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Abstract—In this article, we present an autotuning approach
applied to systematic performance engineering of the EM-ICP
(Expectation-Maximization Iterative Closest Point) algorithm
for the point set registration problem. We show how we were
able to exceed the performance achieved by the reference code
through multiple dependence transformations and automated
procedure of generating and evaluating numerous implemen-
tation variants. Furthermore, we also managed to exploit code
transformations that are not that common during manual
optimization but yielded better performance in our tests for
the EM-ICP algorithm. Finally, we maintained high levels of
performance rate in a portable fashion across a wide range of
HPC hardware platforms including multicore, many-core, and
GPU-based accelerators. More importantly, the results indicate
consistently high performance level and ability to move the task
of data analysis through point-set registration to any modern
compute platform without the concern of inferior asymptotic
efficiency.
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I. INTRODUCTION

The algorithms for registration of point sets are commonly

used in many aspects of computer vision. But in many

areas of science, these methods can be used for analysing

data arriving from hardware instruments. In particular, such

methods are necessary in order to produce unambiguous

descriptions of atomic scale structures from large data sets

originating in Atomic Probe Tomography (APT) [1], [2]

and multimodal electron microscopy (EM) [3], [4]. APT

can generate data sets that include as many as 107 atoms

in a single image acquisition frame. Work is underway for

electron microscopes to relay time-resolved frames, resulting

in an explosion of data that truly puts the analysis of the

output of these analytical techniques of registration squarely

within the realm of “big data.” On the technical side, the

goal is to be able to resolve both atomic identity and

position. The incoming instrument data is in the form of

sets of atomic (x ,y, z) coordinates in three-dimensional (3D)

space accompanied by identification of the atom type out

of a handful of elements that are commonly fused and

subsequently analyzed to discover their radial distribution

functions and energy landscapes. Such data is in many

ways similar, in its basic form, to visualization tasks but

the registration of the points will be followed derivation of

physics, chemistry, or material science profiles that inform the

scientists of emergence properties of the analyzed samples.

Fast and accurate derivation of optimal implementations of

the registration algorithms is the subject of this paper.

In particular, we use Expectation-Maximization (EM)

Iterative Closest Point (ICP), or EM-ICP for short. EM-ICP

is a stochastic method for registration of surfaces. It improves

issues found in other algorithms related to minimizing non-

convex cost function. Other registration algorithms applicable

for our problem sets and implementation methodology are

given in Section II.

In its simplest mathematical form, registration of point

sets X and Y may be expressed as:

min
f
‖ f (X ) − Y ‖ (1)

where the points sets come from a 3D space:

X = {x1,x2, . . . ,x�},Y = {y1,y2, . . . ,ym} with xi ,yj ∈ R3

(2)

and the function f is taken to represent a combination of

rotation, scaling, and translation:

f : X �→ R × X + t (3)

these restrictions result in transformation that is called

rigid registration and is the main focus here but a more

general non-rigid registration allows the transformation to be

affine. This includes anisotropic scaling and skews. Further

generalization is also possible and might allow unknown point

set registration. Note that the basic formulation is usually

assumed to be robust in the sense that it can handle correctly

noisy input data with outliers and some of the points missing

from the input data set.

In recent times, significant effort has gone into the

evaluation of various techniques for characterizing local

atomic environments [5]. To an extent, we follow this
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1: Start with R0 ← I , t0 ← 0
2: loop
3: Find closest point �yi∗ ∈ Y for each �xi ∈ X :

i∗ = arg minj=1, ...ny

����xi − R(k−1) �yj + �t
(k−1)

���
4: Build the ordered correspondence Y ∗ =

{y1∗, . . . ,ynx ∗}
5: Find rigid R∗, �t∗ to minimize MSE(X ,Y ∗)
6: Rk ← R∗, �tk ← �t∗

7: end loop
Figure 1. Outline of the algorithmic steps of EM-ICP (MSE = mean square
error.)

approach and adopt tools from image reconstruction in the

field of computer visualization in order to build a highly-

resolved atomic structure from a heavily defective data set

such as one obtains from APT. From a mathematical point of

view, in Equation (1), of most importance is the minimization

of the Frobenius norm: | | · | |F . The norm is computed for a

set of matrices representing the difference between a model

reference configuration, m, denoting the true, average local

structure, and the local configuration (data), di , around atom

i, where for an APT experiment, i ranges from 1 to I ≈ 107.

