA
3 School of Computer Science, University of Manchester, United Kingdom
4 Depto. Ingenieria y Ciencia de Computadores, Universidad Jaume I (UJI), Castellén, Spain
flegar@uji.es, quintana@uji.es, tomasan@uji.es

Abstract

In this work we present new kernels for the generation and application of block-Jacobi precon-
ditioners that accelerate the iterative solution of sparse linear systems on graphics processing
units (GPUs). Our approach departs from the conventional LU factorization and decomposes
the diagonal blocks of the matrix using the Gauss-Huard method. When enhanced with column
pivoting, this method is as stable as LU with partial /row pivoting. Due to extensive use of GPU
registers and integration of implicit pivoting, our variable size batched Gauss-Huard implemen-
tation outperforms the batched version of LU factorization. In addition, the application kernel
combines the conventional two-stage triangular solve procedure, consisting of a backward solve
followed by a forward solve, into a single stage that performs both operations simultaneously.

© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the International Conference on Computational Science

Keywords: Sparse linear systems, iterative methods, block-Jacobi preconditioner, linear systems, Gauss-
Huard factorization, Gauss-Jordan elimination, graphics processing units (GPUs)

1 Introduction

Iterative methods for the solution of sparse linear systems can strongly benefit from the integra-
tion of a preconditioner that is inexpensive to calculate and apply, and improves the convergence
rate of the iterative scheme [14]. On a parallel system, the efficiency of the preconditioner also
depends on how well these two building blocks, preconditioner calculation and application, can
be formulated in terms of parallel algorithms.

Block-Jacobi preconditioners are more complex to handle than their (scalar) Jacobi counter-
parts, as they base the scaling on the inverse of the block diagonal. Nevertheless, the additional
effort can be justified, as block-Jacobi preconditioners often provide faster convergence for
problems that inherently carry a block structure.

1877-0509 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the International Conference on Computational Science
10.1016/j.procs.2017.05.186

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2017.05.186&domain=pdf

1784

Hartwig Anzt et al. / Procedia Computer Science 108C (2017) 1783-1792

The higher cost of block-Jacobi schemes comes from extracting the diagonal blocks from the
coefficient matrix of the linear system, which is typically stored using a specialized data structure
for sparse matrices, and the scaling with the inverse of this collection of small independent
blocks. The latter can be realized by either explicit inversion in the preconditioner setup phase,
or by generating LU factors that are then used in triangular solves during the preconditioner
application (solve phase). Here, we note that parallelism in block-Jacobi preconditioners comes
from the existence of multiple independent problems of small size.

In [3] we introduced a batched routine for GPUs that explicitly generates the block-inverse
of a block-Jacobi preconditioner. Our implementation, based on Gauss-Jordan elimination
(BGJE), 1) integrates an efficient scheme to extract the required matrix entries from the sparse
data structures, 2) applies an implicit pivoting strategy during the inversion, and 3) computes
the inverses using the GPU registers. As a result, our BGJE kernel clearly outperforms the
batched LU-based factorization kernel in MAGMA [12].

In this paper we revisit the computation of block-Jacobi preconditioners on GPUs via vari-
able size batched routines, making the following contributions:

e Our block-Jacobi preconditioner generation computes a triangular decomposition of the
diagonal blocks, avoiding the computationally expensive and numerically dubious explicit
generation of inverses.

e Instead of utilizing the conventional LU factorization for the decomposition, we rely on
the Gauss-Huard (GH) algorithm [11]. The cost of this algorithm is analogous to that
of the LU-based method, and much lower than the cost of an explicit inversion (such as
GJE). Furthermore, when combined with column pivoting, GH offers a numerical stability
that is comparable with that of the LU-based method with partial pivoting [9].

e In contrast to the batched LU factorization kernels in MAGMA, and the GPU parallel
version of the GH algorithm in [6], we design our CUDA kernel to address the small
problems of variable size arising in the computation of the block-Jacobi preconditioner
by heavily exploiting the GPU registers. Furthermore, we reduce data movements by
performing the column permutations (required for pivoting) implicitly.

2 Background and Related Work

Block-Jacobi preconditioning. The block-Jacobi method arises as a blocked variation of its
(scalar) Jacobi counterpart that extends the idea of diagonal scaling to block-diagonal inversion
with the diagonal blocks of A gathered into D = diag(D1, Da,...,Dy), D; € R™*™ § =
1,2,...,N.

