
Optimized Batched Linear Algebra
for Modern Architectures

Jack Dongarra1,2,3, Sven Hammarling3, Nicholas J. Higham3,
Samuel D. Relton3(B), and Mawussi Zounon3(B)

1 University of Tennessee, Knoxville, TN, USA
dongarra@icl.utk.edu

2 Oak Ridge National Laboratory, Oak Ridge, TN, USA
3 School of Mathematics, The University of Manchester, Manchester, UK

sven.hammarling@btinternet.com,

{nick.higham,samuel.relton,mawussi.zounon}@manchester.ac.uk

Abstract. Solving large numbers of small linear algebra problems simul-
taneously is becoming increasingly important in many application areas.
Whilst many researchers have investigated the design of efficient batch
linear algebra kernels for GPU architectures, the common approach for
many/multi-core CPUs is to use one core per subproblem in the batch.
When solving batches of very small matrices, 2 × 2 for example, this
design exhibits two main issues: it fails to fully utilize the vector units
and the cache of modern architectures, since the matrices are too small.
Our approach to resolve this is as follows: given a batch of small matrices
spread throughout the primary memory, we first reorganize the elements
of the matrices into a contiguous array, using a block interleaved memory
format, which allows us to process the small independent problems as a
single large matrix problem and enables cross-matrix vectorization. The
large problem is solved using blocking strategies that attempt to optimize
the use of the cache. The solution is then converted back to the original
storage format. To explain our approach we focus on two BLAS routines:
general matrix-matrix multiplication (GEMM) and the triangular solve
(TRSM). We extend this idea to LAPACK routines using the Cholesky
factorization and solve (POSV). Our focus is primarily on very small
matrices ranging in size from 2 × 2 to 32 × 32. Compared to both MKL
and OpenMP implementations, our approach can be up to 4 times faster
for GEMM, up to 14 times faster for TRSM, and up to 40 times faster for
POSV on the new Intel Xeon Phi processor, code-named Knights Land-
ing (KNL). Furthermore, we discuss strategies to avoid data movement
between sockets when using our interleaved approach on a NUMA node.

1 Introduction

Over the last decade, the high-performance computing (HPC) community
has made significant strides in solving large-scale matrix problems efficiently.
Another major challenge is to achieve good performance when computing a
large batch of small matrix problems: this situation occurs commonly in applica-
tions including deep learning libraries [1,3], multifrontal solvers for sparse linear
c© Springer International Publishing AG 2017
F.F. Rivera et al. (Eds.): Euro-Par 2017, LNCS 10417, pp. 511–522, 2017.
DOI: 10.1007/978-3-319-64203-1 37



512 J. Dongarra et al.

systems [5], and radar signal processing [4] etc. In deep learning applications,
for example, many applications require the solution of thousands of indepen-
dent (and very small) general matrix-matrix multiplication (GEMM) in Eq. (1),
where batch count is number of independent problems in the batch.

C(i) ← α(i)A(i)B(i) + β(i)C(i), i = 1 : batch count. (1)

The challenge is to make more efficient use of computational cores than a
simple for loop around a single call to a vendor optimized GEMM kernel, where
there may not be enough work to keep the cores running at full efficiency. Note
that, depending on the application, the batch can contain matrices of different
sizes and α(i) and β(i) can have different values. But in this work, we focus on
the “fixed batch” case, which is more common in applications. In a fixed batch
the values of α and β are the same for all the problems in the batch and the
matrices have a constant size, i.e. the dimensions of A(i) are the same for all i
in [1, batch count] and similarly for the matrices B(i) and C(i).

To address the need for efficient libraries to perform batches of small linear
algebra operations in parallel, new APIs have been investigated and a com-
parative study of these APIs is given in [11]. While most research focuses on
providing high-performance batch linear algebra implementation for GPU archi-
tectures, there is—at the time of writing—no better solution than using one
core per problem when it comes to many/multi-core architectures. When solv-
ing batches of very small matrices, 2 × 2 for example, this design exhibits two
main problems. Due to the small size of the matrices we fail to fully utilize the
vector units and the cache of modern architectures.