The minimization problem then becomes the following:

min
Ri ,Pi

I∑

i=1
| |m − PidiRi | |2F , (4)

where each configuration has a unique permutation, Pi , and

rotation, Ri , matrix (both real and orthogonal) in order to

make it invariant to the arbitrary orientation and numbering

generated by the experimental process. This general approach

to alignment is called point set registration or, in this case,

3D-3D registration [6].

The simplified outline of the EM-ICP algorithm is shown

in Figure 1. The initial guess for the transformation is an

identity rotation/scaling matrix R and zero translation matrix
�t which are then consequently updated by minimizing Mean

Square Error (MSE).

In this paper, we study performance engineering method

of autotuning based on benchtesting methodology. This

method combinatorially compounds the search space of

tuning parameters and then subsequently prunes the said

space combinatorially with a set of constraints. Both the

tuning parameters and the constraints are provided by the

user using the knowledge of the problem (3D registration in

this paper) and the template of the implementation kernel

(a parametrized version of the reference cod3). The user

remains oblivious to the interaction of tuning parameters

and constraints. This is because both are processed and

subsequently inserted at the optimal place in the automatically

generated code which explores the tuning space and prunes

away large subsets in that space. This results in nearly

additive (rather than multiplicative) compounding of the

resulting search space. We show how this combination of

techniques results in an automatically generated code that

outperforms the manually optimized implementation and may

be obtained in a sub-exponential time contrary to what the

combinatorial explosion of space size might initially suggest.

II. RELATED WORK

Iterative Closest Point (ICP) algorithm [7], [8] may be

characterized by both simple implementation structure and a

low computational cost. Over the years, both of these aspects

have contributed to its popularity and spawned numerous

variants [9], [10] including EM-ICP [11]. The Expectation

Maximization (EM) algorithm for Gaussian Mixture Model

(GMM) may be shown [12] to be equivalent to Robust Point

Matching (RPM) algorithm [13] alternating soft-assignment

of correspondences and point-set transformation. It is worth

noting that RPM comes in multiple variants [14], [15], [16].

Finally, Coherent Point Drift (CPD) algorithm [17] performs

non-rigid registration with a use of a regularizer.

Implementations of these methods are available in vari-

ous forms on multiple hardware platforms. Commonly, a

sequential code may be obtained with rare occurrences of

enhancements for either multicore or hardware accelerated

machines. Support for ICP is available, for example, in

the Point Cloud Library (PCL) [18]. We use these codes,

or the fastest representative (if available), as the basis for

our implementation and then update them to the modern

HPC software stack. We had to update to the current

version of CUDA (from the available code that was using

CUDA version 5) that supports the GPU platforms we used

in our tests. Some implementations would work with as

recent versions of CUDA as 6.51. Our implementation is

highly customizable and targets the most recent versions

available and supported by NVIDIA: 7.5 and 8.0 with initial

work towards compatibility with beta-releases of CUDA

9.0 (currently not widely available to the public).

III. PROFILING AND PERFORMANCE ANALYSIS

Our survey of existing codes for EM-ICP revealed that

the freely available implementations2 focus on visualization

tasks and image processing workflows that are often optional

in case of scientific instruments. Our focus is to provide

very high ingest rates of the data coming from the hardware

sensors and be able to process them in time before the long-

term storage system becomes overwhelmed. Consequently,

the support for High Performance Computing (HPC) tech-

niques is poor and we faced the choice of retrofitting the

codes for multithreading, modern accelerator libraries, and

performance profiling or write our version from scratch. We

chose the former and used this updated code as a reference

1One such implementation is ICPCUDA available at https://github.com/
mp3guy/ICPCUDA.

2We did not consider commercial implementations for this study but only
the codes that can be obtained under open source or educational license.
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Figure 2. Performance profile of EM-ICP implementation in CUDA running
on NVIDIA Kepler accelerator.

point that served as the basis for optimization on a variety

of modern HPC platforms that we describe in detail below.

As the first step in the performance engineering, we

acquired an application profile through a dedicated run

with an instrumented version the code. This allowed to

identify the bottleneck portions of the code that may then

be targeted with our autotuning methodology in order to

maximize the potential speedup benefits. Figure 2 shows a

typical performance profile on one of the tested devices. It

is representative of the time breakdown that we observed

on the other machines used in tests. The codes for point

set registration require 32-bit floating-point arithmetic for

computation and hence most of the code uses single-precision

float data types and the profile from the figure uses that

precision and changes to this precision will be noted explicitly.