An important question in this context is how to choose the diagonal blocks. In the optimal
case, these blocks should reflect the properties of the coefficient matrix A. Fortunately, many
linear systems exhibit some inherent block structure. For example, if A comes from a finite ele-
ment discretization of a partial differential equation (PDE), each element typically has multiple
variables associated with it [7]. These variables are typically tightly coupled, leading to dense
diagonal blocks. As all variables belong to the same element, they share the same column spar-
sity pattern. Such sets of variables are often referred to as supervariables. A popular strategy to
determine the blocks for block-Jacobi is supervariable blocking [7], which is based on identifying
variables sharing the same column-nonzero-pattern. Depending on the predefined upper bound
for the size of the blocks, multiple supervariables adjacent in the coefficient matrix can be ag-
glomerated within the same diagonal block. To help ensure that supervariables accumulated

Hartwig Anzt et al. / Procedia Computer Science 108C (2017) 1783-1792

into the same Jacobi block are coupled, the matrix should be ordered so that nearby variables
are also close in the PDE mesh. This is satisfied for locality-preserving ordering techniques
such as reverse Cuthill-McKee or natural orderings [7].

There exist different strategies of employing a block-Jacobi preconditioner in an iterative
solver setting. One option is to explicitly compute the block-inverse before the iterative solution
phase, and apply the preconditioner in terms of a matrix-vector multiplication. A second
approach is to extract the diagonal blocks in the preconditioner setup phase, and solve one
linear system per block within the preconditioner application. In-between these strategies falls
the idea (explored in this paper) of factorizing the diagonal blocks in the setup, and performing
small triangular solves in the preconditioner application. These three strategies differ in the
workload size, and how this work is distributed between the preconditioner setup phase and
the preconditioner application phase.

Solution of linear systems. The conventional procedure to solve a linear system with an
m x m coefficient matrix D; commences with the computation of the LU factorization (with
partial pivoting) P;D; = L;U;, where L; is unit lower triangular, U, is upper triangular, and P;
is a permutation [10]. This is followed by the application of P; to the right-hand side vector;
and the solution of two triangular systems with L; and U;. Assuming a single right-hand side
vector, this four-stage procedure requires 2m3/3 floating-point operations (flops) for a linear
system of order m.

Gauss-Jordan elimination (GJE) is an efficient procedure for matrix inversion. In terms
of theoretical cost and practical performance, GJE is competitive with the standard approach
based on the LU factorization [13, 5]. However, if the goal is not the matrix inversion but
retrieving the solution of a linear system, GJE incurs significant overhead, requiring 2m? flops.
The Gauss-Huard (GH) algorithm is a variant of GJE for the solution of linear systems with
a computational cost consistent with that of the LU-based approach. Furthermore, the GH-
based solver can be combined with a column-version of the standard partial (row) pivoting to
offer a numerical stability that is comparable with that of the LLU-based solver enhanced with
partial pivoting [9]. Figure 1 illustrates a Matlab implementation of the GH solver for a system
D;z; = b;. Column-pivoting is applied to the coefficient matrix during the factorization, and
undone in the final step of the algorithm.

In the GH algorithm we distinguish a “decomposition phase”, operating exclusively on the
matrix entries; and an “application phase”, which transforms the right-hand side vector of the
linear system into the sought-after solution. Although we realize that a GH decomposition does
not provide a factorization in the classical LU interpretation, we use this term to distinguish
the operations on the system matrix (in the preconditioner setup phase) from those on the
right-hand side vector (in the preconditioner application).

GH with implicit pivoting. Pivoting can be a costly operation on parallel architectures,
as this process involves two different memory access patterns. For example, column pivoting
requires the selection of the largest element in a single row, and this is followed by an exchange
of two columns at each iteration of the algorithm. If the matrix rows are distributed among
the processors column-wise, the selection can be performed using a parallel reduction, while
the column swap exposes little parallelism since all but the two processors involved in the swap
remain idle. If the matrix is distributed row-wise the situation is reversed.