In this work, we focus on level 3 BLAS routines because they are the critical
building blocks of many high-performance software. Our motivation to focus on
GEMM and triangular solve (TRSM) is that all of level 3 BLAS routines except
TRSM can be viewed as a specialized GEMM [8]. However, regardless of these
considerations, our proposed solutions are easily extended to all BLAS kernels
including the level 1 and 2 algorithms.

The key aspect of our approach is as follows: given a batch of small matrices
spread throughout RAM we first reorganize the elements of the matrices into a
contiguous array, using a block interleaved memory format, which allows us to
process the small independent problems as a single large matrix problem. The
large problem is solved using blocking strategies that attempt to optimize the
use of the cache. The solution is then converted back to the original storage
format.

Compared to the MKL batched BLAS implementation and an OpenMP for
loop around MKL BLAS kernels, our implementation is up to 4 times faster for
DGEMM and up to 14 times faster for DTRSM on the new self-hosted Intel Xeon
Phi processors, code named Knights Landing (KNL). By extending this idea to
LAPACK routines, specifically the Cholesky factorization and solve (POSV), we
can see that our approach can be extremely efficient and performs up to 40 times
faster than using an OpenMP for loop on the Intel KNL architecture.

The paper is organized as follows. In Sect. 2 we present the current state of the
art in batch BLAS algorithms and their limitations. Section 3 describes our app-



Optimized Batched Linear Algebra for Modern Architectures 513

roach, the block interleaved batch BLAS, followed by some performance analy-
ses. In Sect. 4, we discuss how to extend batch operations to include LAPACK
routines, with a focus on Cholesky factorization and solve. We then discuss the
main performance issues raised when using NUMA nodes in Sect. 5 before giving
some concluding remarks in Sect. 6.

2 Related Work

Motivated by the efficiency of vendor supplied libraries for small problems on
many/multi-core CPU architectures, the currently accepted method for solving
batches of small problems is to have a single core per problem in the batch [6].
Therefore, most of the effort in recent years has been devoted to developing
efficient batch kernels for GPUs. Our aim is to challenge the conventional wisdom
in many/multi-core CPU architectures, however a reader interested in efficient
CUDA kernels for batch BLAS operations may look at [2,7,9,10].

2.1 Multicore CPUs and Xeon Phi Implementations

At first glance, batched BLAS operations on multicore CPUs seemed to be
reduced to the choice between: (i) solving one problem at the time using all
the available cores or (ii) solving many independent problems in parallel using a
single core per problem. Whenever small matrices are used the second approach
is preferred can be implemented simply: merely an OpenMP for loop around
vendor supplied BLAS kernels is required.

When processing thousands of very small matrices, the error checking pro-
cedure implemented by most of optimized vendor kernels can be significantly
time-consuming. To alleviate this overhead, Intel MKL allows us to skip the
error checking thanks to the MKL DIRECT CALL or MKL DIRECT CALL SEQ macros.
Hence, the common wisdom for a fixed batched BLAS implementation con-
sists in checking the arguments once, as all the problems in the batch share the
same error prone arguments, then perform an OpenMP for loop over optimized
BLAS kernels.

While these solutions are acceptable for batches of matrices of medium size,
they may fail to exploit efficiently wide vector units on modern architectures.
For example, the AVX-512 vector units available in the Intel KNL, enable the
completion of 8 double precision vector operations within each cycle, while a
2 × 2 matrix can fill only half of such a vector unit.

Furthermore, some BLAS routines don’t offer enough parallelism. For exam-
ple in the case of batched TRSM, the computation of each entry of each right-
hand side requires a single division before the updates. When one right-hand side
is required, regardless of the matrix size, the common approach will perform only
one double precision division in one clock cycle on a core capable of 8 double
precision divisions. However, by using the interleaved memory layout described
in Sect. 3 one can saturate the vector units at all steps of the algorithm thanks
to cross-matrix vectorization.