The sections of the profile correspond to the following steps

of the algorithm from Figure 1:

• Calls to update are made in step 3.

• Calls to sdot are made in steps 4.

• Calls to sgemv are made in steps 4 and 6.

• Calls to normalize are made in step 5.

• Calls to sgemm are made in step 6

The common technique for efficient implementations

is to off-load the compute-intensive parts of the code to

highly tuned numerical libraries. In the case of results from

Figure 2, the calls to NVIDIA CUBLAS make optimal use

of the compute units (SGEMM) and the available memory

bandwidth (SGEMV and SDOT). Unfortunately, once these

sections of the code achieve the performance rate that is close

to hardware-optimality, the other parts of the code become

the main sources of slowdown. These two slowdown parts are

named update and normalize in Figure 2. In terms of the

operations from algorithm in Figure 1, they represent updates

and normalization of the correspondence and error metrics

throughout the iterations. Focusing on these two portions

• Compiler: GNU gcc, Intel icc
• Runtime: GNU gomp, Intel iomp
• Number of threads: 1, . . . , 40, . . . , 70, . . .

• Hyperthreading: yes, no (enabled with OpenMP or

kernel affinity of threads)

• Interleaving: compact, spread, round-robin

• Main memory page mapping: round-robin, application-

specific (first touch, random, . . . )

• Software-exposed parallelism: collapse(2), collapse(3),

. . .

• Thread scheduling selection: static, chunk-based, dy-

namic, . . .

• Parallel grain selection: chunk size

• Vectorization: 2, 4, 8, 16

Figure 3. Autotuing parameter space used for optimization of performance
through OpenMP parallelization and directives.

exclusively targets nearly 90% of the execution time across

our tested hardware.

Once we identified the code sections that are important

for performance engineering, we proceeded with defining the

parameter space of available configurations that needs to be

explored for generating code that would execute efficiently.

Figure 3 shows a summary of that space for multicore hard-

ware (GPU-specific considerations are presented below) with

open source3 and commercially developed4 software stacks.

The search space for autotuning optimization is multidimen-

sional and heterogeneous in the sense that it includes different

categories of parameters, namely: binary (for example use,

hyperthreading or not use it), ordinal/categorical/enumeration

(for example, compiler-version pairs: gcc 6.0, gcc 7.0, icc
2016, icc 2017), integer (for example, an integer range of

loop blocking parameter values), and continuous (for example,

cache reuse ratio). Theoretically, the entire search space may

be represented by a Cartesian product of these variables

which would result in combinatorial explosion in the size of

the search space. In practice, the search space is much less

regular due to a number of software and hardware constraints.

For example:

• Optimization problem might be solved for the GNU

compiler but is an issue for the Intel compiler.

• The results might change between different versions of

the compilers: often new versions result in improvements

but performance regressions are also possible.

• Internal interactions between the compiler, OpenMP

runtime, and the processor firmware could further

complicate the optimization.

We have developed Domain Specific Language (DSL) called

3Due to the fact that the GNU and LLVM compilers share the OpenMP
runtime, we only considered GNU gomp but a LLVM-specific solution is
under development.

4We only considered one commercial compiler but other choices are also
possible, for example the PGI Group or Microsoft Visual Studio compilers
that support a version of the OpenMP standard.



2896

• Target occupancy level

– NVIDIA provides occupancy calculator

– Good performance is not equivalent to good occu-

pancy but there exist occupancy thresholds that are

necessary for achieving sufficiently high levels of

relevant performance metric.

• Read coalescing: X -points only, Y -points only, both X
and Y points

• Thread grid shape

• Thread block shape

• Thread mapping to data (application-level thread affin-

ity):

– grid-block: Gi×j × TR×C → RX×Y : user data

• Number of partial warp (warp thread count smaller than

25 = 32
• SM(X) streaming Unit utilization in number of CUDA

cores as � × 2k

Figure 4. Optimization Space with CUDA Parallelization

LANAI (LANguage for Autotuning Infrastructure) [19] to

deal with these issues but further details are beyond the scope

of this article.