To tackle this problem for GJE, in [3] we introduced implicit (row) pivoting, eliminating the
sequential part of the process by postponing the exchange step, and applying the swaps from
all iterations at the end of the algorithm in parallel. In GJE, implicit (row) pivoting is enabled
by noticing that its iterations are row-oblivious (i.e., the operations performed do not depend
on the actual position of the row in the matrix, but only on the currently selected pivot row).

1785

1786

Hartwig Anzt et al. / Procedia Computer Science 108C (2017) 1783-1792

1|% Input :m x m nonsingular matrix block Di, right—hand side bi
2|% Output : Di overwritten by the GH factorization , solution xi

3lp = [1:m];

4 for k = 1 : m

5 % Row elimination. Matrix —vector product (GEMV)

6 Di(k,k:m) = Di(k,k:m) - Di(k,1:k-1) * Di(1l:k-1,k:m);
7 bi (k) = bi(k) - Di(k,1:k-1) * bi(l:k-1);

8 % Column pivoting (explicit)

9 [abs_ipiv, ipiv] = max(abs(Di(k,k:m)));

10 ipiv = ipiv+k-1;

11 [Di(:,ipiv), Di(:,k)] = swap(Di(:,ipiv), Di(:,k));

12 [p(ipiv), p(k)] = swap(p(ipiv), p(k));

13 % Diagonalization. Vector scaling (SCAL)

14 Di(k,k+1:m) = Di(k,k+1:m) / Di(k,k);

15 bi (k) = bi(k) / Di(k,k);

16 % Column elimination. Outer product (GER)

17 Di(1:k-1,k+1:m) = Di(1:k-1,k+1:m) - Di(1:k-1,k) * Di(k,k+1:m);
18 bi(1:k-1) = bi(1:k-1) - Di(1:k-1,k) * bi(k);
19| end

20| xi(p) = bij;

Figure 1: Simplified loop-body of the basic GH implementation in Matlab notation.

This is different for GH, as the operations performed on the columns do depend on the
column position in the matrix. Precisely, iteration ¢ updates only the columns with index greater
than ¢. By noticing that all the columns with smaller index were already chosen as pivots in an
earlier iteration, this requirement can be reformulated in a column-oblivious manner: iteration
7 updates only the columns that have not yet been chosen as pivot. This binary predicate still
does not provide enough information to compute the GEMYV on line 6 of Figure 1, as the order
of elements in the input vector depends on the order of columns in the matrix: j-th value in the
vector is the i-th element of the j-th column (i.e., the i-th element of the column chosen as pivot
in the j-th iteration). Without exchanging the columns, this information can be propagated by
maintaining a list of previous pivots.

This implicit pivoting strategy incurs some instruction and memory overhead, however in-
significant to the savings coming from omitting explicit column swapping. We note that intro-
ducing implicit pivoting in GH preserves the numerical stability of the original algorithm.

Related work on batched routines. The term “batched” refers to a setting where a certain
computational kernel is applied to a large set of (independent) data items [1]. The motivation
for having a special design (and interface) of those routines is that applying them to a single
data item does not fully utilize the hardware resources, so handling the distinct problems
serially leaves them unused. The independence of the data items allows the application of
the operations to multiple data items in parallel. In particular, for architectures providing
a vast amount of hardware concurrency, such as GPUs, replacing standard algorithms with
data-parallel implementations can result in significant performance gains [2].

For the previously mentioned GJE, we demonstrated in [3] how the inversion of a set of
small linear systems can be realized efficiently on NVIDIA GPUs. There we also described how
to combine the batched routine with data extraction and insertion steps to efficiently generate
a block-inverse matrix for block-Jacobi preconditioning.

Hartwig Anzt et al. / Procedia Computer Science 108C (2017) 1783-1792

3 Design of CUDA Kernels

Utilizing GH for a block-Jacobi preconditioner requires the initial extraction of the diagonal
blocks from the matrix A stored in the compressed sparse row (CSR) format (as required by
MAGMA [12]). After this, the sequence of blocks is fed into a batched version of the GH algo-
rithm (BGH), and the resulting decomposition, along with the pivoting information, is inserted
back into the preconditioner matrix and the pivot vector, respectively. The preconditioner
application step uses this information to apply BGH to the right-hand side vector, ultimately
turning each vector block into the solution of the corresponding small linear system. Details of
the distinct steps and their efficient realization on GPUs are described in this section.