514 J. Dongarra et al.

3 Data Layout Optimization

Dealing with thousands of independent, small matrices requires a careful choice
of memory layout, and a good memory layout should be user-friendly without
penalizing performance. There are currently 3 competing data layouts advocated
by the linear algebra community for batched BLAS operations. In this section,
we illustrate the underlying idea of each data layout using the example of solving
three independent 2 × 2 matrix problems (A(1),A(2), A(2)).

3.1 Pointer-to-pointer Layout

Most of the existing interfaces for both CPU and GPU architectures use an array
of pointers, where each pointer leads to a matrix in memory. We call this the
pointer-to-pointers (P2P) layout. As depicted in Fig. 1, it allows us to allocate
matrices independently. This is the solution currently used in cblas dgemm batch
and cublasDgemmBatched, the batch DGEMM kernels available in Intel MKL
11.3 beta and NVIDIA cuBLAS version 4.1, respectively. This approach is very
flexible but has two main issues as reported in [7,11]. First, the allocation and
deallocation of thousands of small matrices can be excessively time-consuming.
Second, processing very small matrices stored separately can increase the number
of memory accesses required and induces sub-optimal cache use. In addition, the
array of pointers approach suffers from high data movement costs when data is
offloaded to hardware accelerators.

Fig. 1. Pointer to pointer (P2P) memory layout. The three matrices are stored in
different memory locations in column major order.

3.2 Strided Layout

To alleviate the design issues intrinsic to the pointer to pointers memory layout,
NVIDIA cuBLAS advocated another interface called the strided layout [12]. It
consists of storing a collection of matrices in one contiguous block of memory.
As illustrated in Fig. 2, this involves allocating a large chunk of memory to store
all the Ai matrices.

Fig. 2. Strided memory layout. The three matrices are stored in one contiguous chunk
of memory.



Optimized Batched Linear Algebra for Modern Architectures 515

3.3 Interleaved Memory Layout

Solving batches of small size matrix problems on modern architectures is chal-
lenging because these architectures are primarily designed to address large-scale
problems. The main objective of the interleaved memory layout approach is to
reformulate the thousands of independent small BLAS operations as a single
large-scale problem. This involves providing a relevant way to store the indepen-
dent matrices. Interleaving the entries of different matrices enables cross-matrix
vectorization to fill the vector units on modern architectures. As illustrated in
Fig. 3, the interleaved layout is a permutation of the strided memory layout.

Fig. 3. Interleaved memory layout. The three matrices are stored in one contiguous
chunk of memory, but their elements are mixed together.

3.4 Design of Interleaved Batch BLAS

While the interleaved layout has the potential for better vectorization and data
locality, it requires redesigning the BLAS algorithms. This is achieved by adding
inner for loops to the original algorithms in order to create batches of float-
ing point operations. We illustrate this in a simplified version of an interleaved
TRSM displayed in Algorithm1. For the sake of simplicity and readability, A
and B denote the interleaved layout containing m×m lower triangular matrices
A(i) and the m × n right hand side matrices B(i), respectively; and the notation
A[i][j][idx] is used to refer to the entry ai,j of the matrix A(idx) in the batch.

Compared to the original TRSM algorithm, our interleaved version has an
additional for loop (Algorithm 1, line 5) that accesses each matrix in the batch.
Some operations have also been moved to the innermost loop (Algorithm 1, line
7 and 10), for the sake of better vectorization without affecting the numerical
stability. The innermost loop contains thousands of floating point operations
parallelized among cores thanks to the #pragma openmp parallel for directive
whilst the simd directive makes use of vector pipelines within each core.