A. Optimizations specific to NVIDIA GPUs and CUDA
Software Stack

So far, we discussed the autotuning optimization space

with the focus on multicore hardware that may be, in a

generic form, characterized by multipurpose compute cores

with a deep memory hierarchy of caches and complex main

memory structures. Hardware accelerators such as compute-

oriented GPUs differ from multicore hardware in a number

of important ways including higher number of floating-point

units, higher bandwidth to/from the main memory, and higher

latency to the main memory. The memory hierarchy of GPUs

is more shallow and often smaller caches are used on per-

device basis. Despite these differences, the breakdown of

execution time from Figure 2 is applicable to both types

of compute platforms. Furthermore, this similarity applies

across multiple GPU devices and compiler tool chains which

might feature, for example, different approaches to instruction

predication and branch removal algorithms. Such details

depend on availability of Special Function Units (SFUs) on

the target device and available hardware predication length.

As a practical example, consider the difference between

NVIDIA’s Kepler and Maxwell architectures: the former

features high end compute cards and has full support for

64-bit precision floating point arithmetic while the latter only

targets gaming and rendering markets with 32-fold slowdown

of 64-bit instructions.

The profiling on the NVIDIA hardware is done through

either the nvprof command line tool or the nvvp GUI

application. They are assisted by the hardware counters for

minimal overhead on the running code. They were used

Table I
FP16 AND ITS HARDWARE SUPPORT IEEE 754 (2008)

Precision Width Exponent Mantissa Epsilon Max

Quadruple 128 15 112 O(10−34) O(104932)
Extended 80 15 64 O(10−19) O(10308)
Double 64 11 52 O(10−16) O(10308)
Single 32 8 23 O(10−7) O(1038)
Half† 16 5 10 O(10−3) 65504

† defined only for storage

to gather the profile and bottleneck information from the

reference code.

To maximize the bandwidth achieved by our imple-

mentation, we aim at efficient use of global and shared

memory banks as well as enforce coalesced reads through

stride-1 accesses. This is done explicitly since the GPU

compilers often do not automatically handle Instruction-Level

Parallelism (ILP). Also by design, CUDA shifts the Thread-

Level Parallelism (TLP) to the user as the threads must be

explicitly created and managed by the user code inside kernel

functions. These considerations result in a modified search

space for the GPU-optimized autotuning that is shown in

Figure 4.

B. Using Limited Precision Arithmetic

1) Hardware Landscape for 16-bit Floating-Point: In

2017, a new type of hardware extension became much more

main stream: a 16-bit floating-point precision arithmetic

(FP16). This was precipitated by the initial experiments

in deep network training with limited floating-point accu-

racy [20], [21]. Numerous hardware vendors and super-

computing sites are now involved with the trend. Consider

the announced AMD GPUs MI5, MI8, MI25 whose model

number corresponds to the peak performance of the card

in FP16: 5 Tflop/s, 8 Tflop/s, and 25 Tflop/s, respectively.

Softbank subsidiary ARM, announced publicly an extension

to its NEON Vector Floating Point (VFP) to include FP16

in the V8.2-A architecture specification. NVIDIA GPUs that

feature FP16 are widely available Tegra TX1 and Pascal P100

cards. In pre-release stage are Volta-based V100 and DG100

with the Xavier car platform down the line. TSUBAME 3 is

one of the first supercomputers to prominently feature FP16

but other sites with NVIDIA Pascal hardware can fully utilize

this new functionality. This is in line with our experiments

in using FP16 in HPC benchmarking [22].

2) FP16 Considerations for Point Set Registration: FP16

precision is officially defined by the IEEE 754 standard. Its

features are compared with the other floating-point precisions

in Table I. Note that FP16 is not technically a compute format

but only a storage format. This may be reflected by the choice

of the runtime semantics of the announced Tensor Core unit

in NVIDIA’s Volta architecture that internally computes in

FP32 arithmetic but consume and produce FP16 operands.
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This is similar to the common practice of the way the Fused-

Multiply-Add (FMA) instruction is implemented with higher

precision for the intermediate results.

From the stand point of point set registration, FP16 has

a potential benefit of increased bandwidth and compute

intensity: 2-fold increase on the NVIDIA Pascal cards. The

primary consideration is the limited range of the FP16

values as Table I indicates. At the algorithmic level, the

use of limited precision in most calculations may serve as

a opportunistic regularization scheme which, among other

things, could prevent overfitting in noisy input data scenario.