Variable Size Batched Gauss-Huard decomposition. The BGH kernel applies the GH
algorithm to factorize a set of small independent blocks. Following the kernel design in [3], the
BGH implementation takes advantage of the large register count and warp shuffle instructions
in recent GPU architectures. The GH decomposition commences by reading the diagonal block,
with each thread storing a single column in registers. The actual computation is realized entirely
in the registers, using warp shuffles for inter-thread communication. This approach eliminates
the latency of memory and caches, as well as the load and store instructions, decreasing the
complexity of the kernel. Column permutations required to perform the pivoting can be avoided
by using implicit pivoting as described in Section 2. The application of the pivoting is delayed
until the preconditioner matrix is inserted into the sparse data structure. An additional register
array is used to store the pivoting information, and this array is replicated in each thread for
quick access during the GEMYV step.

The use of warp shuffles and registers limits the scope of the kernel to blocks of size up to
32, as the number of threads cannot exceed the warp size. Nevertheless, this covers the typical
application scenario for block-Jacobi preconditioning [3].

Batched Gauss-Huard application. The solution of the linear system lacks any reuse of
matrix elements. Hence, the kernel has to be designed with focus on optimizing memory access.
Since the solution vector is needed in each step of the GH algorithm, it is read into registers in
an interleaved pattern, with each thread storing one component of the vector.

Each outer loop iteration k of the GH application algorithm updates the k-th element of
the solution vector with the dot product between the first £k — 1 elements of the k-th matrix
row and the solution vector (Figure 1, line 7). This can be implemented as a parallel reduction
using warp shuffles. After that, a parallel AXPY updates the first £ — 1 elements of the solution
vector using the first k¥ — 1 elements of k-th column (Figure 1, line 17). To attain coalescent
memory access for both operations, the matrix 151 can be decomposed into lower and upper
parts: D; = L; + U;, with the diagonal belonging to the former. Matrix L; is stored in row-
major order to enable coalescent access to its rows and U; in column-major order to provide
fast access to the columns. Alternatively, matrix U; can be transposed with respect to the
anti-diagonal to convert its columns into rows while preserving its triangular structure. The
resulting matrix D; = L, + UiAT is then stored in row-major order. In this manner, both, the
rows of L; and the columns of U; (i.e. the rows of UAT) can be accessed in coalescent manner.

The application process is completed by writing the solution vector back to memory, taking
into account the permutation generated in the decomposition step.

Batched data extraction and insertion. The extraction of a diagonal block from the sparse
coefficient matrix is similar to the “shared extraction” strategy in [3]. A notable difference,
though, is that the block has to be distributed among the threads in column-wise fashion. As a
result, the strategy can be implemented using only a fraction of the amount of shared memory.

1787

1788 Hartwig Anzt et al. / Procedia Computer Science 108C (2017) 1783-1792

Block size 16 Block size 32
‘ : : ‘ ‘ ‘ 16 ; :

[o2]
o

—-BGJE
—-BGH ||
— BGHT

—4-BGJE

o
o
T

'S
o
T

x x
x X % g3
XKo" XXX MR VTS O N T3 L
>

n
o
T

XXX X 3¢ X 36 %

A A

o
T

Speedup over LU factorization
W
o

Speedup over LU factorization

o
o

15 2 25 3 35 4 0 05 1 15 2 25 3 35 4
Batch size x10% Batch size «10%

o
oL
3
-

Figure 2: Speedup of BGJE and BGH / BGHT over BLU taken from the MAGMA software
package.

Once the extraction of a single row to shared memory is completed, the elements of this row
are immediately copied into the registers (one element per thread), making the shared memory
locations available for the extraction of the next row. Thus, conversely to the shared memory
extraction in [3], the shared memory has to hold only a single row of the diagonal block.

The insertion step writes the decomposed blocks ﬁl (or Dz) back into the sparse matrix
structure. Storing 51 is faster due to coalescent memory writes. At the same time, storing ﬁz
results in noncoalescent memory access to the matrix U; during the preconditioner application.
Conversely, storing ﬁi moves the cost of noncoalescent memory access from preconditioner ap-
plication to preconditioner setup. The noncoalescent memory accesses when writing D, can be
avoided by first preparing the matrix in shared memory, and then writing it to the main mem-
ory in coalescent fashion. However, this significantly increases shared memory consumption,
decreasing the number of warps that can be scheduled per SM, and ultimately achieves lower
performance. Consequently, we refrain from presenting performance results for this approach.