3.5 Block Interleaved Layout

While the interleave layout increases the vectorization within the floating point
units, it may lead to a high cache miss rate: since the first entries of the matrices
are stored followed by the second entries etc., the next entries required by the
algorithm are unlikely to be in the cache at any given time. To alleviate this
problem, we divide the initial batch into small sub-batches (blocks), then apply
the interleaved strategy within each block. The block size is selected such that
each sub-batch could be solved efficiently by a single core. The optimal block size



516 J. Dongarra et al.

Algorithm 1. Interleaved TRSM algorithm:B(i) ← α(A(i))−1B(i)

1: for j ← 1 to n do � Iterate over n right hand sides
2: for k ← 1 to m do � Iterate over rows of A
3: for i ← k to m do � Iterate over columns of A
4: #pragma omp parallel for simd

5: for idx ← 1 to batch count do � Iterate over problems in the batch
6: if k == 0 then
7: B[i][j][idx] ← β × B[i][[j][idx] � Apply α
8: end if
9: if i == k then

10: B[k][j][idx] ← B[k][j][idx]/A[k][k][idx] � Division by ak,k

11: continue
12: end if
13: B[i][j][idx] ← B[i][j][idx] − B[k][j][idx] × A[i][k][idx] � Update
14: end for
15: end for
16: end for
17: end for

is a tunable parameter and depends on the number of cores and the memory
hierarchy of the target machine. In our experiments we let InterleaveTRSM
denote Algorithm 1. For the block interleaved TRSM (BlockInterleaveTRSM)
we replace #pragma omp parallel for simd by #pragma simd in Algorithm 1
and use an OpenMP for loop over the blocks defined above.

3.6 Interleaved Batch BLAS User Interfaces

We note that data layout utilized by the user and that used internally to the
computation need not be the same. Indeed our code has two interfaces: a simple
P2P interface for user convenience (which performs all the memory layout con-
version internally) and, for expert users, we expose the interleaved layout kernels
and the associated conversion functions directly. For the simpler functions with
P2P-based interfaces, the design is as follows:

1. Convert from user layout to block interleaved layout.
2. Call block interleaved kernels.
3. Convert back to the user layout.

The conversion routines are designed for better data locality, and exploit both
thread and vector level parallelism. For safety, the user is required to provide the
extra memory intended for conversion. More details on the API and the codes
can be found on our Github repository1.

1 https://github.com/sdrelton/bblas interleaved.

https://github.com/sdrelton/bblas_interleaved


Optimized Batched Linear Algebra for Modern Architectures 517

3.7 Experimental Results

The aim of this subsection is to evaluate how the block interleaved (Blkintl)
batch kernels compare to both the optimized Intel MKL batch BLAS kernels
(MKL) and OpenMP for loop over Intel MKL BLAS kernels (OpenMP). The
experiments are performed on a 68-core Intel KNL2 configured in flat mode
with all data allocated in the high bandwidth memory. To obtain more reliable
results, we take the average time over ten runs and carefully flush the cache
between each run.

Fig. 4. Performance comparison of different implementations of batch DGEMM using
68 threads on the Intel KNL with different batch sizes on square matrices ranging in
size from 2 × 2 to 16 × 16.

The first experiment displayed in Fig. 4, compares the performance in
GFlop/s (the higher the better) of three batch DGEMM implementations. A
batch containing a few thousand matrices is enough to saturate the KNL, and
the performance doesn’t increase significantly when doubling the batch size. It
is important to notice that we also consider layout conversion time in the per-
formance of Blkintl. The conversion overhead is significant for GEMM because
it involves three batches of matrices (A(i), B(i) and C(i)). Despite this overhead,
Blkintl outperforms MKL for very small matrices ranging from 2 × 2 to 7 × 7,
and OpenMP for matrices up to 11 × 11. In the particular case of a batch of 20,000
2 × 2, Blkintl is four times faster than MKL. As the matrix sizes increase, both
MKL and OpenMP outperform Blkintl for two main reasons: (i) the increasing
cost of data layout conversion, and, (ii) the current Blkintl implementation is
not taking advantage of advanced memory prefetching strategies. Since the three
kernels are performing the same floating point operations in a different order,
we can view this as a race to fill the vector units within the cores.

Furthermore, on average, MKL is 15% better than OpenMP. This suggests that
the MKL approach to batch BLAS is more sophisticated than a simple OpenMP
for loop over optimized BLAS kernels.