IV. FORMAL SEARCH SPACE DESCRIPTION THROUGH

PARAMETER RANGES AND CONSTRAINTS

The search space for autotuning optimization is mul-

tidimensional and heterogeneous5. It comprises different

categories of parameters, namely:

• Bi binary type, for example: use either vector or scalar

operations;

• Oj ordinal/categorical/enumeration type, for example:

use shared memory, texture cache or Level 1 cache;

• Ik integer type, for example: a range of matrix blocking

factors; and

• C� continuous (represented as floating-point) type, for

example: GPU occupancy above 30%.

Theoretically, the entire search space S may be represented

by a Cartesian product of these dimensions:

S =
∏

i

Bi ×
∏

j

Oj ×
∏

k

Ik ×
∏

�

C� (5)

In practice, the search space is much less regular than the

above formula due to a number of software and hardware

constraints. Definition of these complex search space may

be done through a language designed for this purpose. In

our case, we used the LANguage for Autotuning Infrastruc-

ture [19]. We used LANAI to specify a search space for

a typical autotuning task with parameters and constraints

derived from a matrix multiplication on a GPU [23]. The

specification is written as a Python code. The space is a

product of ranges of matrix sizes, block dimensions, threads-

per-block counts, and so on. The conditions include maximum

sizes per thread-block and the total number of threads etc.

LANAI compiler generates a C code, that is used to prune

the search space to limit the number of kernel candidates that

have to be run on the GPU to assess their performance. The

eligible kernel configurations are exported as CSV (Comma-

Separated Values) file that is used by the benchtesting module,

which is responsible for building and executing the kernels.

For completeness, we show in Figure 5 a quick overview

of the syntax, semantics, and the generated code for a simple

5In order to keep the discussion focused, we will mostly limit the
examples to GPU accelerators and their parameters but the concepts are
easily translatable to other HPC platforms such as x86 multicore CPUs,
Intel Xeon Phi KNL, IBM POWER8 SMT.

Semantics LANAI syntax

Iterator I1 = {1, 3, 5, 7} I1 = range(1,8,2)
Generated C code: for (I1 = 1;I1 < 8;I1 += 1)

Constraint E1 = {i1 ≥ 3} E1 = (I1 >= 3)
Generated C code: if(! I1 >= 3) break;

Figure 5. Sample syntax and semantics of LANAI code and the generated
C code.

iterator and a constraint. Full details of the LANAI can be

found elsewhere [19].

Equation (5) defines the search space, and as a conse-

quence, dictates that the growth of the size of the space

is combinatorial with the number product subsets. This

is only true if the subsets are unconstrained. However,

Figure 5 shows that constraints are part of the LANAI

syntax and thus offer the user very effective means of

limiting the size of the search space. Introducing these

constraints compounds combinatorially due to Cartesian

product. Thus the combinatorial growth of additional subsets

is counteracted by the combinatorial diminishing due to

new constraints. These makes the approach very efficient in

practice and results in manageable number of combinations to

consider and reasonable time to evaluate all the eligible cases.

One important technical aspect of producing manageable

search spaces is generating loop nests and loop termination

statements in just the right order. This is done by organizing

the iterators and constraints as a Direct Acyclic Graph

(DAG) and generating the exploration code in a topological

order which guarantees minimality of the explored space

points [19].

V. PERFORMANCE RESULTS

In this section, we present the full set of results across

a wide range of hardware platforms from the common x86

multicore server processors through the specialized many-
core HPC machines with an enhanced feature set beyond the

commodity hardware. We also include the compute-oriented

GPU cards that come from a broad category of systems

referred to as hardware accelerators.

Throughout this section, we present results for many

variants of the equivalent implementation of the algorithm

from Figure 1. Some of these variants correspond to the

reference implementation mentioned in Section II. We

indicate the performance of the reference code throughout

the text to make it clear by how much our methodology

outperforms it.

A. Description of the Tested Hardware Platforms

We performed our autotuning experiments on a number of

hardware platforms and a quick summary of these is given

in Table II. Out of the machines shown in the table, Intel Phi

KNL is potentially the newest and might be the least familiar.
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Table II
SUMMARY OF HARDWARE PLATFORMS USED IN THE PERFORMANCE

TESTS.