4 Numerical Experiments

We evaluate the block-Jacobi preconditioner based on GH by comparing the performance of the
BGH implementation against kernels offering similar functionality. Furthermore, we assess the
effectiveness of the arising preconditioner within an iterative solver setting. We emphasize that
the implementations are part of the same software stack, and that the kernel implementations
are similar in design, and received the same level of tuning. This ensures a fair comparison and
conclusions with fair credibility.

Hardware and software framework. We use an NVIDIA Tesla P100 GPU with full double
precision support. We employ NVIDIA’s GPU compilers that are shipped with CUDA toolkit
8.0. All kernels are implemented using the CUDA programming model and are designed to
integrate into the MAGMA-sparse library [12]. MAGMA-sparse is also leveraged to provide a
testing environment, the block-pattern generation, and the sparse solvers. All computations
use double precision arithmetic, as this is the standard in scientific computations. Since the
complete algorithm is executed on the GPU, the details of the CPU are not relevant for the
following experimentation.

Performance of BGH. Figure 2 compares the performance of our BGH implementation

Hartwig Anzt et al. / Procedia Computer Science 108C (2017) 1783-1792

X
S,
&
N
o

25 T T T T T T I
—~BGJE [block size 4
—BGH 120 F|block size 8 [
21 BGHT J 100 | [block size 16
- ” [Cblock size 24
Eqst ¢ go LI block size 32
o 8
"g 1R 1 g eof
> W [
o w/ P 40+
051 1
20+
:
0 0 P
5 10 15 20 25 30 -100 -50 0 50 100
Block size BGH needs more iterations BGJE needs more iterations

Figure 3: Left: Runtime of block-Jacobi application for distinct block sizes and a problem of
row size 1,000,000. Right: BiCGSTAB convergence variations when using block-Jacobi based
on BGJE or BGH.

with alternative approaches providing similar functionality. The baseline implementation is
the batched LU factorization (BLU) kernel provided in the MAGMA library (version 2.0 [12]),
designed for the LU factorization of a large set of small problems. We note that, conversely
to the BGJE and BGH kernels, the scope of the BLU kernel is limited to settings where all
small systems are of the same same size. The results in the figure are expressed in terms
of speedup over this routine. BGJE is the implementation proposed in [3] which explicitly
generates a block-inverse for Jacobi preconditioning. For GH, we also include data for the
variant storing the upper triangular part transposed (BGHT), allowing for faster access during
the preconditioner application. As BLU currently only supports batches of equal-size problems,
while BGJE and BGH only work for problems of order up to 32, we limit the analysis to block
sizes 16 and 32.

For block size 16 (see left plot in Figure 2) and large batch counts, the BGJE kernel is about
6x faster than BLU; and we observe even larger speedups for smaller batch sizes. Adding the
transposed storage to the BGH kernel has a minor impact: for relevant batch sizes, both BGH
and BGHT are 12-20x faster than BLU. This is different for block size 32 (see right-hand side
plot in Figure 2): Adding the transposed storage to the BGH kernel reduces the speedup of
BGHT over BLU to values around 8.5x, but BGH remains more than 10x faster than BLU.
Even though BGJE computes the explicit inverse, and hence executes more operations than
BLU and GH, this kernel is more than 7.5x faster than BLU. For completeness, we mention
that for block size 32, BGJE delivers about 600 GFLOPS (billions of flops/second) on this
architecture (see [3]).

Performance of block-Jacobi application. Figure 3 (left) shows the runtime of three
preconditioner application strategies: sparse matrix-vector multiplication if the preconditioner
was generated using GJE (BGJE), versus Gauss-Huard application using diagonal blocks D;
(BGH) or D; (BGHT). We fix the problem size to 1 million rows and consider different diagonal
block sizes. As could be expected, the approach based on the sparse matrix-vector product is
always faster than both GH-based application strategies, which can be attributed to the lower
number of flops and better workload balance.