2 https://ark.intel.com/products/94035/Intel-Xeon-Phi-Processor-7250-16GB-1
40-GHz-68-core.

https://ark.intel.com/products/94035/Intel-Xeon-Phi-Processor-7250-16GB-1_40-GHz-68-core
https://ark.intel.com/products/94035/Intel-Xeon-Phi-Processor-7250-16GB-1_40-GHz-68-core


518 J. Dongarra et al.

As MKL provides only batch kernels for DGEMM, in Fig. 5 we can only com-
pare the performance of Blkintl and OpenMP for a batch of 10,000 DTRSM.
Compared to GEMM, TRSM has a lower numerical intensity, but the perfor-
mance can be increased by operating on multiple right-hand sides. In Fig. 5a and
b, for example, the performance almost doubled for both OpenMP and Blkintl
from one right-hand side to two. The superiority of Blkintl over OpenMP is
significant even with matrix sizes up to 32 × 32, which is consistent with our
analysis in Subsect. 2.1. Interleaving multiple triangular solves alleviates the syn-
chronization penalty of performing only one division per right-hand side before
parallel updates. Another factor is a lower conversion overhead: since the TRSM
algorithm operates on triangular matrices and a few right-hand sides, the con-
version overhead is reasonably low when compared to GEMM.

Fig. 5. Performance of a batch of 10, 000 DTRSM operations using 68 threads on the
Intel KNL with different numbers of right hand sides (rhs), on matrices ranging in size
from 2 × 2 to 32×32. Blkintl is 14 times better than OpenMP in (a) for 2 × 2 matrices.

4 Application to Batched Cholesky Factorization and
Solve

Efficient LAPACK kernel implementations are commonly achieved by dividing
the matrices in blocks or tiles, and taking advantage of Level 3 BLAS routines as
much as possible to process the blocks or tiles. However, very small matrices can-
not easily be divided into blocks. To solve batches of very small LAPACK prob-
lems we can extend the interleaved approach to LAPACK routines. This allows us
to optimize the use of wide vector units and also take advantage of interleaved
BLAS kernels whenever possible. In particular we will focus on the Cholesky
solve (POSV) algorithm which solves Ax = b, where A is a symmetric definite
positive matrix. It starts with a Cholesky factorization (POTRF) A = LLT ,
then performs a forward substitution (TRSM kernel, Ly = b) before finally per-
forming a backward substitution (TRSM kernel, LTx = y). In this example, the
implementation effort involves mainly developing the Blkintl POTRF kernel,
as Blkintl TRSM has already been discussed above.



Optimized Batched Linear Algebra for Modern Architectures 519

Fig. 6. Performance of batch Cholesky factorization (DPOTRF) using 68 threads on
the Intel KNL, with different batch sizes, on matrices ranging in size from 2 × 2 to
32 × 32. Blkintl is 18 times better than OpenMP in (c) for 2 × 2 matrices.

As illustrated in Fig. 6, Blkintl POTRF outperforms the OpenMP version
for the same reasons discussed for the Blkintl TRSM kernel: better use of the
vector units and low memory conversion overhead, and the conversion cost is
even lower than the TRSM case since it involves only one triangular matrix per
problem in the batch. An overview of the Blkintl POSV algorithm is provided
in Algorithm 2.

Algorithm 2. Blkintl POSV algorithm: B(i) ← (A(i))−1B(i)

1: Conversion of A(i) and B(i) into Blkintl format
2: Call Blkintl POTRF
3: Call Blkintl TRSM (forward substitution)
4: Call Blkintl TRSM (backward substitution)
5: Convert A(i) and B(i) back to the user’s format

The two main features of Algorithm 2 are: (i) conversions are performed once
before using the three Blkintl kernels, (ii) reuse of Blkintl BLAS kernels. In
particular, performing the conversion only once allows us to obtain very good
performance with this approach. The results shown in Fig. 7, for example, show
that the gap in performance between Blkintl and OpenMP is larger than the one
observed for TRSM in Fig. 5.

The same strategy is applicable to other batched LAPACK kernels, with lots
of potential for large speedups over an OpenMP for loop.