Architecture Manufacturer Model Name

x86 Intel 2620 Haswell
Phi Intel 7280 Knights Landing

K40c NVIDIA GK110B Kepler
P100 NVIDIA GP100 Pascal

Table III
DETAIL CHARACTERISTICS OF THE INTEL XEON PHI KNIGHTS LANDING

PLATFORM A MANYCORE CPU USED IN THE TESTS. THE PERFORMANCE

NUMBERS AT THE BOTTOM OF THE TABLE ARE REPORTED VERBATIM

FROM THE INTEL DOCUMENTATION AND PERFORMANCE MATERIALS.

Metric name Metric value

Core count 68
Hardware thread count 272
Vector FPUs lengty 512 bits
Main memory RAM DDR4
Max DDR4 RAM 384 GiB
DDR4 latency ≈140 ns
Fast RAM 16 GiB MCDRAM
Max MCDRAM 16 GiB
MCDRAM latency ≈170 ns
MCDRAM configuration modes flat, cached, mixed
Level 3 cache 0

Peak FP32 6093 Gflop/s†
SGEMM 4065 Gflop/s
Peak FP64 3046 Gflop/s‡
DGEMM 2070 Gflop/s
LINPACK Benchmark 2000 Gflop/s
STREAM MCDRAM 490 GB/s
STREAM DDR4 90 GB/s

† 68 × 1.4 GHz × 2 VPUs × FMA × 16 AVX lanes
‡ 68 × 1.4 GHz × 2 VPUs × FMA × 8 AVX lanes

It presents an alternative to the superscalar x86 architecture6

from Intel that is solely based on low-power Atom cores

with up to 72 of such cores on the chip connected with a

mesh interconnect and divided into 4 logical quadrants with

NUMA-like consequences for data affinity. Further details on

cache and memory hierarchy with on-chip characteristics is

out of scope of this article. Initially planned in two hardware

versions as self-boot servers and leveraged-boot cards, they

are not aligned with the Intel HPC strategy in that form.

Currently, only the self-boot units are commercially available

and already installed at various computing center sites. The

relevant details on the Intel Xeon Knights Landing (KNL)

machine are given in Table III as they are available from

public sources.

B. Timing Results for GNU and Intel Compilers on the x86
Machine

The first set of results come from the Intel x86 Haswell

machine and are charted in Figures 6 and 7 for the GNU and

Intel compiler, respectively. In order to limit the number of

6Note that for the most part Xeon and Xeon Phi processors are binary
compatible with the exception of the extra AVX512 instructions.

Figure 6. Point set registration timing results on the x86 Haswell machine
with the GNU compiler for various OpenMP configurations.

Figure 7. Point set registration timing results on the x86 Haswell machine
with the Intel compiler for various OpenMP configurations.

points in the chart, only the most representative configurations

are shown. The configuration called orig-omp is the original

code parallelized with OpenMP directives. We consider this

code as a reference point that needs to be improved in

order for us to claim advantage for our methodology. The

orig-no-omp configuration is the reference point with the

OpenMP parallelization disabled. Including this configuration

in the charts shows how the GCC compiler struggles to

parallelize the registration loop nest as almost all other

parallel configuration run mostly at the same speed except

for the opt-omp-noif-collapse configuration. That last

configuration clearly outperforms all the others as it enables

more parallelism and makes optimization and cross-thread

work assignment for the GNU compiler. However, none

of the optimizations tested allowed the GNU compiler to

dip below 1 second for the largest point cloud size (40000

points). The Intel compiler has no problem to run under one

second for a few optimization configurations. We did not
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Figure 8. Point set registration performance rate results on the x86 Haswell
machine with the Intel compiler for various OpenMP configurations.

conduct any further experiments to understand whether this

may be related to either the generated instruction mix or

more efficient OpenMP runtime. We leave this question for

future work.

C. Application-Specific Performance Metric for Cross-
Platform Comparisons

As we prepare for a more exhaustive comparisons across

multiple hardware platform and input data sizes, using

absolute timing for measuring performance becomes prob-

lematic. We recognize the importance of time-to-solution as

an ultimate metric relevant to the end user but we would

also like to be able to compare in a much more flexible

fashion when there are many non-constant parameters of

the tested hardware and the input data sets. At the same

time, we strive to have the new metric be equivalent to

the time-to-solution measurement with data size constant.