Even though half of the memory accesses in BGH are noncoalescent, we observe only minor
performance deviations from the BGHT kernel for block sizes smaller than 16. An explanation
is that smaller blocks fit into less cache lines, so they can be read only once, and kept in cache for
the duration of the kernel. If this happens, the noncoalescent reads are as fast as the coalescent

1789

1790

Hartwig Anzt et al. / Procedia Computer Science 108C (2017) 1783-1792

Block size 16
10° s
—~BGJE
° BGH
10" + BGHT

_
(=]
o

Runtime [s]

_.
<

50 100 150 200 250 300

) 0 s

Test matrices 1 2345678910
Test matrices

Block size 32
102

—+BGJE
° BGH g
10'H + BGHT E

_
(=)
o

Runtime [s]

_.
Ol

50 100 150 200 250 300
Test matrices 1 2345678 910
Test matrices

Figure 4: Left: Total execution time (setup+solve) for BICGSTAB enhanced with block-Jacobi
preconditioning based on either BGJE, BGH or BGHT. Top-level results are for a block-size
bound 16; bottom-level results are for a block-size bound 32. Right: Decomposition of the total
execution time into preconditioner setup time and iterative solver runtime for the left-most test
cases.

ones, and both strategies result in the same performance. Once the blocks become too large for
cache, some cache lines need to be evicted during the GH application, and noncoalescent reads
in BGH start to impact the performance of this approach.

Iterative solver analysis. We next assess the efficiency of the distinct strategies for block-
Jacobi preconditioning in an iterative solver framework. For this purpose we integrate the block-
Jacobi preconditioner(s) into the BICGSTAB iterative solver provided in MAGMA-sparse [4],
and test the preconditioned solver setting for a variety of linear systems. The test matrices are
chosen from the SuiteSparse matrix collection [8], combined with a right-hand side vector with
all entries equal to one. We start the iterative solver with an initial guess of zero, and stop once
the relative residual norm is decreased by six orders of magnitude. We allow for up to 10,000
iterations.

Hartwig Anzt et al. / Procedia Computer Science 108C (2017) 1783-1792

First, we evaluate whether the difference between GJE and GH in terms of numerical stabil-
ity has any impact on the preconditioner efficiency. At this point, we recognize that rounding
can have significant effect on a preconditioner’s efficiency, and a more accurate preconditioner
does not inevitably result in faster convergence of the iterative solver. Figure 3 (right) displays
the convergence difference of BICGSTAB depending on whether the block-Jacobi preconditioner
is based on GH or GJE. The x-axis of the histogram reflects the iteration overhead; the y-axis
shows the number of test cases for which GJE provided a “better” preconditioner (bars left
of center) or GH did (bars right of center). For all block sizes, the majority of the problems
is located in the center, reflecting the cases where both methods resulted in the same itera-
tion count. Furthermore, the histogram exposes a high level of symmetry, suggesting that the
numerical stability of the method based on explicit inversion plays a minor role.

While being similar from the convergence rate point of view, the pending question is whether
there exist any performance differences making GJE or GH superior. The plot in the left-
hand side of Figure 4 arranges the test systems according to increasing execution time of the
BiCGSTAB solver preconditioned with block-Jacobi based on BGJE. The block structure was
generated via the supervariable blocking routine provided by MAGMA-sparse with a maximum
block size of 16 (top) and 32 (bottom). The execution times comprise both the preconditioner
setup and the iterative solver times. In addition to the block-Jacobi using BGJE, we also
include the total solver runtime for the variants using BGH and BGHT.

In most cases, the BGH and BGHT execution times are close, or even match those of
BGJE. In particular for block size 32, the results may suggest that BGJE is slightly better if
the execution time is large (right-most data). Conversely, BGH and BGHT are faster if the
solution time is small (left-most data). On the right of Figure 4 we decompose the total solution
time into its preconditioner setup and iterative solver components for the first 10 test problems.
For these instances, the preconditioner setup time accounts for a significant portion of the total
solver execution time, and the higher cost of explicit block-inversion is not compensated for by
the slightly faster preconditioner application.