5 Efficient Batch Linear Algebra on NUMA Nodes

As explained in Subsect. 3.7, obtaining good performance is a race to fill the
vector units of the cores as quickly as possible. In addition, data layout conver-
sions required by Blkintl make our algorithms sensitive to data locality and
data movement. These two factors are potential limitations for achieving good



520 J. Dongarra et al.

Fig. 7. Performance on a batch of 10, 000 Cholesky solve (DPOSV) using 68 threads
on the Intel KNL with different numbers of right-hand sides, on matrices ranging in
size from 2 × 2 to 32 × 32. Blkintl is 40 times better than OpenMP in (a) for 2 × 2
matrices.

performance on non-uniform memory access (NUMA) nodes. In fact, when run-
ning a batch of very small matrices on a 2-socket NUMA node for example,
the matrices are more likely to be allocated on a single socket, and the second
socket will have only a remote access to data. This induces a high communica-
tion cost and performance drop due to the cost of remote memory access. This
issue is commonly addressed by interleaving the data allocation thanks to the
numactl -interleave=all option available on Linux systems. Memory will
then be allocated using a round robin procedure between the nodes. As depicted
in Fig. 8, there is a slight performance improvement for both Blkintl and OpenMP
when changing the standard memory allocation (Fig. 8a) into the interleaved
allocation configuration (Fig. 8b). In general spreading the memory allocation
improves the performance but, in the case of batch operations, there is no guar-
antee that we will allocate all data required for each independent problem on
the same node. For example A(i) may be allocated on the first socket while the
corresponding B(i) allocated on the second socket.

One way to significantly improve the performance is to split the batch into
two independent batches and use one socket per batch. Unfortunately current
OpenMP runtimes are not NUMA aware, however the user can manage the mem-
ory allocation themselves to enforce optimal data placement, using the libnuma
API for example. The user can then call our batch BLAS kernel on each socket in
parallel. This strategy should improve the performance significantly as observed
in Fig. 8c, but requires a lot of user effort.

On the particular machine we used, the NUMA node vector units are half the
size of the Intel KNL vector units. This explains the decrease of the performance
gap between Blkintl and OpenMP when compared to those observed for Intel
KNL. We believe that further studies can help in designing new efficient batch
kernels which are specially optimized for NUMA nodes.



Optimized Batched Linear Algebra for Modern Architectures 521

Fig. 8. Performance of a batch of 10, 000 Cholesky solve (DPOSV) operations using
20 threads on a NUMA node of two 10-core sockets, Intel Xeon E5-2650 v3 (Haswell),
with different numbers of right-hand sides, on matrices ranging in size from 2 × 2 to
32 × 32.

6 Concluding Remarks

In this research we have explained, and demonstrated the large potential of, the
block interleaved strategy for batched BLAS operations. We have shown that
our approach can offer significant performance improvements over an OpenMP
for loop around vendor optimized BLAS kernels, with speedups of up to 40×
for a batched Cholesky solve.

While generally satisfactory speedups are achieved on the Intel KNL architec-
ture, we noted that further prefetching techniques may help to further improve
the performance of the Blkintl DGEMM kernel. We have also shown that
advanced memory placement configurations are necessary to increase the per-
formance of batched kernels on NUMA nodes.

Finally, this study has focused only on an element-wise interleaving strat-
egy. However, we believe that other data interleaving approaches such as row
interleaving, column interleaving, and mixtures of the above could also provide
similar (or even better) performance. It is clear that there is a large amount of
further investigation to be done in this area.

Acknowledgements. The authors would like to thank The University of Tennessee
for the use of their computational resources. This research was funded in part from
the European Union’s Horizon 2020 research and innovation programme under the
NLAFET grant agreement No. 671633.