The common performance metric in HPC codes is Gflop/s

which has the one important advantage that it is one metric

to use across all input data sets and even applications.

Among many downsides is that Gflop/s rating assumes that

there is uniform (preferably linear) relationship between

Gflop/s and the essential application speed (commonly

time-to-solution). This particular downside splinters in a

multitude negative consequences such as artificial efforts to

maximize the number of floating-point instructions that often

come free if executed on cache-resident data but contribute

very little to the application’s ultimate goal. Instead, we

derive an application-relevant metric based on the asymptotic

performance theory [24].

In particular, for registration problems, the relevant perfor-

mance metric is the number of points registered per second.

Using this rate, we can quickly compare either scenes or

surfaces with different number of points and still be able to

map the rating back to time-to-solution. We use Giga-points-

per-second (Gpts) unit for the execution rate that is defined

Figure 9. Point set registration performance rate results on the Xeon
Phi Knights Landing machine with the Intel compiler for various OpenMP
configurations.

as:

r =
nXnY
t

10−9 Gpts

where nX and nY represent the number of the input and

output points, respectively. The scaling factor of 10−9 is a

standard SI unit prefix that happens to render all the rates in

this article to fall within the human-familiar range of small

numbers that are greater than 1 and less than 50. Figure 8

shows this new metric applied to the timings from Figure 7.

As an immediate advantage, we can see subtleties of the

optimal configuration: the asymptotic performance rate is

nearly 6 Gpts and the cache effects can be seen until 5000

points when the working set fits in cache and the performance

rate is higher due to the higher bandwidth and lower latency

of accessing data.

D. Performance Results on Many-core and GPU Device
Cards

Figure 9 shows the performance rate results on the Xeon

Phi KNL machine. Two clear differences may be observed:

1) Cache effects are mostly gone for small data sizes as

compared with the x86 runs.

2) The inherent variability of timing measurements is

gone and the graphs are much more smooth especially

for the data sizes when the working set exceeds the

cache size and the data has to be streamed from the

main memory.

Figure 10 shows the first attempt of measuring performance

on the K40c GPU but without coalescing the reads from

the main memory. This is clearly against the common

optimization technique used on GPUs and the effect of fixing

this problem is shown in Figure 11 when coalescent reads

were used. The performance increase is nearly 2-fold which

confirms the importance of this optimization. In fact, this is

what was chosen for the reference code with blocking factor
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Figure 10. Point set registration performance rate results on the NVIDIA
Kepler K40c card with the NVIDIA nvcc compiler for various loop blocking
configurations with non-coalesced reads.

Figure 11. Point set registration performance rate results on the NVIDIA
Kepler K40c card with the NVIDIA nvcc compiler for various loop blocking
configurations with coalesced reads.

BLK set to 32 to achieve 1-to-1 match with the number

of threads in a thread warp. Our search indicates that it is

possible to achieve even better registration rate with a smaller

blocking factor.

A more counter-intuitive effect is to forgo the use of the

shared memory which only occasionally leads to performance

improvement. This happens to be the case for the registration

algorithm we evaluated and Figure 12 shows that it is possible

to gain a percentage point of performance if the shared

memory is not used.

E. Limited Precision Implementation

We finally proceed to test the influence of low-precision

hardware on the performance of the EM-ICP implementation.

We use NVIDIA Pascal GPU card with the P100 chip that

features dedicated FP16 units that perform the arithmetic

instructions that are twice as fast as the corresponding FP32

Figure 12. Point set registration performance rate results on the NVIDIA
Kepler K40c card with the NVIDIA nvcc compiler for various loop blocking
configurations without the use of shared memory.

Figure 13. Point set registration performance rate results on the NVIDIA
Pascal P100 card with the NVIDIA nvcc compiler for all loop blocking
configurations.

instructions. The size of the FP16 data is twice as small and

hence it is natural to expect two-fold increase in performance

for both compute-bound and bandwidth-bound portions of

the code.