5 Concluding Remarks

We have designed data-parallel GPU kernels for the efficient generation and application of
block-Jacobi preconditioners, based on the Gauss-Huard method, which can be embedded into
any Krylov-based iterative solver for sparse linear systems. Our kernels exploit the intrinsic par-
allelism in the two algorithmic steps, preconditioner generation and preconditioner application.
In contrast, our kernel implementation is specifically designed for small block sizes, exploiting
the GPU registers to outperform their MAGMA counterparts by a large margin. Further-
more, our variable size batched Gauss-Huard kernel integrates an implicit version of column
pivoting to eliminate costly data movements due to column permutations, while delivering the
same numerical stability. Compared with block-Jacobi based on our register-tuned batched
Gauss-Jordan elimination, which is also designed for small block sizes, the variable size batched
Gauss-Huard kernels offer faster preconditioner generation and higher numerical stability, but
slower preconditioner application. Our experimental results, using a state-of-the-art NVIDIA’s
P100 GPU, are consistent with this analysis. Implementing the block-Jacobi preconditioner on
top of the batched Gauss-Huard provides better performance if the iterative solver converges
within a small number of iterations. In these cases the cost of the preconditioner generation is
considerable compared with the whole iterative solve (including the preconditioner application).

1791

1792

Hartwig Anzt et al. / Procedia Computer Science 108C (2017) 1783-1792

Acknowledgments

This material is supported by the U.S. Department of Energy Office of Science, Office of Ad-
vanced Scientific Computing Research, Applied Mathematics program under Award #DE-SC-
0010042. The researchers from UJI were supported by project TIN2014-53495-R of MINECO
and FEDER.

References

1]

2]

(8]
[9]
[10]
[11]
[12]
[13]

[14]

A. Abdelfattah, H. Anzt, J. Dongarra, M. Gates, A. Haidar, J. Kurzak, P. Luszczek, S. Tomov,
I. Yamazaki, and A. YarKhan. Linear algebra software for large-scale accelerated multicore com-
puting. Acta Numerica, 25:1-160, 5 2016.

A. Abdelfattah, A. Haidar, S. Tomov, and J. Dongarra. Performance tuning and optimization
techniques of fixed and variable size batched Cholesky factorization on GPUs. Procedia Computer
Science, 80:119-130, 2016. ICCS 2016.

H. Anzt, J. Dongarra, G. Flegar, and E. S. Quintana-Orti. Batched Gauss-Jordan elimination for
block-Jacobi preconditioner generation on GPUs. In 8th Int. Workshop Programming Models &
Appl. for Multicores & Manycores, PMAM, pages 1-10, 2017.

H. Anzt, J. Dongarra, M. Kreutzer, G. Wellein, and M. Koehler. Efficiency of General Krylov
Methods on GPUs — An Experimental Study. In 2016 IEEFE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), pages 683-691, 2016.

P. Benner, P. Ezzatti, E. Quintana-Orti, and A. Remén. Matrix inversion on CPU-GPU platforms
with applications in control theory. Concurrency and Computation: Practice and Ezperience,
25(8):1170-1182, 2013.

P. Benner, P. Ezzatti, E. S. Quintana-Orti, and A. Remdn. Revisiting the Gauss-Huard algorithm
for the solution of linear systems on graphics accelerators. In Parallel Processing and Applied
Mathematics: 11th International Conference, PPAM 2015, pages 505-514, 2016.

E. Chow and J. Scott. On the use of iterative methods and blocking for solving sparse triangular
systems in incomplete factorization preconditioning. Technical Report Technical Report RAL-P-
2016-006, Rutherford Appleton Laboratory, 2016.

T. A. Davis and Y. Hu. The University of Florida Sparse Matrix Collection. ACM Trans. on
Mathematical Software, 38(1):1-25, 2011.

T. J. Dekker, W. Hoffmann, and K. Potma. Stability of the Gauss-Huard algorithm with partial
pivoting. Computing, 58:225-244, 1997.

G.H. Golub and C.F. Van Loan. Matriz Computations. The Johns Hopkins University Press,
Baltimore, 3rd edition, 1996.

P. Huard. La méthode simplex sans inverse explicite. EDB Bull, Direction Etudes Rech. Sér. C
Math. Inform. 2, pages 79-98, 1979.

Innovative Computing Lab. Software distribution of MAGMA version 2.0. http://icl.cs.utk.
edu/magma/, 2016.

E. S. Quintana-Orti, G. Quintana-Orti, X. Sun, and R. van de Geijn. A note on parallel matrix
inversion. SIAM J. Scientific Computing, 22(5):1762-1771, 2001.

Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM, 2nd edition, 2003.