References

1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., et al.: TensorFlow: large-scale
machine learning on heterogeneous systems (2015). tensorflow.org

2. Abdelfattah, A., Haidar, A., Tomov, S., Dongarra, J.J.: Performance, design, and
autotuning of batched GEMM for GPUs. In: Proceedings of High Performance
Computing - 31st International Conference, ISC High Performance 2016, Frankfurt,
Germany, 19–23 June 2016, pp. 21–38 (2016)

http://tensorflow.org/


522 J. Dongarra et al.

3. Al-Rfou, R., Alain, G., Almahairi, A., Angermueller, C., Bahdanau, D., et al.:
Theano: a python framework for fast computation of mathematical expressions.
arXiv e-prints, http://arxiv.org/abs/1605.02688, May 2016

4. Anderson, M.J., Sheffield, D., Keutzer, K.: A predictive model for solving small
linear algebra problems in GPU registers. In: 2012 IEEE 26th International Parallel
and Distributed Processing Symposium (IPDPS), pp. 2–13. IEEE (2012)

5. Duff, I., Reid, J.K.: The multifrontal solution of indefinite sparse symmetric linear
equations. ACM Trans. Math. Softw. 9(3), 302–325 (1983)

6. Haidar, A., Dong, T.T., Tomov, S., Luszczek, P., Dongarra, J.: A framework
for batched and GPU-resident factorization algorithms applied to block house-
holder transformations. In: Kunkel, J.M., Ludwig, T. (eds.) ISC High Perfor-
mance 2015. LNCS, vol. 9137, pp. 31–47. Springer, Cham (2015). doi:10.1007/
978-3-319-20119-1 3

7. Jhurani, C., Mullowney, P.: A gemm interface and implementation on NVIDIA
GPUs for multiple small matrices. J. Parallel Distrib. Comput. 75, 133–140 (2015)

8. K̊agström, B., Ling, P., van Loan, C.: GEMM-based level 3 BLAS: high-
performance model implementations and performance evaluation benchmark.
ACM Trans. Math. Softw. 24(3), 268–302 (1998)

9. Lopez, M.G., Horton, M.D.: Batch matrix exponentiation. In: Kindratenko, V.
(ed.) Numerical Computations with GPUs, pp. 45–67. Springer, Cham (2014).
doi:10.1007/978-3-319-06548-9 3

10. Masliah, I., Abdelfattah, A., Haidar, A., Tomov, S., Baboulin, M., Falcou, J.,
Dongarra, J.: High-performance matrix-matrix multiplications of very small matri-
ces. In: Dutot, P.-F., Trystram, D. (eds.) Euro-Par 2016. LNCS, vol. 9833, pp.
659–671. Springer, Cham (2016). doi:10.1007/978-3-319-43659-3 48

11. Relton, S.D., Valero-Lara, P., Zounon, M.: A comparison of potential interfaces
for batched BLAS computations. MIMS EPrint 2016.42, Manchester Institute for
Mathematical Sciences, The University of Manchester, UK (2016)

12. Shi, Y., Niranjan, U.N., Anandkumar, A., Cecka, C.: Tensor contractions with
extended BLAS kernels on CPU and GPU. arXiv preprint arXiv:1606.05696 (2016)

http://arxiv.org/abs/1605.02688
http://dx.doi.org/10.1007/978-3-319-20119-1_3
http://dx.doi.org/10.1007/978-3-319-20119-1_3
http://dx.doi.org/10.1007/978-3-319-06548-9_3
http://dx.doi.org/10.1007/978-3-319-43659-3_48
http://arxiv.org/abs/1606.05696

	Optimized Batched Linear Algebra for Modern Architectures
	1 Introduction
	2 Related Work
	2.1 Multicore CPUs and Xeon Phi Implementations

	3 Data Layout Optimization
	3.1 Pointer-to-pointer Layout
	3.2 Strided Layout
	3.3 Interleaved Memory Layout
	3.4 Design of Interleaved Batch BLAS
	3.5 Block Interleaved Layout
	3.6 Interleaved Batch BLAS User Interfaces
	3.7 Experimental Results

	4 Application to Batched Cholesky Factorization and Solve
	5 Efficient Batch Linear Algebra on NUMA Nodes
	6 Concluding Remarks
	References