First, Figure 13 shows all data points collected from

running on the P100 card in FP32. This gives the reader an

idea of the amount of autotuning experiments conducted

automatically for the generated code versions from the

eligible configurations. To clearly indicate the range of

possible performance metrics, Figure 14 shows the best and

the worst performance rate when FP16 arithmetic is used. It

may seem underwhelming when compared with all the prior

results presented so far. To identify how FP16 and FP32

arithmetic results compare against each other, we show in

Figure 15 just the relevant graphs. As the figure indicates,

the FP16 arithmetic performs faster in absolute terms but the
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Figure 14. Point set registration performance rate results on the NVIDIA
Pascal P100 card with the NVIDIA nvcc compiler for the best and worst
autotuning configurations using FP16 arithmetic.

Figure 15. Point set registration performance rate results on the NVIDIA
Pascal P100 card with the NVIDIA nvcc compiler for the best and worst
autotuning configurations using either FP16 or FP32 arithmetic.

improvement is not as high as the 2-fold higher performance

rate suggested by the raw hardware specification. Next, we

examine this result in more detail.

#pragma omp parallel for

for (i ← 0; i < nX ; i ← i+1)

for (j ← 0; j < nY ; j ← j+1)

. . .

#pragma omp parallel for collapse(2)

for (i ← 0; i < nX ; i ← i+1)

for (j ← 0; j < nY ; j ← j+1)

. . .
Figure 16. Optimal Configuration for GNU Compiler on x86

// FP16-FP32 conversions contribute additional
// overheads and hit against hardware limit

cvt. f32 . f16 f, r // convert from FP16

sqrt.approx. f32 f, f // compute in FP32

cvt.rn. f16 . f32 r, f // convert to FP16
Figure 17. A Glance at PTX (NVIDIA’s Pseudo-Assembly) around the
computation of the approximate square root for MSE (Mean Square Error).

VI. DISCUSSION

As Figure 6 indicated, the GNU gcc compiler does

not seem enable optimized parallelization levels and, as a

consequence, efficient use of many threads remains lacking

in resulting implementation speed. This may be remedied

by the user when a lot of parallelism is exposed through

introducing a large index sets manually with the pragma

directives. In OpenMP specifically, this may be achieved

with the collapse clause that allows to merge loop nests

for a combined index set that is subsequently divided among

the available threads. Such an optimization will result from

the transformation shown in Figure 16. Our autotuning

framework allows to introduce the clause in the generated

variants and then test a number of loop-collapsing parameters

to find out the optimal setting for the tested hardware

platform.

Another surprising result uncovered during the autotuning

procedure is presented in Figure 15 that shows a compar-

atively small difference between the performance obtained

from the variants of code that use either FP16 and FP32

arithmetic. In our analysis, this may be attributed to the

conversion overhead. We managed to confirm this information

by looking at the PTX code generated by the NVIDIA nvcc
compiler. The resulting PTX code is shown in Figure 17

in a somewhat stylized form when all the spurious details

were removed and the essential information on data types

highlighted of emphasis. The hardware conversion units on

the NVIDIA Pascal chips are limited in number, unlike, for

example, floating point units. This slows down the execution

within a single thread warp and contributes to the overall

slowdown of the code. This clearly obviates any performance

gains that might have been obtain from using FP16 to begin

with. This is the case when autotuning process exposes

bottlenecks that might have not been otherwise present in

non-optimized or manually optimized code due to a limited

exposure to the variety implementation variants. In addition

to the limited count of square root units, there is a limit on

conversion throughput and the thread-synchronizing effect

of using Special Function Units (SFUs) that decreases the

number of threads eligible for execution.

VII. CONCLUSIONS AND FUTURE WORK

In this article, we presented an application of the autotuning

approach to the EM-ICP algorithm that is a stochastic method

used for point set registration. We applied various transfor-

mations and used an automated procedure to generating a
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set of implementation variants. This allowed us to, first,

exceed the performance achieved by the reference code that

was only optimized manually. Then we explored the entire

space of potential performance-oriented implementations to

engineer stable and portable performance levels that makes

the EM-ICP code available across a large range of hardware

platforms. Our methodology generated implementations for

multicore, many-core, and accelerator-equipped machines.

Extending this work to a wider range of registration

codes is a natural future direction that we intend to pursue.

However, due to a large number of algorithms and algorithmic

variants for the registration problem, we will be guided in

our selection by the need of the scientific fields that are in

need of point set registration implementations for analysis

of large data sets. These computational science fields benefit

the most from the performance engineering efforts that we

presented because of high rates and large volumes of data

coming from their experimental instruments such as Atomic

Probe Tomography microscopes in material science.
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